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Problem 12.1:
Consider a torus T 2 (which is topologically the same as S1 × S1), parametrised by

(σ1, σ2) ' (σ1, σ2) + 2π(m,n) for m,n ∈ Z. (1)

(a) Convince yourself that, up to an overall rescaling, the most general metric is given by

ds2 = |dσ1 + τdσ2|2, for τ ∈ C. (2)

(b) Argue that Weyl transformations and diffeomorphisms can be used to define new coordinates ξi

in terms of which the metric takes the standard form ds2 = |dξ1 + idξ2|2.
Hint: Use that χ = 1

4π

∫
T 2 d2ξ

√
hR = 2− 2g = 0.

Argue that the new periodicities are given by

ξ1 ' ξ1 + 2π(m+ nv1), ξ2 ' ξ2 + 2π(nv2),

for some vector (v1, v2).

(c) Now define the complex variable w = σ1 + τσ2 such that in the first picture ds2 = dwdw.
Convince yourself that the identification (1) implies the identification

w ' w + 2π(m+ nτ), (3)

i.e. a T 2 is a lattice in C.

Remark: The upshot is the following: We can parametrize the torus in two equivalent ways: In
the first picture (1), the coordinates σ1, σ2 have standard periodicity 2π, but there appears a
modulus τ - the so-called Teichmüller parameter - in the metric (2). Alternatively, we can choose
coordinates w,w such that the metric has the standard flat form ds2 = dwdw, but now in general
the periodicity (3) contains a modulus τ that cannot be removed by conformal transformations.

(d) Consider now the transformations

T : τ → τ + 1 S : τ → −1

τ
, U : τ → τ

τ + 1
.

Determine their action on the parameters (m,n) in (3) and use this to argue that T , S and U
leave the torus invariant. Argue that T , S and U generate the group SL(2,Z), whose action on
τ is

τ → aτ + b

cτ + d
, ad− bc = 1, a, b, c, d ∈ Z.

Argue that the full modular group of T 2 is PSL(2,Z) = SL(2,Z)/Z2.

Note: In fact, S and T suffice to generate SL(2,Z)/Z, but this is non-trivial to show.

(e) Use PSL(2,Z) invariance to show that τ can always be brought to the fundamental domain

F0 : −1

2
≤ <(τ) ≤ 1

2
, |τ | ≥ 1.

Represent F0 graphically and discuss the various identifications of its boundaries.
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Problem 12.2:
In this exercise we want to compute the one-loop vacuum amplitude in the oriented closed string
theory. The corresponding worldsheet is a torus and there are no vertex operator insertions. The
moduli space of the torus was subject of the discussion in problem 12.1. The upshot of this discussion
was that (unlike in the case of the tree-level amplitude on S2 discussed in the lecture, which has no
metric moduli) conformally inequivalent tori are characterized by a complex parameter τ which takes
values in the fundamental domain F0. Thus, the Amplitude involves an integration over 1

2

∫
F0

d2τ

where the factor 1
2 appears due to an extra Z2 symmetry which sends the complex coordinate w on

the torus to its negative value, w → −w.
The conformal Killing group of the torus is U(1)×U(1), corresponding to constant shifts along the

coordinate axes σ1 and σ2.

(a) Show that the volume of the conformal Killing group of the torus is (2π)2=(τ) ≡ (2π)2τ2.

To avoid overcounting we have to divide by this volume factor. It is clear that, in analogy to the
tree-level amplitude computed in the lecture, the one-loop amplitude will factorize into a product of
independent X- and (bc)-parts which are, in the end, integrated over the moduli space of the torus.
More precisely, the amplitude takes the form

ZT 2 :=

∫
F0

dτdτ

4τ2
〈1〉T 2(τ),X · 〈ghost insertions〉T 2(τ),bc

where 〈1〉T 2(τ),X denotes the path integral
∫
DXe−SX on a worldsheet given by a torus with modulus

τ , while 〈ghost insertions〉T 2(τ),bc denotes the corresponding path integral in the (bc)-ghost sector on
the same torus with some ghost field insertions. The latter can be computed to be (cf. Polchinski, vol.
1, page 212ff)

〈ghost insertions〉T 2(τ),bc = 〈b(0)b̃(0)c̃(0)c(0)〉T 2(τ)

In this expression the two b insertions come from the one (complex) metric modulus. In order to
understand the appearance of the c insertions, think of first computing a one-loop amplitude with an
arbitrary number of vertex operator insertions. Then, as you know, the existence of the two conformal
Killing vectors discussed above allows to fix the position of one vertex operator. This gauge fixing
introduces the c fields. However, since the volume of the conformal Killing group is finite, one can
alternatively reintroduce the integration over the position of the vertex operator insertion (which we
fixed previously) and add a compensating volume factor in the denominator. All vertex operators are
now on equal footing. To obtain the vacuum amplitude one then just takes this expression with the
c fields and omits the vertex operator insertions. The fact that all ghosts are inserted at the origin
comes about because the ghost path integral turns out to be independent of the position of the ghost
fields.

We will now only be concerned with the computation of

Z(τ) := 〈1〉T 2(τ),X .

One can think of the path integral
∫
DXe−SX on the torus with modulus τ as being the same as the

sum over all states of the Xµ-field theory on a circle which are evolved for an Euclidean time 2πτ2,
translated in σ1 direction by 2πτ1 and then identified with themselves.

(b) Show that, in the canonical formalism, this translates into

Z(τ) = Tr e2πiτ1P−2πτ2H

= (qq)−
d
24 Tr qL0qL0 , q ≡ e2πiτ ,

where, as usual, P = L0−L0 generates translations along σ1, while H = L0 +L0− c+c
24 generates

time translations.
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(c) Express L0 and L0 in terms of momentum and number operators. Furthermore, recall that∑
k −−−−−−−−−−→

continuum limit
Vd(2π)−d

∫
ddk where Vd ≡ ‘spacetime volume’ to arrive at

Z(τ) = Vd(qq)
− d

24

∫
ddk

(2π)d
e−πτ2α

′k2 Tr′ qNqN ,

where Tr′ denotes the trace over the oscillator part of the string states only.

(d) Show that

Tr′ qNqN =
∞∏
n=1

(1− qn)−d(1− qn)−d

(e) Perform a Wick rotation k0 → ik0 to render the integral
∫

ddk finite. Compute the integral in
order to obtain the final result

Z(τ) = iVd (ZX(τ))d ,

ZX(τ) =
(
4π2α′τ2

)− 1
2 · |η(τ)|−2 with

η(τ) = q
1
24

∞∏
n=1

(1− qn) the Dedekind η-function.

The calculation of the ghost contribution to the one-loop amplitude can be found e.g. in Polchinski,
vol. 1, page 212ff. As expected, this contribution cancels the oscillator contributions from the two
non-transverse polarizations, i.e. it yields a factor |η(τ)|4. Thus, setting d = 26, the one-loop vacuum
amplitude reads

ZT 2 = iV26

∫
F0

dτdτ

4τ2

(
4π2α′τ2

)−13 · |η(τ)|−48 .
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