PROBLEM SHEET 4

(Due: November 14, 2012)

Problem 4.1:

Show that the polarisation tensor of any *physical* state

$$\xi_{\mu\nu}\alpha^{\mu}_{-1}\tilde{\alpha}^{\nu}_{-1}|0,p\rangle$$

can be brought to the form

$$\xi_{\mu\nu} = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & & \\ 0 & 0 & & & \\ \end{pmatrix}$$

by use of the gauge freedom.

(Remind yourself of the analogous problem in Electrodynamics.)

Problem 4.2:

Consider the coordinate change

$$x^{\mu} \to x^{\prime \mu} \equiv x^{\mu^{\prime}}.\tag{1}$$

The associated transformation matrices are $P^{\mu}_{\nu'} = \frac{\partial x^{\mu}}{\partial x^{\nu'}}$ and its inverse $P^{\mu'}_{\nu} = \frac{\partial x^{\mu'}}{\partial x^{\nu}}$. Recall that a tensor of type, say, T^{μ}_{ν} transforms under (1) as $T^{\mu}_{\nu} \to T^{\mu'}_{\nu'} = P^{\mu'}_{\alpha} P^{\beta}_{\nu'} T^{\alpha}_{\ \beta}$. A tensor density $\widetilde{T}^{\mu}_{\ \nu}$ of weight w is defined by the transformation property

$$\widetilde{T}^{\mu}_{\ \nu} \to \widetilde{T}^{\mu'}_{\ \nu'} = J^w \, P^{\mu'}_{\ \alpha} P^{\beta}_{\ \nu'} \widetilde{T}^{\alpha}_{\ \beta}$$

(and obvious generalisations for general types of tensor densities), where $J = \det(P^{\mu}_{\nu'})$.

- (a) Given the tensor $S_{\mu\nu}$, convince yourself that $(\det S_{\mu\nu})^{\frac{1}{2}}$ is a scalar density of rank 1.
- (b) Consider now fields of tensors and tensor densities, e.g. $T^{\mu}_{\nu}(x)$ etc.. Locally the transformation (1) can be expanded $x'^{\mu} = x^{\mu} \epsilon^{\mu}(x) + \dots$ Show the following infinitesimal variations for a scalar field $\Phi(x)$, the metric $g_{\mu\nu}(x)$ and the associated metric density $\sqrt{-g}$:

$$\begin{split} \delta \Phi &= \epsilon^{\mu} \partial_{\mu} \Phi, \\ \delta g_{\mu\nu} &= \epsilon^{\gamma} \partial_{\gamma} g_{\mu\nu} + (\partial_{\mu} \epsilon^{\gamma}) g_{\gamma\nu} + (\partial_{\nu} \epsilon^{\gamma}) g_{\mu\gamma} = \nabla_{\mu} \epsilon_{\nu} + \nabla_{\nu} \epsilon_{\mu}, \\ \delta \sqrt{-g} &= \partial_{\gamma} (\epsilon^{\gamma} \sqrt{-g}), \end{split}$$

where the second equation in the second line is true for the metric connection satisfying $\nabla_{\gamma}g_{\mu\nu} = 0.$

Hint: For a scalar field the transformed object is defined via the relation $\Phi'(x') = \Phi(x)$, whereas for a tensor $T^{\mu\nu}$ the transformed object is defined via the relation $T^{\mu'\nu'}(x') = P^{\mu'}_{\ \mu}P^{\nu'}_{\ \nu}T^{\mu\nu}(x)$.

Problem 4.3:

Show that the constraint $T_{ab} = 0$ can equivalently be written as

$$\left(\dot{X} \pm X'\right)^2 = 0.$$

Problem 4.4:

Show that in the light cone gauge the modes of X^- are related to the modes of the transverse directions, i.e.

$$\alpha_n^- = \frac{1}{p^+} \left(\frac{1}{2} \sum_{m=-\infty}^{\infty} \alpha_{n-m}^i \alpha_m^i \right), \quad i = 2, \dots, D-1.$$

Problem 4.5:

The conserved charges associated with Poincaré invariance of the classical string are given by

$$J^{\mu\nu} = T \int d\sigma \left(X^{\mu} \partial_{\tau} X^{\nu} - X^{\nu} \partial_{\tau} X^{\mu} \right).$$

The mode expansion for $J^{\mu\nu}$ for the classical open string (NN) takes the form

$$J^{\mu\nu} = l^{\mu\nu} + E^{\mu\nu}$$

with

$$l^{\mu\nu} = x^{\mu}p^{\nu} - x^{\nu}p^{\mu}, \qquad E^{\mu\nu} = -i\sum_{n=1}^{\infty} \frac{1}{n} (\alpha_{-n}^{\mu}\alpha_{n}^{\nu} - \alpha_{-n}^{\nu}\alpha_{n}^{\mu}).$$

After quantization, the operator $E^{\mu\nu}$ has to be defined in the normal ordered form given above. Using the canonical commutation relations for the α_m^{μ} show that the $J^{\mu\nu}$ indeed satisfy the Lorentz algebra,

$$[J^{\mu\nu}, J^{\rho\sigma}] = i\eta^{\mu\rho}J^{\nu\sigma} + i\eta^{\nu\sigma}J^{\mu\rho} - i\eta^{\mu\sigma}J^{\nu\rho} - i\eta^{\nu\rho}J^{\mu\sigma}.$$