PROBLEM SHEET 6

Problem 6.1:

(a) Given the bc-ghost, quantized as

$$\{c_m, b_n\} = \delta_{m+n}$$
 with $L_0 = \sum_{n \in \mathbb{Z}} -nb_n c_{-n}$

and the identification $c_n, b_n \equiv$ creation operators for n < 0, find the normal ordered : L_0 : and, via ζ -function regularization, the normal-ordering constant.

- (b) Given $L_0 = L_0^X + L_0^{\text{ghost}} a$, compute the normal-ordering constant *a* using ζ -function regularization for a system of *D* X-bosons and a *bc*-ghost.
 - Compare the result with the one obtained in light-cone quantization.
 - What is the 'net'-effect of the ghosts, regarding a?

Problem 6.2:

(a) Check that the BRST charge is such that $Q^2 = 0$, i.e. take

$$\begin{cases} \delta_{\epsilon}\phi_{i} = -i\epsilon c^{\alpha}\delta_{\alpha}\phi\\ \delta_{\epsilon}B_{A} = 0\\ \delta_{\epsilon}b_{A} = \epsilon B_{A}\\ \delta_{\epsilon}c^{\alpha} = \frac{i}{2}\epsilon c^{\beta}c^{\gamma}f_{\beta\gamma}c^{\alpha} \end{cases}$$

and show that $\delta_{\epsilon}(\delta_{\epsilon'}\phi) = \delta_{\epsilon}(\delta_{\epsilon'}b_A) = \delta_{\epsilon}(\delta_{\epsilon'}c^{\alpha}) = 0.$ *Hint:* Remember the Jacobi identity for $f_{\alpha\beta}{}^{\gamma}$.

(b) Show that $\delta_{\epsilon} (b_A F^A) = i\epsilon (S_{gf} + S_g).$

Problem 6.3:

For some $n \times n$ matrix M, show that

$$\int \left(\prod_{i=1}^n \mathrm{d}\psi_i \,\mathrm{d}\theta_i\right) e^{\theta^T M \psi} = \det M,$$

where $\theta_i, \psi_i, i = 1, ..., n$ are Grassmann variables. *Hint:* Use the power series of e^x and the fact that $\int d^n \theta \, \theta_{i_1} \theta_{i_2} \dots \theta_{i_n} = \epsilon_{i_1 i_2 \dots i_n}$.

Problem 6.4:

A conformal transformation is a diffeomorphism $x \to x'$ that changes the metric only by an overall prefactor. In flat d-dimensional space this amounts to

$$\eta_{\mu\nu}\frac{\partial x^{\mu}}{\partial x'^{\alpha}}\frac{\partial x^{\nu}}{\partial x'^{\beta}} = \Lambda \,\eta_{\alpha\beta}, \qquad \Lambda = e^{w(x)}.$$

(a) Show that an infinitesimal diffeomorphism

$$x'^{\rho} = x^{\rho} - \epsilon^{\rho}(x) + \mathcal{O}(\epsilon^2)$$

has to satisfy

$$\partial_{\mu}\epsilon_{\nu} + \partial_{\nu}\epsilon_{\mu} = \omega \ \eta_{\mu\nu} , \qquad \omega = \frac{2}{d}(\partial \cdot \epsilon),$$
(1)

in order to be a *conformal* transformation.

(b) Take the derivative ∂^{ν} of (1) and sum over ν . Take the derivative ∂_{ν} of the resulting equation. You should find

$$\partial_{\mu}\partial_{\nu}(\partial \cdot \epsilon) + (\partial \cdot \partial)\partial_{\nu}\epsilon_{\mu} = \frac{2}{d}\partial_{\mu}\partial_{\nu}(\partial \cdot \epsilon).$$
⁽²⁾

Interchange $\mu \leftrightarrow \nu$ in (2), add the resulting equation to (2) and use (1) to eliminate the term multiplying $\partial \cdot \partial$. Contract with $\eta^{\mu\nu}$ to find the result

$$(d-1)(\partial \cdot \partial)(\partial \cdot \epsilon) = 0, \quad \text{i.e.} \ (d-1)\partial^2 \omega = 0$$
(3)

(c) Take the derivative ∂_{ρ} of (1). From the resulting equation produce two more equations by relabelling $(\rho, \mu, \nu) \rightarrow (\nu, \rho, \mu)$ and $(\rho, \mu, \nu) \rightarrow (\mu, \nu, \rho)$. Subtract the original equation from the sum of the last two to obtain

$$2\partial_{\mu}\partial_{\nu}\epsilon_{\rho} = \frac{2}{d}(-\eta_{\mu\nu}\partial_{\rho} + \eta_{\rho\mu}\partial_{\nu} + \eta_{\nu\rho}\partial_{\mu})(\partial \cdot \epsilon), \qquad (4)$$

i.e.
$$(\eta_{\mu\nu}\partial^2 + (d-2)\partial_{\mu}\partial_{\nu})\omega = 0.$$
 (5)

(d) This shows that the cases d = 2 and $d \ge 3$ are clearly different. Let us now consider the case $d \ge 3$. Assuming a polynomial expansion for ω and ϵ_{μ} and using (1), (3), and (5), show that ω is at most linear and ϵ_{μ} is at most quadratic in x^{ν} , such that we can make the ansatz

$$-\epsilon_{\mu} = a_{\mu} + b_{\mu\nu}x^{\nu} + c_{\mu\nu\rho}x^{\nu}x^{\rho}, \qquad (6)$$

where $a_{\mu}, b_{\mu\nu}, c_{\mu\nu\rho} \ll 1$ are constants and the latter is symmetric in the last two indices.

- (e) We now want to see how (1) constrains these constants.
 - It is easy to see that a_{μ} is not constrained and that it corresponds to translations $x'^{\mu} = x^{\mu} + a^{\mu}$, for which the generator is the momentum operator $P_{\mu} = -i\partial_{\mu}$.
 - $-b_{\mu\nu}$ can be decomposed into an antisymmetric piece and a symmetric piece. Argue that the antisymmetric part of $b_{\mu\nu}$ is unconstrained and thus describes rotations with the angular momentum operator as the generator. Argue further that the symmetric part of $b_{\mu\nu}$ describes scale transformations: $x \to x' = (1 + \alpha)x$ for some α .
- (f)* For $c_{\mu\nu\rho}$ insert (6) into (1) and take the derivative ∂_{ν} of the resulting equation to obtain

$$\partial_{\nu}(\partial \cdot \epsilon) = -2c^{\mu}_{\mu\nu}$$

Use this equation in (4) to show that the $c_{\mu\nu\rho}$ can be written as

$$c_{\mu\nu\rho} = \frac{1}{d} (\eta_{\mu\rho} c^{\alpha}_{\alpha\nu} + \eta_{\mu\nu} c^{\alpha}_{\alpha\rho} - \eta_{\nu\rho} c^{\alpha}_{\alpha\mu}) \,.$$

The resulting transformations are called *Special Conformal Transformations* (SCT) and have the following infinitesimal form:

$$x'^{\mu} = x^{\mu} + 2(x \cdot b)x^{\mu} - (x \cdot x)b^{\mu}$$

The corresponding generator is written as $K_{\mu} = -i(2x_{\mu}x^{\nu}\partial_{\nu} - (x \cdot x)\partial_{\mu})$. The finite version of these transformations is

$$x'^{\mu} = \frac{x^{\mu} - x^2 b^{\mu}}{1 - 2(b \cdot x) + b^2 x^2}, \quad \text{i.e.} \quad \frac{x'^{\mu}}{x' \cdot x'} = \frac{x^{\mu}}{x \cdot x} - b^{\mu}$$

Show that indeed these transformations can be thought of as the successive application of inversion $x^{\mu} \to \frac{x^{\mu}}{x \cdot x}$, translation and inversion.