COVARIANT SUPERGRAPHS II

S. M. Kuzenko, School of Physics, UWA

Prerequisite and aim

We have seen that for special background chiral and vector multiplets,

$$
[\Phi, \bar{\Phi}]=\mathcal{D}^{\alpha} \mathcal{W}_{\alpha}=0, \quad \overline{\mathcal{D}}_{\dot{\alpha}} \Phi=\mathcal{D}_{\alpha} \Phi=0
$$

all the propagators are expressed via a single Green's functions $G\left(z, z^{\prime}\right)$ (chosen in different representations of the gauge group):

$$
\left(\square_{\mathrm{v}}-|\mathcal{M}|^{2}\right) G\left(z, z^{\prime}\right)=-\mathbf{1} \delta^{8}\left(z-z^{\prime}\right)
$$

Here the delta-function and the vector d'Alembertian are

$$
\begin{aligned}
\delta^{8}\left(z-z^{\prime}\right) & =\delta^{4}\left(x-x^{\prime}\right)\left(\theta-\theta^{\prime}\right)^{2}\left(\bar{\theta}-\bar{\theta}^{\prime}\right)^{2} \\
\square_{\mathrm{v}} & =\mathcal{D}^{a} \mathcal{D}_{a}-\mathcal{W}^{\alpha} \mathcal{D}_{\alpha}+\overline{\mathcal{W}}_{\dot{\alpha}} \overline{\mathcal{D}}^{\dot{\alpha}}
\end{aligned}
$$

Finally, the mass operator \mathcal{M} is defined by $\mathcal{M}_{\mathrm{R}} \Sigma=-\mathrm{i} \Phi \Sigma$, for a multiplet Σ transforming in an arbitrary representation R of the gauge group.

In this lecture, we will study more general (but related) situation:
(i) arbitrary background vector multiplet; (ii) $|\mathcal{M}|^{2} \rightarrow m^{2} \mathbf{1}$.

Our aim will consist in developing a covariant expansion of the corresponding propagator in powers of the Yang-Mills superfield strengths \mathcal{W}_{α} and $\overline{\mathcal{W}}_{\dot{\alpha}}$, and their covariant derivatives.

The presentation follows mainly SMK, McArthur (2003)

Covariant derivative expansion in Yang-Mills theory (Non-supersymmetric case)

Consider a Green's function,

$$
G_{i^{\prime}}^{i}\left(x, x^{\prime}\right)=\mathrm{i}\left\langle\varphi^{i}(x) \bar{\varphi}_{i^{\prime}}\left(x^{\prime}\right)\right\rangle
$$

associated with a quantum field $\varphi=\left(\varphi^{i}(x)\right)$, which transforms in some representation of the gauge group \mathbf{G}, and its conjugate $\varphi^{\dagger}=\left(\bar{\varphi}_{i}(x)\right)$. The Green's function satisfies the equation

$$
\begin{aligned}
& \Delta_{x} G\left(x, x^{\prime}\right)=-\delta^{d}\left(x-x^{\prime}\right) \mathbf{1} \\
& \Delta=\nabla^{m} \nabla_{m}-\mathcal{U}, \quad \mathbf{1}=\left(\delta_{i^{\prime}}^{i}\right)
\end{aligned}
$$

with ∇_{m} the gauge-covariant derivatives,

$$
\nabla_{m}=\partial_{m}+\mathrm{i} A_{m}, \quad\left[\nabla_{m}, \nabla_{n}\right]=\mathrm{i} F_{m n}, \quad A_{m}=A_{m}^{I}(x) T_{I}
$$

and $\mathcal{U}(x)$ a local matrix function of the background field containing a mass term $m^{2} \mathbf{1}$.

Gauge transformation:
$\nabla_{m} \rightarrow \mathrm{e}^{\mathrm{i} \tau(x)} \nabla_{m} \mathrm{e}^{-\mathrm{i} \tau(x)}, \quad \varphi \rightarrow \mathrm{e}^{\mathrm{i} \tau(x)} \varphi, \quad \mathcal{U} \rightarrow \mathrm{e}^{\mathrm{i} \tau(x)} \mathcal{U} \mathrm{e}^{-\mathrm{i} \tau(x)}$,
and therefore

$$
G\left(x, x^{\prime}\right) \rightarrow \mathrm{e}^{\mathrm{i} \tau(x)} G\left(x, x^{\prime}\right) \mathrm{e}^{-\mathrm{i} \tau\left(x^{\prime}\right)}
$$

with $\tau=\tau^{I}(x) T_{I}=\tau^{\dagger}$.

Parallel transporter

Let $\gamma(t)$ be a curve connecting two points, x and x^{\prime}.

$$
\gamma:[0,1] \rightarrow \mathbb{R}^{d-1,1}, \quad \gamma(0)=x^{\prime}, \quad \gamma(1)=x .
$$

Introduce the operator of parallel transport (also known as Schwinger's phase factor or Wilson's line), $I_{\gamma}(t)$, along the curve,

$$
\begin{aligned}
& I_{\gamma}(t):[0,1] \rightarrow \mathbf{G}, \quad I_{\gamma}(0)=\mathbf{1} \\
& \quad\left(\frac{\mathrm{d}}{\mathrm{~d} t}+\mathrm{i} \dot{x}^{m}(t) A_{m}(t)\right) I_{\gamma}(t)=0,
\end{aligned}
$$

with \mathbf{G} the gauge group. We have

$$
I_{\gamma}\left(x, x^{\prime}\right)=I_{\gamma}(1)=\mathrm{P} \exp \left(-\mathrm{i} \int_{\gamma} A_{m} \mathrm{~d} x^{m}\right) .
$$

Let $\gamma=\gamma_{0}$ be the geodesic connecting x and x^{\prime} :

$$
\gamma_{0}(t)=t\left(x-x^{\prime}\right)+x^{\prime} .
$$

The two-point function

$$
I\left(x, x^{\prime}\right) \equiv I_{\gamma_{0}}\left(x, x^{\prime}\right)
$$

will be called the parallel displacement propagator.

Main properties of the parallel displacement propagator:
(i) gauge transformation law

$$
I\left(x, x^{\prime}\right) \rightarrow \mathrm{e}^{\mathrm{i} \tau(x)} I\left(x, x^{\prime}\right) \mathrm{e}^{-\mathrm{i} \tau\left(x^{\prime}\right)}
$$

(ii) boundary condition

$$
I(x, x)=\mathbf{1}
$$

(iii) master equation

$$
\left(x-x^{\prime}\right)^{a} \nabla_{a} I\left(x, x^{\prime}\right)=\left(x-x^{\prime}\right)^{a}\left(\partial_{a}+\mathrm{i} A_{a}(x)\right) I\left(x, x^{\prime}\right)=0 .
$$

The master equation implies

$$
\left(x-x^{\prime}\right)^{a_{1}} \ldots\left(x-x^{\prime}\right)^{a_{n}} \nabla_{a_{1}} \ldots \nabla_{a_{n}} I\left(x, x^{\prime}\right)=0, \quad n>0,
$$

and therefore

$$
\left.\nabla_{\left(a_{1} \ldots\right.} \ldots \nabla_{\left.a_{n}\right)} I\left(x, x^{\prime}\right)\right|_{x=x^{\prime}}=0, \quad n>0 .
$$

Further property:

$$
I\left(x, x^{\prime}\right) I\left(x^{\prime}, x\right)=\mathbf{1}
$$

By hitting this identity with $\left(x-x^{\prime}\right)^{a} \partial^{\prime}$, and then adding
$\left(x-x^{\prime}\right)^{a} I\left(x, x^{\prime}\right)\left(\mathrm{i} A_{a}\left(x^{\prime}\right)-\mathrm{i} A_{a}\left(x^{\prime}\right)\right) I\left(x^{\prime}, x\right)=0$, we get
$\left(x-x^{\prime}\right)^{a} \nabla^{\prime}{ }_{a} I\left(x, x^{\prime}\right)=\left(x-x^{\prime}\right)^{a}\left(\partial^{\prime}{ }_{a} I\left(x, x^{\prime}\right)-\mathrm{i} I\left(x, x^{\prime}\right) A_{a}\left(x^{\prime}\right)\right)=0$.
Hermitian conjugation:

$$
\left(I\left(x, x^{\prime}\right)\right)^{\dagger}=I\left(x^{\prime}, x\right)
$$

Let $\varphi(x)$ be a field transforming in some representation of the gauge group. Then

$$
\varphi(x)=I\left(x, x^{\prime}\right) \sum_{n=0}^{\infty} \frac{1}{n!}\left(x-x^{\prime}\right)^{a_{1}} \ldots\left(x-x^{\prime}\right)^{a_{n}} \nabla_{a_{1}}^{\prime} \ldots \nabla_{a_{n}}^{\prime} \varphi\left(x^{\prime}\right)
$$

Barvinsky, Vilkovisky (1985)

The covariant Taylor expansion implies the following:
Identity (*)

$$
\begin{aligned}
\nabla_{b} I\left(x, x^{\prime}\right) & =\mathrm{i} I\left(x, x^{\prime}\right) \sum_{n=1}^{\infty} \frac{n}{(n+1)!}\left(x-x^{\prime}\right)^{a_{1}} \ldots\left(x-x^{\prime}\right)^{a_{n}} \\
& \times \nabla_{a_{1}}^{\prime} \ldots \nabla_{a_{n-1}}^{\prime} F_{a_{n} b}\left(x^{\prime}\right)
\end{aligned}
$$

or equivalently

$$
\begin{aligned}
& \underline{\text { Identity }(* *)} \\
& \qquad \begin{aligned}
\nabla_{b} I\left(x, x^{\prime}\right) & =-\mathrm{i} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{(n+1)!}\left(x-x^{\prime}\right)^{a_{1}} \ldots\left(x-x^{\prime}\right)^{a_{n}} \\
& \times \nabla_{a_{1}} \ldots \nabla_{a_{n-1}} F_{a_{n} b}(x) I\left(x, x^{\prime}\right)
\end{aligned}
\end{aligned}
$$

Avramidi $(1990,2000)$

Derivation is given in the Appendices.

Fock-Schwinger gauge

Let us fix some space-time point x^{\prime} and consider the following gauge transformation:

$$
\mathrm{e}^{\mathrm{i} \tau(x)}=I\left(x^{\prime}, x\right), \quad \mathrm{e}^{\mathrm{i} \tau\left(x^{\prime}\right)}=\mathbf{1}
$$

Applying this gauge transformation to $I\left(x, x^{\prime}\right)$,

$$
I\left(x, x^{\prime}\right) \rightarrow \mathrm{e}^{\mathrm{i} \tau(x)} I\left(x, x^{\prime}\right) \mathrm{e}^{-\mathrm{i} \tau\left(x^{\prime}\right)}
$$

the result is

$$
I\left(x, x^{\prime}\right)=\mathbf{1}
$$

which is equivalent, due to $\left(x-x^{\prime}\right)^{a} \nabla_{a} I\left(x, x^{\prime}\right)=0$, to the FockSchwinger gauge

$$
\left(x-x^{\prime}\right)^{m} A_{m}(x)=0 .
$$

Fock (1937) Schwinger $(1951,1973)$

In the Fock-Schwinger gauge, the identity $(*)$ becomes

$$
\begin{aligned}
A_{b}(x)= & \sum_{n=1}^{\infty} \frac{n}{(n+1)!}\left(x-x^{\prime}\right)^{a_{1}} \ldots\left(x-x^{\prime}\right)^{a_{n-1}}\left(x-x^{\prime}\right)^{a_{n}} \\
& \times \nabla_{a_{1}}^{\prime} \ldots \nabla_{a_{n-1}}^{\prime} F_{a_{n} b}\left(x^{\prime}\right) .
\end{aligned}
$$

Shifman (1980)
Thus, all coefficients in the Taylor expansion of $A(x)$ acquire a geometric meaning.

Proper-time representation:

$$
G\left(x, x^{\prime}\right)=\mathrm{i} \int_{0}^{\infty} \mathrm{d} s K\left(x, x^{\prime} \mid s\right)
$$

where the so-called heat kernel $K\left(x, x^{\prime} \mid s\right)$ is formally given by

$$
K\left(x, x^{\prime} \mid s\right)=\mathrm{e}^{\mathrm{i} s(\Delta+\mathrm{i} \varepsilon)} \delta^{d}\left(x-x^{\prime}\right) \mathbf{1}, \quad \varepsilon \rightarrow+0
$$

and possesses the gauge transformation

$$
K\left(x, x^{\prime} \mid s\right) \rightarrow \mathrm{e}^{\mathrm{i} \tau(x)} K\left(x, x^{\prime} \mid s\right) \mathrm{e}^{-\mathrm{i} \tau\left(x^{\prime}\right)}
$$

Covariant momentum representation:

$$
\begin{aligned}
& \delta^{d}\left(x-x^{\prime}\right) \mathbf{1}=\delta^{d}\left(x-x^{\prime}\right) I\left(x, x^{\prime}\right)=\int \frac{\mathrm{d}^{d} k}{(2 \pi)^{d}} \mathrm{e}^{\mathrm{i} k \cdot\left(x-x^{\prime}\right)} I\left(x, x^{\prime}\right) \\
& \mathrm{e}^{\mathrm{i} k \cdot\left(x-x^{\prime}\right)} I\left(x, x^{\prime}\right) \rightarrow \mathrm{e}^{\mathrm{i} \tau(x)}\left\{\mathrm{e}^{\mathrm{i} k \cdot\left(x-x^{\prime}\right)} I\left(x, x^{\prime}\right)\right\} \mathrm{e}^{-\mathrm{i} \tau\left(x^{\prime}\right)} .
\end{aligned}
$$

The heat kernel takes the form

$$
\begin{aligned}
& K\left(x, x^{\prime} \mid s\right)=\int \frac{\mathrm{d}^{d} k}{(2 \pi)^{d}} \mathrm{e}^{\mathrm{i} k \cdot\left(x-x^{\prime}\right)} \mathrm{e}^{\mathrm{i} s\left[(\nabla+\mathrm{i} k)^{2}-\mathcal{U}\right]} I\left(x, x^{\prime}\right) \\
& =\frac{1}{\left(4 \pi^{2} s\right)^{d / 2}} \int \mathrm{~d}^{d} k \mathrm{e}^{-\mathrm{i} k^{2}+\mathrm{i} s^{-1 / 2} k \cdot\left(x-x^{\prime}\right)} \mathrm{e}^{\left[\mathrm{i} s \nabla^{2}-2 s^{1 / 2} k \cdot \nabla-\mathrm{i} s \mathcal{U}\right]} I\left(x, x^{\prime}\right) .
\end{aligned}
$$

The second exponential should be expanded in a Taylor series. Whenever a covariant derivative ∇_{b} from this series hits $I\left(x, x^{\prime}\right)$, we apply the identity $(*)$. Given a product $\mathcal{U}(x) I\left(x, x^{\prime}\right)$, we represent it as
$\mathcal{U}(x) I\left(x, x^{\prime}\right)=I\left(x, x^{\prime}\right) \sum_{n=0}^{\infty} \frac{1}{n!}\left(x-x^{\prime}\right)^{a_{1}} \ldots\left(x-x^{\prime}\right)^{a_{n}} \nabla_{a_{1}}^{\prime} \ldots \nabla_{a_{n}}^{\prime} \mathcal{U}\left(x^{\prime}\right)$.

A generic term in the Taylor expansion involves a Gaussian moment of the form

$$
\left\langle k^{a_{1}} \ldots k^{a_{n}}\right\rangle \equiv \frac{1}{\left(4 \pi^{2} s\right)^{d / 2}} \int \mathrm{~d}^{d} k \mathrm{e}^{-\mathrm{i} k^{2}+\mathrm{i} s^{-1 / 2} k .\left(x-x^{\prime}\right)} s^{1 / 2} k^{a_{1}} \ldots s^{1 / 2} k^{a_{n}}
$$

where each $k^{a_{i}}$ comes together with an s-independent factor of $\nabla_{a_{i}}$; there also occur insertions of $s \nabla^{2}$ and $s \mathcal{U}$. To compute the moments, introduce a generating function $Z(J)$,

$$
\begin{aligned}
Z(J) & =\frac{1}{\left(4 \pi^{2} s\right)^{d / 2}} \int \mathrm{~d}^{d} k \mathrm{e}^{-\mathrm{i} k^{2}+\mathrm{i} s^{-1 / 2} k \cdot\left(x-x^{\prime}\right)+s^{1 / 2} J . k}, \\
\left\langle k^{a_{1}} \ldots k^{a_{n}}\right\rangle & =\left.\frac{\partial^{n}}{\partial J_{a_{1}} \ldots \partial J_{a_{n}}} Z(J)\right|_{J=0}, \\
Z(J) & =\frac{\mathrm{i}}{(4 \pi \mathrm{i} s)^{d / 2}} \mathrm{e}^{\mathrm{i}\left(x-x^{\prime}\right)^{2} / 4 s} \mathrm{e}^{-\mathrm{i} s J^{2} / 4+J .\left(x-x^{\prime}\right) / 2} .
\end{aligned}
$$

As a result, the heat kernel takes the Schwinger-DeWitt form:

$$
K\left(x, x^{\prime} \mid s\right)=\frac{\mathrm{i}}{(4 \pi \mathrm{i} s)^{d / 2}} \mathrm{e}^{\mathrm{i}\left(x-x^{\prime}\right)^{2} / 4 s} \sum_{n=0}^{\infty} a_{n}\left(x, x^{\prime}\right)(\mathrm{i} s)^{n}
$$

where
$a_{0}\left(x, x^{\prime}\right)=\sum_{p=0}^{\infty} \frac{1}{p!}\left(x^{\prime}-x\right)^{m_{1}} \ldots\left(x^{\prime}-x\right)^{m_{p}} \nabla_{m_{1}} \ldots \nabla_{m_{p}} I\left(x, x^{\prime}\right)=I\left(x, x^{\prime}\right)$.
The Schwinger-DeWitt coefficients a_{n} have the form

$$
\begin{aligned}
a_{n}\left(x, x^{\prime}\right) & =\mathbf{a}_{n}\left(F(x), \nabla F(x), \ldots, \mathcal{U}(x), \nabla \mathcal{U}(x) \ldots ; x-x^{\prime}\right) I\left(x, x^{\prime}\right) \\
& =I\left(x, x^{\prime}\right) \mathbf{a}_{n}^{\prime}\left(F\left(x^{\prime}\right), \nabla^{\prime} F\left(x^{\prime}\right), \ldots, \mathcal{U}\left(x^{\prime}\right), \nabla^{\prime} \mathcal{U}\left(x^{\prime}\right) \ldots ; x-x^{\prime}\right),
\end{aligned}
$$

where the functions \mathbf{a}_{n} and \mathbf{a}_{n}^{\prime} are straightforward to compute using the scheme described above.

Covariant derivative expansion in SYM theory

$z^{m}=\left(x^{m}, \theta^{\mu}, \bar{\theta}_{\dot{\mu}}\right)$ coordinates of $\mathcal{N}=1$ superspace.
$D_{A}=\left(\partial_{a}, D_{\alpha}, \bar{D}^{\dot{\alpha}}\right)$ flat superspace covariant derivatives.
Supersymmetric Cartan 1-forms $\omega^{A}=\left(\omega^{a}, \omega^{\alpha}, \bar{\omega}_{\dot{\alpha}}\right)$
$\mathrm{d} z^{M} \partial_{M}=\omega^{A} D_{A}, \quad \omega^{A}=\left(\mathrm{d} x^{a}-\mathrm{i} \mathrm{d} \theta \sigma^{a} \bar{\theta}+\mathrm{i} \theta \sigma^{a} \mathrm{~d} \bar{\theta}, \mathrm{~d} \theta^{\alpha}, \mathrm{d} \bar{\theta}_{\dot{\alpha}}\right)$.
Let $z^{M}(t)=\left(z-z^{\prime}\right)^{M} t+z^{M}$ be the straight line connecting two points z and z^{\prime} in superspace, $z^{M}(0)=z^{\prime M}$ and $z^{M}(1)=z^{M}$. We then have $\dot{z}^{M} \partial_{M}=\zeta^{A} D_{A}$, where the two-point function $\zeta^{A} \equiv$ $\zeta^{A}\left(z, z^{\prime}\right)=-\zeta^{A}\left(z^{\prime}, z\right)$ is

$$
\zeta^{A}=\left\{\begin{array}{l}
\rho^{a}=\left(x-x^{\prime}\right)^{a}-\mathrm{i}\left(\theta-\theta^{\prime}\right) \sigma^{a} \bar{\theta}^{\prime}+\mathrm{i} \theta^{\prime} \sigma^{a}\left(\bar{\theta}-\bar{\theta}^{\prime}\right) \\
\zeta^{\alpha}=\left(\theta-\theta^{\prime}\right)^{\alpha} \\
\bar{\zeta}_{\dot{\alpha}}=\left(\bar{\theta}-\bar{\theta}^{\prime}\right)_{\dot{\alpha}}
\end{array}\right.
$$

The parallel displacement propagator along the straight line, $I\left(z, z^{\prime}\right)$, is specified by the requirements:
(i) the gauge transformation law

$$
I\left(z, z^{\prime}\right) \rightarrow \mathrm{e}^{\mathrm{i} \tau(z)} I\left(z, z^{\prime}\right) \mathrm{e}^{-\mathrm{i} \tau\left(z^{\prime}\right)}
$$

(ii) the equation

$$
\zeta^{A} \mathcal{D}_{A} I\left(z, z^{\prime}\right)=\zeta^{A}\left(D_{A}+\mathrm{i} \Gamma_{A}(z)\right) I\left(z, z^{\prime}\right)=0
$$

(iii) the boundary condition

$$
I(z, z)=\mathbf{1}
$$

Consequences:

$$
I\left(z, z^{\prime}\right) I\left(z^{\prime}, z\right)=\mathbf{1}
$$

We also have

$$
\zeta^{A} \mathcal{D}_{A}^{\prime} I\left(z, z^{\prime}\right)=\zeta^{A}\left(D_{A}^{\prime} I\left(z, z^{\prime}\right)-\mathrm{i} I\left(z, z^{\prime}\right) \Gamma_{A}\left(z^{\prime}\right)\right)=0
$$

Further, using the identity

$$
\zeta^{B} D_{B} \zeta^{A}=\zeta^{A}
$$

from the master equation one deduces

$$
\zeta^{A_{n}} \ldots \zeta^{A_{1}} \mathcal{D}_{A_{1}} \ldots \mathcal{D}_{A_{n}} I\left(z, z^{\prime}\right)=0
$$

The latter leads to

$$
\left.\mathcal{D}_{\left(A_{1} \ldots \mathcal{D}_{\left.A_{n}\right\}}\right.} I\left(z, z^{\prime}\right)\right|_{z=z^{\prime}}=0, \quad n \geq 1
$$

where (...\} means graded symmetrization of n indices (with a factor of $1 / n!$).

Covariant Taylor expansion
Let $\Psi(z)$ be a superfield transforming in some representation of the gauge group,

$$
\Psi(z) \rightarrow \mathrm{e}^{\mathrm{i} \tau(z)} \Psi(z)
$$

Then

$$
\Psi(z)=I\left(z, z^{\prime}\right) \sum_{n=0}^{\infty} \frac{1}{n!} \zeta^{A_{n}} \ldots \zeta^{A_{1}} \mathcal{D}_{A_{1}}^{\prime} \ldots \mathcal{D}_{A_{n}}^{\prime} \Psi\left(z^{\prime}\right)
$$

The covariant Taylor expansion implies
Identity ($*$)

$$
\begin{aligned}
\mathcal{D}_{B} I\left(z, z^{\prime}\right) & =\mathrm{i} I\left(z, z^{\prime}\right) \sum_{n=1}^{\infty} \frac{1}{(n+1)!}\left\{n \zeta^{A_{n}} \ldots \zeta^{A_{1}} \mathcal{D}_{A_{1}}^{\prime} \ldots \mathcal{D}_{A_{n-1}}^{\prime} \mathcal{F}_{A_{n} B}\left(z^{\prime}\right)\right. \\
& \left.+\frac{1}{2}(n-1) \zeta^{A_{n}} T_{A_{n} B}^{C} \zeta^{A_{n-1}} \ldots \zeta^{A_{1}} \mathcal{D}_{A_{1}}^{\prime} \ldots \mathcal{D}_{A_{n-2}}^{\prime} \mathcal{F}_{A_{n-1} C}\left(z^{\prime}\right)\right\},
\end{aligned}
$$

or equivalently
Identity ($\star \star$)

$$
\begin{aligned}
\mathcal{D}_{B} I\left(z, z^{\prime}\right)= & \mathrm{i} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{(n+1)!}\left\{-\zeta^{A_{n}} \ldots \zeta^{A_{1}} \mathcal{D}_{A_{1}} \ldots \mathcal{D}_{A_{n-1}} \mathcal{F}_{A_{n} B}(z)\right. \\
+ & \left.\frac{1}{2}(n-1) \zeta^{A_{n}} T_{A_{n} B}^{C} \zeta^{A_{n-1}} \ldots \zeta^{A_{1}} \mathcal{D}_{A_{1}} \ldots \mathcal{D}_{A_{n-2}} \mathcal{F}_{A_{n-1} C}(z)\right\} \\
& \times I\left(z, z^{\prime}\right) .
\end{aligned}
$$

SMK, McArthur (2003)

Supersymmetric Fock-Schwinger gauge

$$
I\left(z, z^{\prime}\right)=\mathbf{1} \quad \Longleftrightarrow \quad \zeta^{A} \Gamma_{A}(z)=0
$$

Orndorf (1986)
In this gauge

$$
\begin{aligned}
\Gamma_{B}(z) & =\sum_{n=1}^{\infty} \frac{1}{(n+1)!}\left\{n \zeta^{A_{n}} \ldots \zeta^{A_{1}} \mathcal{D}_{A_{1}}^{\prime} \ldots \mathcal{D}_{A_{n-1}}^{\prime} \mathcal{F}_{A_{n} B}\left(z^{\prime}\right)\right. \\
& \left.+\frac{1}{2}(n-1) \zeta^{A_{n}} T_{A_{n} B}{ }^{C} \zeta^{A_{n-1}} \ldots \zeta^{A_{1}} \mathcal{D}_{A_{1}}^{\prime} \ldots \mathcal{D}_{A_{n-2}}^{\prime} \mathcal{F}_{A_{n-1} C}\left(z^{\prime}\right)\right\}
\end{aligned}
$$

We are finally prepared to study the superspace Green's function introduced at the beginning of this lecture.

$$
\left(\square_{\mathrm{v}}-m^{2}\right) G\left(z, z^{\prime}\right)=-\mathbf{1} \delta^{8}\left(z-z^{\prime}\right)
$$

Introduce the proper-time representation for G

$$
G\left(z, z^{\prime}\right)=\mathrm{i} \int_{0}^{\infty} \mathrm{d} s \mathrm{e}^{-\mathrm{i}\left(m^{2}-\mathrm{i} \varepsilon\right)} K\left(z, z^{\prime} \mid s\right), \quad \varepsilon \rightarrow+0,
$$

where the heat kernel $K\left(z, z^{\prime} \mid s\right)$ has the formal representation

$$
K\left(z, z^{\prime} \mid s\right)=\mathrm{e}^{\mathrm{i} s \square_{\mathrm{v}}} \delta^{8}\left(z-z^{\prime}\right) \mathbf{1}
$$

and possesses the gauge transformation

$$
K\left(z, z^{\prime} \mid s\right) \rightarrow \mathrm{e}^{\mathrm{i} \tau(z)} K\left(z, z^{\prime} \mid s\right) \mathrm{e}^{-\mathrm{i} \tau\left(z^{\prime}\right)}
$$

Momentum representation for the superspace delta function:

$$
\begin{aligned}
\delta^{8}\left(z-z^{\prime}\right) & =\int \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}} \mathrm{e}^{\mathrm{i} k^{a}\left(x-x^{\prime}\right)_{a}} \zeta^{2} \bar{\zeta}^{2}=\int \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}} \mathrm{e}^{\mathrm{i} k^{a} \rho_{a}} \zeta^{2} \bar{\zeta}^{2} \\
& =\frac{1}{\pi^{4}} \int \mathrm{~d}^{4} k \int \mathrm{~d}^{2} \kappa \int \mathrm{~d}^{2} \bar{\kappa} \mathrm{e}^{\mathrm{i}\left[k^{a} \rho_{a}+\kappa^{\alpha} \zeta_{\alpha}+\bar{\kappa}_{\dot{\alpha}} \bar{\zeta}^{\dot{\alpha}}\right]} .
\end{aligned}
$$

Covariant momentum representation:

$$
\begin{aligned}
\delta^{8}\left(z-z^{\prime}\right) \mathbf{1} & =\int \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}} \mathrm{e}^{\mathrm{i} k^{a} \rho_{a}} \zeta^{2} \bar{\zeta}^{2} I\left(z, z^{\prime}\right) \\
& =\frac{1}{\pi^{4}} \int \mathrm{~d}^{4} k \int \mathrm{~d}^{2} \kappa \int \mathrm{~d}^{2} \bar{\kappa} \mathrm{e}^{\mathrm{i}\left[k^{a} \rho_{a}+\kappa^{\alpha} \zeta_{\alpha}+\bar{\kappa}_{\dot{\alpha}} \bar{\zeta}^{\dot{\zeta}}\right]} I\left(z, z^{\prime}\right) .
\end{aligned}
$$

The heat kernel can now be represented as follows:

$$
\begin{aligned}
K\left(z, z^{\prime} \mid s\right) & =\int \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}} \mathrm{e}^{\mathrm{i} k^{a} \rho_{a}} \mathrm{e}^{\mathrm{i} s\left[(\mathcal{D}+\mathrm{i} k)^{2}-\mathcal{W}^{\alpha} \mathcal{D}_{\alpha}+\overline{\mathcal{W}}_{\dot{\alpha}} \overline{\mathcal{D}}^{\dot{\alpha}}\right]} \\
& \times \zeta^{2} \bar{\zeta}^{2} I\left(z, z^{\prime}\right)
\end{aligned}
$$

The covariant derivative expansion for $K\left(z, z^{\prime} \mid s\right)$ follows from this representation, in complete analogy with the non-supersymmetric case.

Evaluation of the heat kernel obtained can be carried out in a manner almost identical to that outlined for the non-supersymmetric case. The result is the following asymptotic expansion:

$$
K\left(z, z^{\prime} \mid s\right)=-\frac{\mathrm{i}}{(4 \pi s)^{2}} \mathrm{e}^{\mathrm{i} \zeta^{a} \zeta_{a} / 4 s} \sum_{n=0}^{\infty} a_{n}\left(z, z^{\prime}\right)(\mathrm{i} s)^{n}
$$

where

$$
\begin{aligned}
a_{0}\left(z, z^{\prime}\right) & =\sum_{n=0}^{\infty} \frac{1}{n!}(-1)^{n} \rho^{a_{n}} \ldots \rho^{a_{1}} \mathcal{D}_{a_{1}} \ldots \mathcal{D}_{a_{n}} \delta^{4}\left(\theta-\theta^{\prime}\right) I\left(z, z^{\prime}\right) \\
& =\delta^{4}\left(\theta-\theta^{\prime}\right) \sum_{n=0}^{\infty} \frac{1}{n!}(-1)^{n} \rho^{a_{n}} \ldots \rho^{a_{1}} \mathcal{D}_{a_{1}} \ldots \mathcal{D}_{a_{n}} I\left(z, z^{\prime}\right) \\
& =\delta^{4}\left(\theta-\theta^{\prime}\right) \sum_{n=0}^{\infty} \frac{1}{n!}(-1)^{n} \zeta^{A_{n}} \ldots \zeta^{A_{1}} \mathcal{D}_{A_{1}} \ldots \mathcal{D}_{A_{n}} I\left(z, z^{\prime}\right) \\
& =\delta^{4}\left(\theta-\theta^{\prime}\right) I\left(z, z^{\prime}\right)=\zeta^{2} \bar{\zeta}^{2} I\left(z, z^{\prime}\right) .
\end{aligned}
$$

Append. A: Derivation of covariant Taylor expansion

Consider the straight line connecting two points z and z^{\prime}.

$$
\begin{aligned}
& z^{M}(t)=\left(z-z^{\prime}\right)^{M} t+z^{\prime M}, \quad z(0)=z^{\prime}, \quad z(1)=z \\
& \dot{z}^{M} \partial_{M}=\zeta^{A} D_{A}, \quad \frac{\mathrm{~d}}{\mathrm{~d} t} \zeta^{A}=0
\end{aligned}
$$

Given a gauge invariant superfield $U(z)$, for $U(t)=U(z(t))$ we have

$$
\frac{\mathrm{d}^{n} U}{\mathrm{~d} t^{n}}=\zeta^{A_{n}} \ldots \zeta^{A_{1}} D_{A_{1}} \ldots D_{A_{n}} U
$$

since $\dot{\zeta}^{A}=0$. This leads to a supersymmetric Taylor series

$$
U(z)=\sum_{n=0}^{\infty} \frac{1}{n!} \zeta^{A_{n}} \ldots \zeta^{A_{1}} D_{A_{1}}^{\prime} \ldots D_{A_{n}}^{\prime} U\left(z^{\prime}\right)
$$

Now, let $\Psi(z)$ be a superfield transforming in some representation of the gauge group. Then $U(z) \equiv I\left(z^{\prime}, z\right) \Psi(z)$ is gauge invariant with respect to z, and therefore we are in a position to apply the supersymmetric Taylor expansion.

$$
\Psi(z)=\left.I\left(z, z^{\prime}\right) \sum_{n=0}^{\infty} \frac{1}{n!} \zeta^{A_{n}} \ldots \zeta^{A_{1}} \mathcal{D}_{A_{1}} \ldots \mathcal{D}_{A_{n}}\left(I\left(z^{\prime}, w\right) \Psi(w)\right)\right|_{w=z^{\prime}}
$$

This is equivalent to the covariant Taylor series, since

$$
\mathcal{D}_{\left(\left.A_{1} \ldots \mathcal{D}_{\left.A_{n}\right\}} I\left(z^{\prime}, z\right)\right|_{z=z^{\prime}}=0, \quad n \geq 1 . . . ~\right.}^{\text {and }}
$$

Append. B: Derivation of identity (\star)

Apply the covariant Taylor expansion to $\mathcal{D}_{B} I\left(z, z^{\prime}\right)$ considered as a superfield at z,
$\mathcal{D}_{B} I\left(z, z^{\prime}\right)=\left.I\left(z, z^{\prime}\right) \sum_{n=0}^{\infty} \frac{1}{n!} \zeta^{A_{n}} \ldots \zeta^{A_{1}} \mathcal{D}_{A_{1}} \ldots \mathcal{D}_{A_{n}} \mathcal{D}_{B} I\left(w, z^{\prime}\right)\right|_{w=z^{\prime}}$.
We start with an obvious identity

$$
\begin{aligned}
& (n+1) \zeta^{A_{n}} \ldots \zeta^{A_{1}} \mathcal{D}_{\left(A_{1}\right.} \ldots \mathcal{D}_{A_{n}} \mathcal{D}_{B\}}=\zeta^{A_{n}} \ldots \zeta^{A_{1}} \mathcal{D}_{A_{1}} \ldots \mathcal{D}_{A_{n}} \mathcal{D}_{B} \\
& \quad+\sum_{i=1}^{n}(-1)^{B\left(A_{i}+\ldots+A_{n}\right)} \zeta^{A_{n}} \ldots \zeta^{A_{1}} \mathcal{D}_{A_{1}} \ldots \mathcal{D}_{A_{i-1}} \mathcal{D}_{B} \mathcal{D}_{A_{i}} \ldots \mathcal{D}_{A_{n}}
\end{aligned}
$$

and make use of the property of

$$
\mathcal{D}_{\left(\left.A_{1} \ldots \mathcal{D}_{A_{n}} \mathcal{D}_{B\}} I\left(z, z^{\prime}\right)\right|_{z=z^{\prime}}=0 ~ . ~\right.}
$$

We thus have

$$
\begin{aligned}
0 & =\left.\zeta^{A_{n}} \ldots \zeta^{A_{1}} \mathcal{D}_{A_{1}} \ldots \mathcal{D}_{A_{n}} \mathcal{D}_{B} I\left(z, z^{\prime}\right)\right|_{z=z^{\prime}} \\
& +\left.\sum_{i=1}^{n}(-1)^{B\left(A_{i}+\ldots+A_{n}\right)} \zeta^{A_{n}} \ldots \zeta^{A_{1}} \mathcal{D}_{A_{1}} \ldots \mathcal{D}_{A_{i-1}} \mathcal{D}_{B} \mathcal{D}_{A_{i}} \ldots \mathcal{D}_{A_{n}} I\left(z, z^{\prime}\right)\right|_{z=z^{\prime}}
\end{aligned}
$$

The next step is to represent

$$
\begin{aligned}
& (-1)^{B\left(A_{i}+\ldots+A_{n}\right)} \zeta^{A_{n}} \ldots \zeta^{A_{1}} \mathcal{D}_{A_{1}} \ldots \mathcal{D}_{A_{i-1}} \mathcal{D}_{B} \mathcal{D}_{A_{i}} \ldots \mathcal{D}_{A_{n}} \\
=- & (-1)^{B\left(A_{i+1}+\ldots+A_{n}\right)} \zeta^{A_{n}} \ldots \zeta^{A_{1}} \mathcal{D}_{A_{1}} \ldots \mathcal{D}_{A_{i-1}}\left[\mathcal{D}_{A_{i}}, \mathcal{D}_{B}\right\} \mathcal{D}_{A_{i+1}} \ldots \mathcal{D}_{A_{n}} \\
& +(-1)^{B\left(A_{i+1}+\ldots+A_{n}\right)} \zeta^{A_{n}} \ldots \zeta^{A_{1}} \mathcal{D}_{A_{1}} \ldots \mathcal{D}_{A_{i}} \mathcal{D}_{B} \mathcal{D}_{A_{i+1}} \ldots \mathcal{D}_{A_{n}}
\end{aligned}
$$

and make use of the covariant derivative algebra,

$$
\left[\mathcal{D}_{A}, \mathcal{D}_{B}\right\}=T_{A B}{ }^{C} \mathcal{D}_{C}+\mathrm{i} \mathcal{F}_{A B}
$$

along with the observation

$$
\begin{aligned}
&\left.(-1)^{B\left(A_{i+1}+\ldots+A_{n}\right)} \zeta^{A_{n}} \ldots \zeta^{A_{1}} \mathcal{D}_{A_{1}} \ldots \mathcal{D}_{A_{i-1}} \mathcal{F}_{A_{i} B} \mathcal{D}_{A_{i+1}} \ldots \mathcal{D}_{A_{n}} I\left(z, z^{\prime}\right)\right|_{z=z^{\prime}} \\
&=\left\{\begin{array}{cc}
0, & i<n \\
\zeta^{A_{n}} \ldots \zeta^{A_{1}} \mathcal{D}_{A_{1}} \ldots \mathcal{D}_{A_{n-1}} \mathcal{F}_{A_{n} B}, & i=n
\end{array}\right.
\end{aligned}
$$

Repeating this procedure, each contribution to the second terms in $(\star \star \star)$ can be reduced to the first term plus additional terms involving graded commutators of covariant derivatives. Since the torsion $T_{A B}^{C}$ is constant, we then obtain

$$
\begin{aligned}
&\left.(n+1) \zeta^{A_{n}} \ldots \zeta^{A_{1}} \mathcal{D}_{A_{1}} \ldots \mathcal{D}_{A_{n}} \mathcal{D}_{B} I\left(z, z^{\prime}\right)\right|_{z=z^{\prime}} \\
&=\sum_{i=1}^{n}(-1)^{C\left(A_{i+1}+\ldots+A_{n}\right)} \zeta^{A_{i}} T_{A_{i} B}{ }^{C} \zeta^{A_{n}} \ldots \underbrace{1}_{i} \ldots \zeta^{A_{1}} \\
& \times\left.\mathcal{D}_{A_{1}} \ldots \underbrace{\mathcal{D}_{C}}_{i} \ldots \mathcal{D}_{A_{n}} I\left(z, z^{\prime}\right)\right|_{z=z^{\prime}} \\
&+n \mathrm{i} \zeta^{A_{n}} \ldots \zeta^{A_{1}} \mathcal{D}_{A_{1}} \ldots \mathcal{D}_{A_{n-1}} \mathcal{F}_{A_{n} B} .
\end{aligned}
$$

For the first term in the right hand side, we can again apply the previous procedure, and this now simplifies since

$$
T_{A B}^{C}\left[\mathcal{D}_{C}, \mathcal{D}_{D}\right\}=(-1)^{C} T_{A B}^{C}\left[\mathcal{D}_{C}, \mathcal{D}_{D}\right\}=\mathrm{i} T_{A B}^{C} \mathcal{F}_{C D}
$$

After some algebra, one then arrives at $(n>0)$

$$
\begin{aligned}
& \left.(n+1) \zeta^{A_{n}} \ldots \zeta^{A_{1}} \mathcal{D}_{A_{1}} \ldots \mathcal{D}_{A_{n}} \mathcal{D}_{B} I\left(z, z^{\prime}\right)\right|_{z=z^{\prime}} \\
= & \mathrm{i} n \zeta^{A_{n}} \ldots \zeta^{A_{1}} \mathcal{D}_{A_{1}} \ldots \mathcal{D}_{A_{n-1}} \mathcal{F}_{A_{n} B} \\
& +\frac{\mathrm{i}}{2}(n-1) \zeta^{A_{n}} T_{A_{n} B}^{C} \zeta^{A_{n-1}} \ldots \zeta^{A_{1}} \mathcal{D}_{A_{1}} \ldots \mathcal{D}_{A_{n-2}} \mathcal{F}_{A_{n-1} C} .
\end{aligned}
$$

