Problem Sheet 4

(Due: November 14, 2012)

Problem 4.1:

Show that the polarisation tensor of any physical state

$$
\xi_{\mu \nu} \alpha_{-1}^{\mu} \tilde{\alpha}_{-1}^{\nu}|0, p\rangle
$$

can be brought to the form

$$
\xi_{\mu \nu}=\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & & \\
0 & 0 & & \xi_{t}
\end{array}\right)
$$

by use of the gauge freedom.
(Remind yourself of the analogous problem in Electrodynamics.)

Problem 4.2:

Consider the coordinate change

$$
\begin{equation*}
x^{\mu} \rightarrow x^{\prime \mu} \equiv x^{\mu^{\prime}} . \tag{1}
\end{equation*}
$$

The associated transformation matrices are $P^{\mu}{ }_{\nu^{\prime}}=\frac{\partial x^{\mu}}{\partial x^{\nu^{\prime}}}$ and its inverse $P^{\mu^{\prime}}{ }_{\nu}=\frac{\partial x^{\mu^{\prime}}}{\partial x^{\nu}}$. Recall that a tensor of type, say, $T^{\mu}{ }_{\nu}$ transforms under (1) as $T^{\mu}{ }_{\nu} \rightarrow T^{\mu^{\prime}}{ }_{\nu^{\prime}}=P_{\alpha}^{\mu^{\prime}} P^{\beta}{ }_{\nu^{\prime}} T^{\alpha}{ }_{\beta}$. A tensor density $\widetilde{T}^{\mu}{ }_{\nu}$ of weight w is defined by the transformation property

$$
\widetilde{T}_{\nu}^{\mu} \rightarrow \widetilde{T}^{\mu^{\prime}}=J^{w} P_{\alpha}^{\mu^{\prime}} P_{\nu^{\nu^{\prime}}}^{\beta} \widetilde{T}_{\beta}^{\alpha}
$$

(and obvious generalisations for general types of tensor densities), where $J=\operatorname{det}\left(P^{\mu}{ }_{\nu^{\prime}}\right)$.
(a) Given the tensor $S_{\mu \nu}$, convince yourself that $\left(\operatorname{det} S_{\mu \nu}\right)^{\frac{1}{2}}$ is a scalar density of rank 1 .
(b) Consider now fields of tensors and tensor densities, e.g. $T^{\mu}{ }_{\nu}(x)$ etc.. Locally the transformation (1) can be expanded $x^{\prime \mu}=x^{\mu}-\epsilon^{\mu}(x)+\ldots$. Show the following infinitesimal variations for a scalar field $\Phi(x)$, the metric $g_{\mu \nu}(x)$ and the associated metric density $\sqrt{-g}$:

$$
\begin{aligned}
& \delta \Phi=\epsilon^{\mu} \partial_{\mu} \Phi \\
& \delta g_{\mu \nu}=\epsilon^{\gamma} \partial_{\gamma} g_{\mu \nu}+\left(\partial_{\mu} \epsilon^{\gamma}\right) g_{\gamma \nu}+\left(\partial_{\nu} \epsilon^{\gamma}\right) g_{\mu \gamma}=\nabla_{\mu} \epsilon_{\nu}+\nabla_{\nu} \epsilon_{\mu}, \\
& \delta \sqrt{-g}=\partial_{\gamma}\left(\epsilon^{\gamma} \sqrt{-g}\right),
\end{aligned}
$$

where the second equation in the second line is true for the metric connection satisfying $\nabla_{\gamma} g_{\mu \nu}=0$.
Hint: For a scalar field the transformed object is defined via the relation $\Phi^{\prime}\left(x^{\prime}\right)=\Phi(x)$, whereas for a tensor $T^{\mu \nu}$ the transformed object is defined via the relation $T^{\mu^{\prime} \nu^{\prime}}\left(x^{\prime}\right)=$ $P^{\mu^{\prime}}{ }_{\mu} P^{\nu^{\prime}}{ }_{\nu} T^{\mu \nu}(x)$.

Problem 4.3:

Show that the constraint $T_{a b}=0$ can equivalently be written as

$$
\left(\dot{X} \pm X^{\prime}\right)^{2}=0
$$

Problem 4.4:

Show that in the light cone gauge the modes of X^{-}are related to the modes of the transverse directions, i.e.

$$
\alpha_{n}^{-}=\frac{1}{p^{+}}\left(\frac{1}{2} \sum_{m=-\infty}^{\infty} \alpha_{n-m}^{i} \alpha_{m}^{i}\right), \quad i=2, \ldots, D-1 .
$$

Problem 4.5:

The conserved charges associated with Poincaré invariance of the classical string are given by

$$
J^{\mu \nu}=T \int d \sigma\left(X^{\mu} \partial_{\tau} X^{\nu}-X^{\nu} \partial_{\tau} X^{\mu}\right)
$$

The mode expansion for $J^{\mu \nu}$ for the classical open string (NN) takes the form

$$
J^{\mu \nu}=l^{\mu \nu}+E^{\mu \nu}
$$

with

$$
l^{\mu \nu}=x^{\mu} p^{\nu}-x^{\nu} p^{\mu}, \quad E^{\mu \nu}=-i \sum_{n=1}^{\infty} \frac{1}{n}\left(\alpha_{-n}^{\mu} \alpha_{n}^{\nu}-\alpha_{-n}^{\nu} \alpha_{n}^{\mu}\right) .
$$

After quantization, the operator $E^{\mu \nu}$ has to be defined in the normal ordered form given above. Using the canonical commutation relations for the α_{m}^{μ} show that the $J^{\mu \nu}$ indeed satisfy the Lorentz algebra,

$$
\left[J^{\mu \nu}, J^{\rho \sigma}\right]=i \eta^{\mu \rho} J^{\nu \sigma}+i \eta^{\nu \sigma} J^{\mu \rho}-i \eta^{\mu \sigma} J^{\nu \rho}-i \eta^{\nu \rho} J^{\mu \sigma} .
$$

