String Theory and String Phenomenology
Prof. Dr. Arthur Hebecker
Sebastian Kraus

Problem Sheet 6

(Due: November 28, 2012)

Problem 6.1:

(a) Given the $b c$-ghost, quantized as

$$
\left\{c_{m}, b_{n}\right\}=\delta_{m+n} \quad \text { with } \quad L_{0}=\sum_{n \in \mathbb{Z}}-n b_{n} c_{-n}
$$

and the identification $c_{n}, b_{n} \equiv$ creation operators for $n<0$, find the normal ordered : L_{0} : and, via ζ-function regularization, the normal-ordering constant.
(b) Given $L_{0}=L_{0}^{X}+L_{0}^{\text {ghost }}-a$, compute the normal-ordering constant a using ζ-function regularization for a system of $D X$-bosons and a $b c$-ghost.

- Compare the result with the one obtained in light-cone quantization.
- What is the 'net'-effect of the ghosts, regarding a ?

Problem 6.2:

(a) Check that the BRST charge is such that $Q^{2}=0$, i.e. take

$$
\left\{\begin{array}{l}
\delta_{\epsilon} \phi_{i}=-i \epsilon c^{\alpha} \delta_{\alpha} \phi \\
\delta_{\epsilon} B_{A}=0 \\
\delta_{\epsilon} b_{A}=\epsilon B_{A} \\
\delta_{\epsilon} c^{\alpha}=\frac{i}{2} \epsilon c^{\beta} c^{\gamma} f_{\beta \gamma}{ }^{\alpha}
\end{array}\right.
$$

and show that $\delta_{\epsilon}\left(\delta_{\epsilon^{\prime}} \phi\right)=\delta_{\epsilon}\left(\delta_{\epsilon^{\prime}} b_{A}\right)=\delta_{\epsilon}\left(\delta_{\epsilon^{\prime}} c^{\alpha}\right)=0$.
Hint: Remember the Jacobi identity for $f_{\alpha \beta}{ }^{\gamma}$.
(b) Show that $\delta_{\epsilon}\left(b_{A} F^{A}\right)=i \epsilon\left(S_{g f}+S_{g}\right)$.

Problem 6.3:

For some $n \times n$ matrix M, show that

$$
\int\left(\prod_{i=1}^{n} \mathrm{~d} \psi_{i} \mathrm{~d} \theta_{i}\right) e^{\theta^{T} M \psi}=\operatorname{det} M,
$$

where $\theta_{i}, \psi_{i}, i=1, \ldots, n$ are Grassmann variables.
Hint: Use the power series of e^{x} and the fact that $\int \mathrm{d}^{n} \theta \theta_{i_{1}} \theta_{i_{2}} \ldots \theta_{i_{n}}=\epsilon_{i_{1} i_{2} \ldots i_{n}}$.

Problem 6.4:

A conformal transformation is a diffeomorphism $x \rightarrow x^{\prime}$ that changes the metric only by an overall prefactor. In flat d-dimensional space this amounts to

$$
\eta_{\mu \nu} \frac{\partial x^{\mu}}{\partial x^{\prime \alpha}} \frac{\partial x^{\nu}}{\partial x^{\prime \beta}}=\Lambda \eta_{\alpha \beta}, \quad \Lambda=e^{w(x)} .
$$

(a) Show that an infinitesimal diffeomorphism

$$
x^{\prime \rho}=x^{\rho}-\epsilon^{\rho}(x)+\mathcal{O}\left(\epsilon^{2}\right)
$$

has to satisfy

$$
\begin{equation*}
\partial_{\mu} \epsilon_{\nu}+\partial_{\nu} \epsilon_{\mu}=\omega \eta_{\mu \nu}, \quad \omega=\frac{2}{d}(\partial \cdot \epsilon) \tag{1}
\end{equation*}
$$

in order to be a conformal transformation.
(b) Take the derivative ∂^{ν} of (1) and sum over ν. Take the derivative ∂_{ν} of the resulting equation. You should find

$$
\begin{equation*}
\partial_{\mu} \partial_{\nu}(\partial \cdot \epsilon)+(\partial \cdot \partial) \partial_{\nu} \epsilon_{\mu}=\frac{2}{d} \partial_{\mu} \partial_{\nu}(\partial \cdot \epsilon) \tag{2}
\end{equation*}
$$

Interchange $\mu \leftrightarrow \nu$ in (2), add the resulting equation to (2) and use (1) to eliminate the term multiplying $\partial \cdot \partial$. Contract with $\eta^{\mu \nu}$ to find the result

$$
\begin{equation*}
(d-1)(\partial \cdot \partial)(\partial \cdot \epsilon)=0, \quad \text { i.e. }(d-1) \partial^{2} \omega=0 \tag{3}
\end{equation*}
$$

(c) Take the derivative ∂_{ρ} of (1). From the resulting equation produce two more equations by relabelling $(\rho, \mu, \nu) \rightarrow(\nu, \rho, \mu)$ and $(\rho, \mu, \nu) \rightarrow(\mu, \nu, \rho)$. Subtract the original equation from the sum of the last two to obtain

$$
\begin{align*}
& 2 \partial_{\mu} \partial_{\nu} \epsilon_{\rho}=\frac{2}{d}\left(-\eta_{\mu \nu} \partial_{\rho}+\eta_{\rho \mu} \partial_{\nu}+\eta_{\nu \rho} \partial_{\mu}\right)(\partial \cdot \epsilon), \tag{4}\\
& \text { i.e. } \quad\left(\eta_{\mu \nu} \partial^{2}+(d-2) \partial_{\mu} \partial_{\nu}\right) \omega=0 \tag{5}
\end{align*}
$$

(d) This shows that the cases $d=2$ and $d \geq 3$ are clearly different. Let us now consider the case $d \geq 3$. Assuming a polynomial expansion for ω and ϵ_{μ} and using (1), (3), and (5), show that ω is at most linear and ϵ_{μ} is at most quadratic in x^{ν}, such that we can make the ansatz

$$
\begin{equation*}
-\epsilon_{\mu}=a_{\mu}+b_{\mu \nu} x^{\nu}+c_{\mu \nu \rho} x^{\nu} x^{\rho} \tag{6}
\end{equation*}
$$

where $a_{\mu}, b_{\mu \nu}, c_{\mu \nu \rho} \ll 1$ are constants and the latter is symmetric in the last two indices.
(e) We now want to see how (1) constrains these constants.

- It is easy to see that a_{μ} is not constrained and that it corresponds to translations $x^{\prime \mu}=$ $x^{\mu}+a^{\mu}$, for which the generator is the momentum operator $P_{\mu}=-i \partial_{\mu}$.
$-b_{\mu \nu}$ can be decomposed into an antisymmetric piece and a symmetric piece. Argue that the antisymmetric part of $b_{\mu \nu}$ is unconstrained and thus describes rotations with the angular momentum operator as the generator. Argue further that the symmetric part of $b_{\mu \nu}$ describes scale transformations: $x \rightarrow x^{\prime}=(1+\alpha) x$ for some α.
(f)* For $c_{\mu \nu \rho}$ insert (6) into (1) and take the derivative ∂_{ν} of the resulting equation to obtain

$$
\partial_{\nu}(\partial \cdot \epsilon)=-2 c_{\mu \nu}^{\mu} .
$$

Use this equation in (4) to show that the $c_{\mu \nu \rho}$ can be written as

$$
c_{\mu \nu \rho}=\frac{1}{d}\left(\eta_{\mu \rho} c_{\alpha \nu}^{\alpha}+\eta_{\mu \nu} c_{\alpha \rho}^{\alpha}-\eta_{\nu \rho} c_{\alpha \mu}^{\alpha}\right)
$$

The resulting transformations are called Special Conformal Transformations (SCT) and have the following infinitesimal form:

$$
x^{\prime \mu}=x^{\mu}+2(x \cdot b) x^{\mu}-(x \cdot x) b^{\mu}
$$

The corresponding generator is written as $K_{\mu}=-i\left(2 x_{\mu} x^{\nu} \partial_{\nu}-(x \cdot x) \partial_{\mu}\right)$. The finite version of these transformations is

$$
x^{\prime \mu}=\frac{x^{\mu}-x^{2} b^{\mu}}{1-2(b \cdot x)+b^{2} x^{2}}, \quad \text { i.e. } \quad \frac{x^{\prime \mu}}{x^{\prime} \cdot x^{\prime}}=\frac{x^{\mu}}{x \cdot x}-b^{\mu} .
$$

Show that indeed these transformations can be thought of as the successive application of inversion $x^{\mu} \rightarrow \frac{x^{\mu}}{x \cdot x}$, translation and inversion.

