Geometrical Challenges for the
String Landscape
(Arthur Hebecker, Heidelberg)
Plan: - The landscape as accepted 2000 ~ 2018

- Problems discovered in the aftermath of the $d S$ and other Swampland Conjectures
- Singular-bulk problem of KKLT
- Tadpole constraint of LVS
- Tadpole conjecture as a potential show stopper for the whole Landscape

The Landscope 2000 … 2018
(Bousso/Polchinski, GKP, Denef/Douglas, KKLT, LVS)
$S T \longrightarrow 10 d$ SUGRA on $\mathbb{R}^{1,3} \times X^{2} ; x^{2}=C Y / K$
"Cy orientifold"
(with K some finite goup, e., \mathbb{Z}_{2})
Vizualizetion:

"orientifoed planes"
(co-dimensions of these may vary)

10d SUGRA $>$ metric field $g_{M N}$; $B_{[M N]} ; \cdots$
ad effective field theory obtains certain field content, including in particular MODULI OF $X^{\text {. }}$

$$
\mathscr{L}_{4 d} \supset \underbrace{K(z)_{i \bar{j}}\left(\partial z^{i}\right)\left(\partial \bar{z}^{J}\right)}+\underbrace{K(T)_{\alpha \bar{\beta}}\left(\partial T^{\alpha}\right)\left(\partial \bar{T}^{\bar{\beta}}\right)}+\cdots
$$

Complex structure
\rightarrow frimm/Lowis
Jockers/Louis
Hosono/Klemm/Theisen/Yan....

Kahler
(complexified using integrals of p-form fields)

Kahler potentials for the Kaheer metrics above:

$$
\begin{aligned}
K(z)= & -\ln \left(\int_{x} \Omega_{1} \bar{\Omega}\right) ; \quad \Omega=\text { holom. 3-form } \\
= & -\ln \left(\Pi^{+} \Sigma \Pi\right) \quad \text { with periods } \Pi=\left|\begin{array}{c}
1 \\
z^{1} \\
\vdots \\
z^{n} \\
\Pi^{1}(z) \\
\vdots \\
\Pi^{n}(z)
\end{array}\right| \quad i \quad n=h^{2,1}
\end{aligned}
$$

$$
K(T)=-\ln \left(t^{\alpha} t^{\beta} t^{\gamma} k_{\alpha \beta \gamma}+\cdots\right)
$$

4-cycle volumes with $\tau_{\alpha}=K_{\alpha \beta \gamma} t^{\beta} t^{\gamma}$ and $\tau_{\alpha}=\tau_{\alpha}+\overline{\tau_{\alpha}}$

Moduli stabilization by fluxes

$$
\begin{gathered}
\text { 10d SUGRA } \supset F_{3}-S_{\uparrow} H_{3} \equiv G_{3} \in \Omega^{3}\left(\mathbb{R}^{1,3} \times X^{\prime}\right) \\
C_{0}+\frac{i}{g_{s}}
\end{gathered}
$$

The "background flux" is quantized:

$$
F_{3}, H_{3} \in H^{3}(X, \mathbb{Z})
$$

\Rightarrow nontrivial scalar potential

$$
\begin{aligned}
V(z, \bar{z})=K^{i J}\left(D_{i} W\right)\left(\overline{\left.D_{j} W\right)} ; \quad D_{i}\right. & =\partial_{i} W+k_{i} W \\
W & \sim \int_{X^{i}} G_{3} \wedge \Omega
\end{aligned}
$$

Explicitly: $\quad W \sim(f-S h) \cdot \Sigma \cdot \Pi$

$$
\text { "flex vectors" built from } \int_{\Sigma_{i}^{\prime}} F_{3} / H_{3}
$$

The Susy-condition (झ vacuum condition)

$$
D_{i} W=0 ; D_{s} W=0
$$

"generically" stabilizes all moduli z^{i}, S
($n+1$ eqs. for $n+1$ variables)
\Rightarrow as many vacua as choices of (f, h).

Tadpole

$$
10 \mathrm{~d} \text { SUGRA } \supset F_{5}
$$

sourced by flux \& \uparrow-planes/branes

$$
\begin{aligned}
& \int d+F_{5}=\int_{=N}^{\int F_{3} \wedge H_{3}}+\underbrace{\int d_{l o c .}}_{\equiv Q}=0 \\
& \quad(N=f \cdot \Sigma \cdot h) \text { based on geometry of } X^{\prime} \\
& -Q=-\int_{l_{l o c}}=\frac{N_{03}}{4}+\frac{X(07)}{12}+\frac{X(07)+X\left(07^{\prime}\right)}{48}
\end{aligned}
$$

Better: F-Theory (\rightarrow Vafa; Morrison; Weigand; ...)

Key point:
Finiteness of available $N \Rightarrow$ Finiteness of Landscape (Denef/Douglas ... Grim)

Also:
So far we only discussed complex-structure moduli \& their stabilization.

Let us consider Kakler moduli next....
"KKLT step 1": Kahler moduli stabilization (assume that css. -moduli are integrated out)
 euclidean D3 brave wrapped on 4-cycle $\Rightarrow \frac{\text { Instanton }}{\frac{\text { Correction }}{E}}$

$$
W=W_{0}+e^{-T}
$$

$$
V=e^{k}\left(|\Delta W|^{2}-3|W|^{2}\right) \quad \text { flux -effect }
$$

(need also $W_{0} \ll 1$ by flux tuning)
"KKLT step 2": Uplift

(Technical terms: Klebanov-Strassler-Throat;
KPV-uplift)

Uplift from AdS to aS minimum:

Unsatisfactory aspects:

- vacua with $W_{0} \ll 1$ very hard to find explictly
- auti-D3-uplift follows only from od EFT (no stringy or $4 d$ Susy derivation)

Move recent developments

- This (and some important variants, like "LVS") has remained the main evidence for "stringy as".
- It has been proposed that stringy as is impossible as a matter of principle ("is in the Swampland").
[Danielsson/Van Ret ; Obied ...Vafa '18]
[see also: Bens, Jrana, Sethi, Dvali,...]
- Subsequently, proposals like KKLT \& LUS have been subjected to intense Scrutiny (with varying success)
- I will focus on what I feel is most critical...

Singular bulk problem
[Carta/Moritz/Westphal'1s; Jao/Atl/Junghans'zo] [see however: Carta/Morilz; McAllister et al. '21]

width of throat coupled to depth \Rightarrow tends to become too wide for X
significant depth of throat needed to make uplift parametrically as small as AdS-minimum
\Rightarrow "exotic" geometry, with large throat \& small bulk CY.

Strong warping arises also in bulk By region

リ
$h(y)$ goes to zero; metric becomes undefined
$K(T, T)$ not calculable; parametric control lost
[Is a stringy understanding of singular bulk possible? Control of string-scale geometry?]

Technical Aside:

- Depth of AdS minimum $\sim e^{-2 \operatorname{Re}(T)}$
- Uplift potential $\sim e^{-N / g_{s} M^{2}}$
total tadpole F_{3}^{\uparrow} flux on 3-cycle in ks throat of kS throat
- Metastable uplift needs
(1) ~

$$
\begin{equation*}
\Rightarrow \operatorname{Re}(T) \sim N / g_{s} M^{2} \tag{2}
\end{equation*}
$$

- Upper throat radius obeys $R^{4} \sim N$
- Control at tip of throat: $g_{5} M^{2} \gg 1$
possibly in better shape: Large Volume Scenario [Balasubramonian/Bergland/Conlon/Quevedo'05] (or LUS)
- generalizes KKLT by $T \rightarrow T_{b}, T_{s}$
with $K=-2 \ln \left[\left(T_{b}+T_{b}\right)^{3 / 2}-\left(T_{s}+T_{s}\right)^{3 / 2}+\xi\right]$
and $W=W_{0}+e^{-T_{s}}$
\Rightarrow AdS minimum similar to KKLT, but with

$$
\operatorname{Re}\left(T_{b}\right) \Rightarrow \operatorname{Re}\left(T_{s}\right)
$$

more explicitly: $\quad V \equiv \operatorname{Vol}(x) \sim \operatorname{Re}\left(T_{b}\right)^{3 / 2} \sim \exp \left(1 / g_{s}\right)$
\uparrow to be tuned to small value
\Rightarrow Thus, V is exponentially large, but this may stile not be sufficient for control!
[Junghans '22]
Problem: Various higher-order corrections, e.g. related to $S>\int\left(R+R^{2}+R^{3}+\right.$ "higher curvature"

Our attempt to quantify the problem and identify the Key obstruction: \Rightarrow

LUS Parametric Tadpole Constraint [Gao/AtI/Schreyer/Venken '22]
Volume large \Rightarrow AdS minimum shallow $\left(\sim \frac{1}{v^{3}}\right)$
\Rightarrow Need throat to be deep \Rightarrow need mus flux in throat $\left(N_{\text {th. }}>1\right)$
\Rightarrow Curvature corrections of relative size $N_{\text {th. }} / V^{2 / 3}$ represent a problem.

More explicitly: Since the uplift implies

$$
V \sim e^{O(1) \cdot N_{t h}}
$$

one can be sure that for very large $N_{\text {th }}$. corrections like $N_{\text {th. }} / v^{2 / 3}$ will be small.

But: $N_{\text {th. }}<N \leftarrow$ limited by available Cy-orientifold geometries

- Let us focus on the most optimistic case $N_{t h} \simeq N$
- Let us also define $C_{N} \equiv \frac{V^{2 / 3}(N)}{N} \gg 1$ as our
- We also need the quality of contwl w.r.t. Curvature corrections at the "tip of the throat", summoned by $g_{s} M \gtrsim 4$
[AH/Schreyer/Venken; Junghans; Schreyer/Venken'22]
- This leads to the most up-to-date form of the "LUS Parametric Tadpole Constraint"

$$
N \geq O(1) \cdot \frac{k_{s}^{2 / 3}\left(g_{s} M\right)^{2}}{\xi^{2 / 3} a_{s}} \ln ^{2}\left[O(1)\left(a_{s} g_{s} M\right)^{1 / 4} c_{N}^{5 / 8} / k_{s}^{1 / 6} \xi^{1 / 12}\right]
$$

$\Rightarrow \quad N \geq 500$
with most optimistic choices (e.g. $\left.C_{N}=5\right)$

Largest negative tadpoles in explicit geometries known at present
[Taylor/Wang'15,... , Crino/Quevedo/Schachner/Valondro'22]
Calabi-Yan-Onientifold: $-Q=252$ too small?
CY Orient w. mobile DTs: $-Q=3.332$
F-theory:

$$
-Q \simeq 75^{\circ} 000
$$

Control problems due to strongly varying g_{s} or to inability to ensure $g_{s} \ll 1$.
What is the maximal $|Q|$?

The Tadpole Problem / Conjecture
[Bena/Blaback/frana/Lüst; Plauschinn; Ci'coli...Maharana; Grimm/Hee'steeg/... ; Becker/Gonzalo/Walcher/Wrase 122] We are driven to the following situation:

$$
\begin{aligned}
& N=N_{\text {bulk }}+N_{\text {th. }} \leq|Q|_{\text {max }} \\
& N_{\text {th. }}>1 \text { needed for control }
\end{aligned}
$$

\Rightarrow Would like to keep Nbuen small!

- Will (bulk) fluxes with a small tadpole N be able to stabilize all C.s. moduli?
- The Tadpole Conjecture claims just the opposite:

If some flux vector stabilizes a large number n of c.s.moduli, then $\quad N_{\operatorname{fenx}}>\alpha n \quad(\alpha=O(1))$
Variants: 1) $\alpha>1 / 3$ ("refined")
2) One may or may not require that the stabilized geometry is smooth.
3) One may or may not require $n=n_{\max }=h^{2_{1}}$ ("strong"/ "weak")
\Rightarrow - in fact, 8 different conjectures

- Counterexamples to the "Strong" form already exist $(\rightarrow$ hist/Wiesner; Coudardhet/Marchesano
- precise meaning of "large n "
unclear (counterexamples for $n \sim O$ (few) are well-known)
- arguments in support are relatively weak:

1) K3 K K 3 example But: simple structure of periods
2) Example analysis/proofs at large complex structure But: Again, all rests on simple form of periods.
(well-known) argument against Tadpole Conjecture minimum of potential: $\quad D W=\partial_{z} W+k_{z} W=0$
$\Rightarrow n$ eggs. for n variables, with generic fits. (periods) involved
\Rightarrow expect only discrete solutions; i.e. all moduli are "generically" stabilized.

How Tadpole Conj. could still be right:

- no solutions in phys. domain of z (i.e. flux potential leads to runaway to decompactification or to singularities which are too bad to be controlled)

Interesting final point:
The Tadpole Conjecture can be made mathematically more precise by giving it a hodge-theoretic formulation [Braun/Valandro; grim et all ; Walcher et al .'22] Tadp, Conj, in Landau-finzburg model wo Kahler moduli

$$
\begin{aligned}
& \partial w=0 \Leftrightarrow \quad G=F_{3}+S H_{3} \in H^{2,1}(x)+H^{0,3}(x) \\
& \text { with } F_{3}, H_{3} \in H^{3}(x, \mathbb{Z}) \\
& \& N_{f \operatorname{len} x}=\int_{x} F_{3} A H_{3}
\end{aligned}
$$

Def: Susy flux lattice: All flux choices satisfying satisfying conditions above, ie.

$$
\Lambda_{(s, z)}^{\text {susy }} \subset H^{3}(x, \mathbb{Z}) \oplus S H^{3}(x, \mathbb{Z})
$$

Def: Susy locus: $M_{x}^{\text {suss }}=\left\{(s, z) \in \mathcal{H}_{x} M_{x} \mid r k(\Lambda)>0\right\}$
Def:: Number of stabilized moduli: codim of $M_{x}^{\text {susy }}$ Proposal: $\max _{G}\left(\operatorname{codim}_{(s, z)}^{z}\left(M_{x}^{\text {susy }}\right) /|Q(G)|\right)<1 / \alpha$
zariski dimension used \Rightarrow fields stabilized by higher potential terms not counted

Summary / Conclusions

- Some of the most pressing issues in establishing a "realistic" string landscape have to do with higher-dimension operators in $d=10$.
- The possibilities for avoiding those issues depend on the availability of geometries with large negative tadpole $|Q|>1$.
- Related critical issue: Can one stabilize many moduli by flux with a limited tadpole contribution?

