Problem Sheet 2

(Due: November 2, 2012)

Problem 2.1:

Derive the commutation relations of the coefficients x^{μ}, p^{μ} and α_{m}^{μ} from the canonical commutation relations of X^{μ} and Π^{μ} in the case of an open string.

Problem 2.2:

Derive

$$
H=\frac{1}{2} \sum_{n=-\infty}^{\infty} \alpha_{-n} \alpha_{n}
$$

from the Polyakov action in the case of an open string, ignoring ordering problems (i.e. classically).

Problem 2.3:

The Riemann curvature tensor, the Ricci tensor, and the Ricci scalar are defined as

$$
\begin{aligned}
R^{\kappa}{ }_{\lambda \mu \nu} & =\partial_{\mu} \Gamma^{\kappa}{ }_{\nu \lambda}-\partial_{\nu} \Gamma^{\kappa}{ }_{\mu \lambda}+\Gamma^{\eta}{ }_{\nu \lambda} \Gamma^{\kappa}{ }_{\mu \eta}-\Gamma^{\eta}{ }_{\mu \lambda} \Gamma^{\kappa}{ }_{\nu \eta}, \\
\operatorname{Ric}_{\mu \nu} & =R^{\kappa}{ }_{\mu \kappa \nu}, \\
\mathcal{R} & =g^{\mu \nu} \operatorname{Ric}_{\mu \nu} .
\end{aligned}
$$

where the Christoffel symbols are given by

$$
\Gamma_{\lambda \mu}^{\kappa}=\frac{1}{2} g^{\kappa \nu}\left(\frac{\partial g_{\mu \nu}}{\partial x^{\lambda}}+\frac{\partial g_{\nu \lambda}}{\partial x^{\mu}}-\frac{\partial g_{\lambda \mu}}{\partial x^{\nu}}\right) .
$$

(a) Using the symmetries of its indices, convince yourself that in two dimensions the Riemann curvature tensor has only 1 independent degree of freedom.
(b) Verify that the ansatz $R_{a b c d}=\lambda\left(h_{a c} h_{b d}-h_{a d} h_{b c}\right)$ with $h_{a b}$ the two-dimensional metric is consistent with the symmetries of the Riemann tensor. Show that $\lambda=\frac{1}{2} \mathcal{R}$ in terms of the Ricci scalar \mathcal{R}.
(c) Compute the Einstein tensor defined by

$$
G_{\mu \nu}=\operatorname{Ric}_{\mu \nu}-\frac{1}{2} g_{\mu \nu} \mathcal{R}
$$

for a general two-dimensional metric. Discuss the result.
(d) Show that in two dimensions under the Weyl rescaling $h_{a b} \rightarrow \exp (2 \omega(x)) h_{a b}$ the combination $\sqrt{-h} \mathcal{R}$ transforms as

$$
\sqrt{-h} \mathcal{R} \rightarrow \sqrt{-h^{\prime}} \mathcal{R}^{\prime}=\sqrt{-h}\left(\mathcal{R}-2 \nabla^{2} \omega\right) .
$$

(e) Argue from the above result that the 2-dimensional Einstein-Hilbert term is indeed conformally invariant for a closed string worldsheet.

Note: By contrast, for an open string worldsheet Σ with boundary $\partial \Sigma$ only the combination

$$
\chi=\frac{1}{4 \pi} \int_{\Sigma} d^{2} \xi \sqrt{-h} \mathcal{R}+\frac{1}{2 \pi} \int_{\partial \Sigma} d s \mathcal{K}
$$

is conformally invariant. Here the extrinisic curvature \mathcal{K} is defined as

$$
\mathcal{K}= \pm t^{a} n_{b} \nabla_{a} t^{b}
$$

with t^{a} a unit vector tangent to the boundary and n^{a} an outward pointing unit vector orthogonal to t^{a}. The upper/lower sign refer to timelike/spacelike boundaries. Indeed this object is the Euler characteristic of a worldsheet with boundary.

Problem 2.4:

Describe the mode expansion for "twisted" closed strings, i.e. strings with boundary conditions

$$
X(\sigma+\pi, \tau)=-X(\sigma, \tau)
$$

Problem 2.5:

Describe the mode expansion of ND open strings, i.e. open strings with boundary conditions

$$
\begin{aligned}
X(0, \tau)=a, & \text { Dirichlet at } \sigma=0, \\
\left.\partial_{\sigma} X(\sigma, \tau)\right|_{\sigma=\pi}=0, & \text { Neumann at } \sigma=\pi .
\end{aligned}
$$

Problem 2.6:

Compute the anomaly term $A(m)$ in the Virasoro Algebra. Proceed as follows:

- Use the Jacobi Identity

$$
\left[L_{m},\left[L_{n}, L_{k}\right]\right]+\text { cyclic permutations }=0
$$

for $m+n+k=0$ to prove that

$$
A(n+1)=\frac{n+2}{n-1} A(n)-\frac{2 n+1}{n-1} A(1) .
$$

- Use the recursion relation to find out $A(n)=c n+d n^{3}$ with $c, d \in \mathbb{R}$. (You may assume that $A(n)$ is polynomial in n.)
- Fix c and d by computing the value of $\langle 0|\left[L_{m}, L_{-m}\right]|0\rangle$ for "some" m.

