Problem Sheet 9

(Due: December 19, 2012)
Important: There will be no tutorial on Wednesday, December 12.
Note: At some point during your QFT lecture you might have come across a problem similar to 9.1 and/or $9.2 \mathrm{a}, 9.2 \mathrm{~b}$. If that is the case, feel free to skip those exercises.

Problem 9.1:

Starting with a representation of the Clifford algebra in d dimensions

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=-2 \eta^{\mu \nu}
$$

one can define Lorentz-generators $\Sigma^{\mu \nu}$ via

$$
\Sigma^{\mu \nu}=\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]
$$

Show that these generators indeed satisfy the $S O(1, d-1)$-algebra

$$
i\left[\Sigma^{\mu \nu}, \Sigma^{\sigma \rho}\right]=\eta^{\nu \sigma} \Sigma^{\mu \rho}+\eta^{\mu \rho} \Sigma^{\nu \sigma}-\eta^{\nu \rho} \Sigma^{\mu \sigma}-\eta^{\mu \sigma} \Sigma^{\nu \rho} .
$$

Problem 9.2:

(a) Given two 2d Majorana spinors

$$
\chi=\binom{\chi_{-}}{\chi_{+}}, \quad \psi=\binom{\psi_{-}}{\psi_{+}}
$$

show that $\bar{\chi} \psi=\bar{\psi} \chi$.
(b) Do these spinors correspond to an irreducible representation of the Lorentz-algebra? Define $\gamma^{3}=\gamma^{0} \gamma^{1}$ and show that $\left(\gamma^{3}\right)^{2}=\mathbb{1},\left\{\gamma^{3}, \gamma^{a}\right\}=\left[\gamma^{3}, \Sigma^{a b}\right]=0$ where the Σ 's are defined in problem 9.1 and $a, b=0,1$. Compute γ^{3} explicitly using γ^{0}, γ^{1} as defined in the lecture. Observe how the operators $P_{ \pm}=\frac{1}{2}\left(\mathbb{1} \pm \gamma^{3}\right)$ act on a Majorana spinor. From this you learn that $\binom{\chi_{-}}{0}$ and $\binom{0}{\chi_{+}}$form two real one-dimensional Majorana-Weyl representations of the two-dimensional Lorentz-algebra.
(c) Given the action

$$
S=\frac{i}{4 \pi} \int \mathrm{~d}^{2} \sigma \mathrm{~d}^{2} \theta\left(\bar{D}^{\alpha} Y^{\mu}\right)\left(D_{\alpha} Y_{\mu}\right)
$$

for the superfield Y^{μ}, find the component action by Taylor expanding and integrating in the θ 's.

$$
\begin{aligned}
Y^{\mu}(\sigma, \theta) & =X^{\mu}(\sigma)+\bar{\theta} \psi^{\mu}(\sigma)+\frac{1}{2} \bar{\theta} \theta B^{\mu}(\sigma) \\
D_{\alpha} & =\frac{\partial}{\partial \bar{\theta}^{\alpha}}-i\left(\gamma^{a} \theta\right)_{\alpha} \partial_{a} \\
\bar{D}^{\alpha} & =-\frac{\partial}{\partial \theta_{\alpha}}+i\left(\bar{\theta} \gamma^{a}\right)^{\alpha} \partial_{a}
\end{aligned}
$$

Problem 9.3:

(a) Given $Q_{\alpha}=\frac{\partial}{\partial \bar{\theta}^{\alpha}}+i\left(\gamma^{a} \theta\right)_{\alpha} \partial_{a}$, show that

$$
\begin{aligned}
e^{\bar{\epsilon} Q} Y(\sigma, \theta) & =e^{\bar{\epsilon}^{\alpha}} \frac{\partial}{\partial \bar{\theta}^{\alpha}} e^{i \bar{\epsilon}^{\alpha}\left(\gamma^{a} \theta\right)_{\alpha} \partial_{a}} e^{\frac{i}{2} \bar{\epsilon}^{\alpha}\left(\gamma^{a} \epsilon\right)_{\alpha} \partial_{a}} Y(\sigma, \theta) \\
& =Y\left(\sigma^{a}+i \bar{\epsilon} \gamma^{a} \theta+\frac{i}{2} \bar{\epsilon} \gamma^{a} \epsilon, \theta+\epsilon\right)
\end{aligned}
$$

(b) Given

$$
\begin{aligned}
\delta_{\epsilon} Y^{\mu}(\sigma, \theta) & \equiv \delta X^{\mu}(\sigma)+\bar{\theta} \delta \psi^{\mu}(\sigma)+\frac{1}{2} \bar{\theta} \theta \delta B^{\mu}(\sigma) \quad \text { and } \\
\delta_{\epsilon} Y^{\mu}(\sigma, \theta) & =Y^{\mu}\left(\sigma^{a}+i \bar{\epsilon} \gamma^{a} \theta+\frac{i}{2} \bar{\epsilon} \gamma^{a} \epsilon, \theta+\epsilon\right)-Y^{\mu}(\sigma, \theta)
\end{aligned}
$$

derive the off-shell SUSY transformations

$$
\left\{\begin{array}{l}
\delta X^{\mu}=\bar{\epsilon} \psi^{\mu} \\
\delta \psi^{\mu}=-i\left(\gamma^{a} \epsilon\right) \partial_{a} X^{\mu}+B^{\mu} \epsilon \\
\delta B^{\mu}=-i \bar{\epsilon} \gamma^{a} \partial_{a} \psi^{\mu}
\end{array}\right.
$$

