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Problem 7.1:
The BRST-operator @ can be defined more generally as follows: Consider a physical system with
symmetry operators K; that form a closed Lie algebra G,

[Ki,Kj] = fz‘ijk (1)

with fijk being the structure constants of G. Modern covariant quantization involves the introduction
of ghosts ¢ and antighosts b; which obey the canonical anticommutation relations

One then introduces the BRST-operator
‘ 1 .
Q=C7K;— §fijkclcjbk.
(a) Show, using (1) and the Jacobi identity for the structure constants
Fig ™ Fr 3" fs' + Fia™ g’ =0,
that Q% = 0.

(b) Now identify the K; with the Virasoro generators L\ and compute @ for the bosonic string.
Note: As you know from the lecture, in (1) as well as in the relation Q? = 0 there appears an
anomaly which vanishes only in the critical case D = 26, a = 1.

Problem 7.2:
Let R? be a vector (Hilbert) space. Take & € R2, ¥ = (v1,v2)" . Define an operator Q via

R 0 1 V1 o
Q: vr—><0 0>(02)—w.

(a) Check that Q% = 0.
(b) Characterize explicitly the space Hclosea Of vectors ¢ such that @ : ¢+ 0.

b
(c

(d) Interpret the space H = Helosed/ Hexact geometrically.

)
)

Characterize the space Hexact of vectors @ such that 3 ¥ € R? with @ = Q7.

To have a more interesting example repeat the above analysis for 7 € R? and an operator @ defined

via

0 01 U1
Q: v— | 0 0 1 v | = 0.
0 00 U3
Problem 7.3: ~
Given ¢, = —2"10,, £, = —z"t19; which operate on complex functions, show that

Uy bn] = (M — n)lmyn,
@m;zn] = (m - n)zm—i-na (2)
[lm, n] = 0.

Think about this carefully, e.g. by expressing 9, and Jz in terms of d,1 and 0,2.



Problem 7.4:

As you know, the /,, of problem 7.3, which satisfy the Witt algebra (2), generate conformal transfor-
mations on C* = C \ {0}. If we generalize this to compact spaces, only a subgroup of so-called global
conformal transformations will be defined everywhere. This subgroup depends on the topology. Con-
sider the example of a two-sphere S2 22 C U oo. The two-sphere is covered by (at least) two coordinate
patches. One can choose them to be such that in one system with coordinate z the south pole is at
z = 0, whereas in the other system with coordinate w the north pole is at w = 0. The corresponding

coordinate transformation is given by w = z7".

(a)

(b)

1

Which of the ¢, are well defined globally? You should find that the group of finite conformal
transformations on S? is generated by ¢_1, £y, ¢1 and ¢_1, lg, ¢;.

What is the geometric interpretation of these transformations?
Hints:
— The case of £_1 should be familiar to you.

— For {0 and ¢y work in polar coordinates z = re’® and consider the linear combinations
by £ 4.
— In the case of ¢; you should work out the infinitesimal version of the transformation

z z/(cz+1).

Combining the action of /_1, £y, ¢1 and ¢_1, {y, ¢ you find that the globally defined conformal
diffeomorphisms on S? are given by transformations of the form

az+b
—> .
cz+d

3)

Show that combining two transformations of the type (3) yields a new transformation of this
type, where the parameters a”,b”,¢” and d” of the resulting transformation are determined via

matrix multiplication
CL” b// a b a/ b/
A d - c d J d :

— In order for the inverse of (3) to be defined we need that the corresponding matrix is regular,
i.e. ad — bc # 0. We can rescale to achieve ad — bc = 1. Matrices with complex entries and
unit determinant form the group SL(2,C).

Comments:

— Even after rescaling there is the redundancy of going from (a,b,c,d) to (—a,—b, —c, —d)
without changing the transformation. Thus the group of conformal diffeomorphisms on
S? is the Mobius group SL(2,C)/Zy = PSL(2,C), where the Zy action is (a,b,c,d) —
(—a,—b,—c,—d).



