Problem Sheet 7

(Due: December 5, 2012)

Problem 7.1:

The BRST-operator Q can be defined more generally as follows: Consider a physical system with symmetry operators K_{i} that form a closed Lie algebra G,

$$
\begin{equation*}
\left[K_{i}, K_{j}\right]=f_{i j}{ }^{k} K_{k} \tag{1}
\end{equation*}
$$

with $f_{i j}{ }^{k}$ being the structure constants of G. Modern covariant quantization involves the introduction of ghosts c^{i} and antighosts b_{i} which obey the canonical anticommutation relations

$$
\left\{c^{i}, b_{j}\right\}=\delta_{j}^{i} .
$$

One then introduces the BRST-operator

$$
Q=c^{i} K_{i}-\frac{1}{2} f_{i j}{ }^{k} c^{i} c^{j} b_{k} .
$$

(a) Show, using (1) and the Jacobi identity for the structure constants

$$
f_{i j}^{m} f_{m k}^{l}+f_{j k}^{m} f_{m i}^{l}+f_{k i}^{m} f_{m j}^{l}=0,
$$

that $Q^{2}=0$.
(b) Now identify the K_{i} with the Virasoro generators L_{m}^{X} and compute Q for the bosonic string.

Note: As you know from the lecture, in (1) as well as in the relation $Q^{2}=0$ there appears an anomaly which vanishes only in the critical case $D=26, a=1$.

Problem 7.2:

Let \mathbb{R}^{2} be a vector (Hilbert) space. Take $\vec{v} \in \mathbb{R}^{2}, \vec{v}=\left(v_{1}, v_{2}\right)^{T}$. Define an operator Q via

$$
Q: \vec{v} \mapsto\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\binom{v_{1}}{v_{2}}=\vec{w} .
$$

(a) Check that $Q^{2}=0$.
(b) Characterize explicitly the space $\mathcal{H}_{\text {closed }}$ of vectors \vec{v} such that $Q: \vec{v} \mapsto 0$.
(c) Characterize the space $\mathcal{H}_{\text {exact }}$ of vectors \vec{w} such that $\exists \vec{v} \in \mathbb{R}^{2}$ with $\vec{w}=Q \vec{v}$.
(d) Interpret the space $\hat{\mathcal{H}}=\mathcal{H}_{\text {closed }} / \mathcal{H}_{\text {exact }}$ geometrically.

To have a more interesting example repeat the above analysis for $\vec{v} \in \mathbb{R}^{3}$ and an operator Q defined via

$$
Q: \vec{v} \mapsto\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\vec{w} .
$$

Problem 7.3:

Given $\ell_{n}=-z^{n+1} \partial_{z}, \bar{\ell}_{n}=-\bar{z}^{n+1} \partial_{\bar{z}}$ which operate on complex functions, show that

$$
\begin{align*}
{\left[\ell_{m}, \ell_{n}\right] } & =(m-n) \ell_{m+n}, \\
{\left[\bar{\ell}_{m}, \bar{\ell}_{n}\right] } & =(m-n) \bar{\ell}_{m+n}, \tag{2}\\
{\left[\bar{\ell}_{m}, \ell_{n}\right] } & =0 .
\end{align*}
$$

Think about this carefully, e.g. by expressing ∂_{z} and $\partial_{\bar{z}}$ in terms of $\partial_{\sigma^{1}}$ and $\partial_{\sigma^{2}}$.

Problem 7.4:

As you know, the ℓ_{n} of problem 7.3, which satisfy the Witt algebra (2), generate conformal transformations on $\mathbb{C}^{*} \equiv \mathbb{C} \backslash\{0\}$. If we generalize this to compact spaces, only a subgroup of so-called global conformal transformations will be defined everywhere. This subgroup depends on the topology. Consider the example of a two-sphere $S^{2} \cong \mathbb{C} \cup \infty$. The two-sphere is covered by (at least) two coordinate patches. One can choose them to be such that in one system with coordinate z the south pole is at $z=0$, whereas in the other system with coordinate w the north pole is at $w=0$. The corresponding coordinate transformation is given by $w=z^{-1}$.
(a) Which of the ℓ_{n} are well defined globally? You should find that the group of finite conformal transformations on S^{2} is generated by $\ell_{-1}, \ell_{0}, \ell_{1}$ and $\bar{\ell}_{-1}, \bar{\ell}_{0}, \bar{\ell}_{1}$.
(b) What is the geometric interpretation of these transformations?

Hints:

- The case of ℓ_{-1} should be familiar to you.
- For ℓ_{0} and $\bar{\ell}_{0}$ work in polar coordinates $z=r e^{i \phi}$ and consider the linear combinations $\ell_{0} \pm \bar{\ell}_{0}$.
- In the case of ℓ_{1} you should work out the infinitesimal version of the transformation $z \mapsto z /(c z+1)$.
(c) Combining the action of $\ell_{-1}, \ell_{0}, \ell_{1}$ and $\bar{\ell}_{-1}, \bar{\ell}_{0}, \bar{\ell}_{1}$ you find that the globally defined conformal diffeomorphisms on S^{2} are given by transformations of the form

$$
\begin{equation*}
z \mapsto \frac{a z+b}{c z+d} . \tag{3}
\end{equation*}
$$

Show that combining two transformations of the type (3) yields a new transformation of this type, where the parameters $a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}$ and $d^{\prime \prime}$ of the resulting transformation are determined via matrix multiplication

$$
\left(\begin{array}{ll}
a^{\prime \prime} & b^{\prime \prime} \\
c^{\prime \prime} & d^{\prime \prime}
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right) .
$$

Comments:

- In order for the inverse of (3) to be defined we need that the corresponding matrix is regular, i.e. $a d-b c \neq 0$. We can rescale to achieve $a d-b c=1$. Matrices with complex entries and unit determinant form the group $S L(2, \mathbb{C})$.
- Even after rescaling there is the redundancy of going from (a, b, c, d) to $(-a,-b,-c,-d)$ without changing the transformation. Thus the group of conformal diffeomorphisms on S^{2} is the Möbius group $S L(2, \mathbb{C}) / \mathbb{Z}_{2} \equiv \operatorname{PSL}(2, \mathbb{C})$, where the \mathbb{Z}_{2} action is $(a, b, c, d) \rightarrow$ $(-a,-b,-c,-d)$.

