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• The graded written exam, required to obtain a Schein for this course, will be held on Friday,
February 15, 2013, from 10:15 am - 12:15 pm in Großer Hörsaal, Philosophenweg 12.

• If you would like to participate in the final exam you must register by sending an email to
s.kraus@thphys.uni-heidelberg.de with subject line “Registration for exam” by February 8th.

• Notes, calculator etc. are not allowed.

• The last tutorials will be held on January 23rd, 30th and February 13th.

Problem 13.1:

(a) An important property of ZT 2 , discussed in problem 12.2, is modular invariance, i.e. invariance
under PSL(2,Z) transformations τ → aτ+b

cτ+d of the torus. Under S- and T -transformations, which
generate the modular group, the Dedekind η-function transforms as

η

(
−1

τ

)
= (−iτ)
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2 η (τ) , η (τ + 1) = ei

π
12 η (τ) .

Use this to proof that ZT 2 is indeed modular invariant.

(b) We now discuss the IR- and UV-behavior of this amplitude. Argue that the corresponding one-
loop partition function of a field theory describing a particle of mass m is given by

ZS1(m2) = Vd

∫
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∫ ∞
0
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2l
e−

1
2
l(k2+m2). (1)

(c) The UV-limit corresponds to the limit of a small circle, i.e. l → 0. Clearly, in this limit the
field theory expression (1) is divergent. Argue for the one-loop partition function discussed in
problem 12.2 that this divergence is absent.

(d) In order to analyze the IR-behavior we note that the η-function can equivalently be expressed
in terms of the sum

η(τ) = q
1
24

∞∑
n=−∞

(−1)nq(3n
2−n)/2, q = e2πiτ .

Use this to show that the integrand of ZT 2 contains one piece which diverges in the IR, one
finite piece, and terms which vanish in the IR-limit. The divergent piece is and artifact due to
the tachyon in the spectrum of bosonic string theory. What are the sources of the finite and
vanishing pieces?

Problem 13.2:
Consider the theory of a massless scalar field φ(xM ) in d + 1 spacetime dimensions. We choose to
compactify the (d+ 1)th dimension on a S1 with radius R, meaning that we identify xd ∼= xd + 2πR.
As a consequence, φ(xM ) has to be a periodic function in xd and can thus be expanded in terms
of a complete set of exponential functions exp(inxd/R) with coefficients φn(xµ) depending on the
remaining xµ, µ = 0, . . . d− 1.

(a) What are the eigenvalues of the momentum operator in the compact direction?
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(b) Starting from the equation of motion in d+1 dimensions, show that from the d-dimensional point

of view the modes φn(xµ) are an infinite tower of fields with mass-squared m2 = −pµpµ = n2

R2 .

Now we turn to the string and compactify one target space dimension, such that X ∼= X + 2πR. One
major effect of this compactification is the generalization of the usual periodicity conditions in the
closed string sector to

X(σ + 2π) = X(σ) + 2πRw, w ∈ Z (2)

such that there appear new sectors in the theory which are characterized by the winding number w.

(c) Find the most general solution to the equations of motion ∂+∂−X(σ) = 0 for the string. Con-
centrate on the zero-modes. The oscillator pieces will not be of importance in what follows.
Hints: Chapter 2 of the lecture notes might be a good source of inspiration. Note that, without
imposing any periodicity condition, the momenta pR and pL are independent!

(d) Now impose (2) and use this to constrain the mode expansion in (c).

(e) Use your knowledge gained in (a) and (b) to constrain the center of mass momentum pR + pL.

(f) From the Virasoro constraints ((L0 − 1)|φ〉 = 0 and analogously for L̃0) you can now derive an
expression for the effective mass-squared in d dimensions:

m2 = −pµpµ =
n2

R2
+
w2R2

α′2
+ oscillators

(g) What happens under the identification

n↔ w, R↔ R′ =
α′

R
?

Try to gain a physical understanding of the situation.

Problem 13.3:
Consider the Γµ-matrices in d = (2k + 2) Minkowski space, i.e.

{Γµ,Γν} = 2ηµν1d×d, ηµν = diag(−1, 1, . . . , 1).

(a) Define {
Γ0± = 1

2

(
±Γ0 + Γ1

)
Γa± = 1

2

(
Γ2a ± iΓ2a+1

)
, a = 1, . . . , k

Show that

(i)
{

Γa+,Γb−
}

= δab

(ii)
{

Γa+,Γb+
}

=
{

Γa−,Γb−
}

= 0 which implies in particular (Γa+)
2

= (Γa−)
2

= 0 ∀a.

(b) Construct a representation of this algebra, starting from a spinor ξ which satisfies Γa−ξ = 0 ∀a
and acting with Γa+ and Γa− on this spinor. What is the dimensionality of this representation?

Comments: The representation found in this way is the Dirac-representation. For even d (which is the
case considered here) this representation is always reducible: In analogy to problem 9.2 one can define a
Γd+1 with a corresponding projection operator which projects a given spinor on an invariant subspace
of dimensionality 2k. These spinors are then called Weyl -spinors. In many cases it is also possible to
demand that the spinor is invariant under the charge conjugation operation. These spinors are known
as Majorana-spinors. Only in d = 2 mod 8 the Majorana- and Weyl-conditions are compatible and
so-called Majorana-Weyl -spinors exist.
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