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Problem 7.1:
The BRST-operator Q can be defined more generally as follows: Consider a physical system with
symmetry operators Ki that form a closed Lie algebra G,

[Ki,Kj ] = f k
ij Kk (1)

with f k
ij being the structure constants of G. Modern covariant quantization involves the introduction

of ghosts ci and antighosts bi which obey the canonical anticommutation relations{
ci, bj

}
= δij .

One then introduces the BRST-operator

Q = ciKi −
1

2
f k
ij cicjbk.

(a) Show, using (1) and the Jacobi identity for the structure constants

f m
ij f l

mk + f m
jk f l

mi + f m
ki f l

mj = 0,

that Q2 = 0.

(b) Now identify the Ki with the Virasoro generators LX
m and compute Q for the bosonic string.

Note: As you know from the lecture, in (1) as well as in the relation Q2 = 0 there appears an
anomaly which vanishes only in the critical case D = 26, a = 1.

Problem 7.2:
Let R2 be a vector (Hilbert) space. Take ~v ∈ R2, ~v = (v1, v2)

T . Define an operator Q via

Q : ~v 7→
(

0 1
0 0

)(
v1
v2

)
= ~w.

(a) Check that Q2 = 0.

(b) Characterize explicitly the space Hclosed of vectors ~v such that Q : ~v 7→ 0.

(c) Characterize the space Hexact of vectors ~w such that ∃ ~v ∈ R2 with ~w = Q~v.

(d) Interpret the space Ĥ = Hclosed/Hexact geometrically.

To have a more interesting example repeat the above analysis for ~v ∈ R
3 and an operator Q defined

via

Q : ~v 7→

 0 0 1
0 0 1
0 0 0

 v1
v2
v3

 = ~w.

Problem 7.3:
Given `n = −zn+1∂z, `n = −zn+1∂z which operate on complex functions, show that

[`m, `n] = (m− n)`m+n,[
`m, `n

]
= (m− n)`m+n, (2)[

`m, `n
]
= 0.

Think about this carefully, e.g. by expressing ∂z and ∂z in terms of ∂σ1 and ∂σ2 .
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Problem 7.4:
As you know, the `n of problem 7.3, which satisfy the Witt algebra (2), generate conformal transfor-
mations on C∗ ≡ C \ {0}. If we generalize this to compact spaces, only a subgroup of so-called global
conformal transformations will be defined everywhere. This subgroup depends on the topology. Con-
sider the example of a two-sphere S2 ∼= C∪∞. The two-sphere is covered by (at least) two coordinate
patches. One can choose them to be such that in one system with coordinate z the south pole is at
z = 0, whereas in the other system with coordinate w the north pole is at w = 0. The corresponding
coordinate transformation is given by w = z−1.

(a) Which of the `n are well defined globally? You should find that the group of finite conformal
transformations on S2 is generated by `−1, `0, `1 and `−1, `0, `1.

(b) What is the geometric interpretation of these transformations?
Hints:

– The case of `−1 should be familiar to you.

– For `0 and `0 work in polar coordinates z = reiφ and consider the linear combinations
`0 ± `0.

– In the case of `1 you should work out the infinitesimal version of the transformation
z 7→ z/(cz + 1).

(c) Combining the action of `−1, `0, `1 and `−1, `0, `1 you find that the globally defined conformal
diffeomorphisms on S2 are given by transformations of the form

z 7→ az + b

cz + d
. (3)

Show that combining two transformations of the type (3) yields a new transformation of this
type, where the parameters a′′, b′′, c′′ and d′′ of the resulting transformation are determined via
matrix multiplication (

a′′ b′′

c′′ d′′

)
=

(
a b
c d

)(
a′ b′

c′ d′

)
.

Comments:

– In order for the inverse of (3) to be defined we need that the corresponding matrix is regular,
i.e. ad− bc 6= 0. We can rescale to achieve ad− bc = 1. Matrices with complex entries and
unit determinant form the group SL(2,C).

– Even after rescaling there is the redundancy of going from (a, b, c, d) to (−a,−b,−c,−d)
without changing the transformation. Thus the group of conformal diffeomorphisms on
S2 is the Möbius group SL(2,C)/Z2 ≡ PSL(2,C), where the Z2 action is (a, b, c, d) →
(−a,−b,−c,−d).
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