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Prerequisite and aim

We have seen that for special background chiral and vector multi-

plets,

[Φ, Φ̄] = DαWα = 0 , D̄α̇Φ = DαΦ = 0 ,

all the propagators are expressed via a single Green’s functions

G(z, z′) (chosen in different representations of the gauge group):

(�v − |M|2) G(z, z′) =−1 δ8(z − z′) .

Here the delta-function and the vector d’Alembertian are

δ8(z − z′) = δ4(x− x′) (θ − θ′)2(θ̄ − θ̄′)2 ,

�v = DaDa −WαDα + W̄α̇D̄α̇ .

Finally, the mass operator M is defined by MR Σ = −i Φ Σ, for

a multiplet Σ transforming in an arbitrary representation R of the

gauge group.

In this lecture, we will study more general (but related) situation:

(i) arbitrary background vector multiplet; (ii) |M|2 → m21.

Our aim will consist in developing a covariant expansion of the

corresponding propagator in powers of the Yang-Mills superfield

strengths Wα and W̄α̇, and their covariant derivatives.

The presentation follows mainly SMK, McArthur (2003)



Covariant derivative expansion in Yang-Mills theory

(Non-supersymmetric case)

Consider a Green’s function,

Gi
i′(x, x′) = i 〈ϕi(x) ϕ̄i′(x

′)〉 ,

associated with a quantum field ϕ = (ϕi(x)), which transforms

in some representation of the gauge group G, and its conjugate

ϕ† = (ϕ̄i(x)). The Green’s function satisfies the equation

∆x G(x, x′) =−δd(x− x′)1 ,

∆ = ∇m∇m − U , 1 = (δi
i′) ,

with ∇m the gauge-covariant derivatives,

∇m = ∂m + i Am , [∇m,∇n] = i Fmn , Am = AI
m(x) TI ,

and U(x) a local matrix function of the background field contain-

ing a mass term m2 1.

Gauge transformation:

∇m → eiτ(x)∇m e−iτ(x) , ϕ → eiτ(x) ϕ , U → eiτ(x) U e−iτ(x) ,

and therefore

G(x, x′) → eiτ(x) G(x, x′) e−iτ(x′) ,

with τ = τ I(x) TI = τ †.
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Parallel transporter

Let γ(t) be a curve connecting two points, x and x′.

γ : [0, 1] → Rd−1,1 , γ(0) = x′ , γ(1) = x .

Introduce the operator of parallel transport (also known as Schwinger’s

phase factor or Wilson’s line), Iγ(t), along the curve,

Iγ(t) : [0, 1] → G , Iγ(0) = 1 ,( d

dt
+ i ẋm(t) Am(t)

)
Iγ(t) = 0 ,

with G the gauge group. We have

Iγ(x, x′) = Iγ(1) = P exp

(
−i

∫
γ

Am dxm

)
.

Let γ = γ0 be the geodesic connecting x and x′:

γ0(t) = t (x− x′) + x′ .

The two-point function

I(x, x′) ≡ Iγ0(x, x′)

will be called the parallel displacement propagator.

DeWitt (1963)
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Main properties of the parallel displacement propagator:

(i) gauge transformation law

I(x, x′) → eiτ(x) I(x, x′) e−iτ(x′) ;

(ii) boundary condition

I(x, x) = 1 ;

(iii) master equation

(x− x′)a∇a I(x, x′) = (x− x′)a
(
∂a + i Aa(x)

)
I(x, x′) = 0 .

The master equation implies

(x− x′)a1 . . . (x− x′)an∇a1 . . .∇an I(x, x′) = 0 , n > 0 ,

and therefore

∇(a1 . . .∇an) I(x, x′)|x=x′ = 0 , n > 0 .

Further property:

I(x, x′) I(x′, x) = 1 .

By hitting this identity with (x− x′)a ∂′a, and then adding

(x− x′)a I(x, x′)(i Aa(x
′)− i Aa(x

′))I(x′, x) = 0, we get

(x− x′)a∇′
a I(x, x′) = (x− x′)a

(
∂′a I(x, x′)− i I(x, x′) Aa(x

′)
)

= 0 .

Hermitian conjugation:(
I(x, x′)

)†
= I(x′, x) .
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Covariant Taylor expansion

Barvinsky, Vilkovisky (1985)

Let ϕ(x) be a field transforming in some representation of the

gauge group. Then

ϕ(x) = I(x, x′)
∞∑

n=0

1

n!
(x− x′)a1 . . . (x− x′)an∇′

a1
. . .∇′

an
ϕ(x′) .

Barvinsky, Vilkovisky (1985)

The covariant Taylor expansion implies the following:

Identity (∗)

∇bI(x, x′) = i I(x, x′)

∞∑
n=1

n

(n + 1)!
(x− x′)a1 . . . (x− x′)an

×∇′
a1

. . .∇′
an−1

Fan b(x
′) ,

or equivalently

Identity (∗∗)

∇bI(x, x′) = −i

∞∑
n=1

(−1)n

(n + 1)!
(x− x′)a1 . . . (x− x′)an

×∇a1 . . .∇an−1Fan b(x) I(x, x′) .

Avramidi (1990,2000)

Derivation is given in the Appendices.

4



Fock-Schwinger gauge

Let us fix some space-time point x′ and consider the following

gauge transformation:

eiτ(x) = I(x′, x) , eiτ(x′) = 1 .

Applying this gauge transformation to I(x, x′),

I(x, x′) → eiτ(x) I(x, x′) e−iτ(x′) ,

the result is

I(x, x′) = 1 ,

which is equivalent, due to (x− x′)a∇a I(x, x′) = 0, to the Fock-

Schwinger gauge

(x− x′)m Am(x) = 0 .

Fock (1937)

Schwinger (1951,1973)

In the Fock-Schwinger gauge, the identity (∗) becomes

Ab(x) =

∞∑
n=1

n

(n + 1)!
(x− x′)a1 . . . (x− x′)an−1(x− x′)an

×∇′
a1

. . .∇′
an−1

Fan b(x
′) .

Shifman (1980)

Thus, all coefficients in the Taylor expansion of A(x) acquire a

geometric meaning.
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Proper-time representation:

G(x, x′) = i

∫ ∞

0

ds K(x, x′|s) ,

where the so-called heat kernel K(x, x′|s) is formally given by

K(x, x′|s) = eis (∆ + i ε) δd(x− x′)1 , ε → +0 ,

and possesses the gauge transformation

K(x, x′|s) → eiτ(x) K(x, x′|s) e−iτ(x′) .

Covariant momentum representation:

δd(x− x′)1 = δd(x− x′) I(x, x′) =

∫
ddk

(2π)d
ei k.(x−x′) I(x, x′) ,

ei k.(x−x′) I(x, x′) → eiτ(x)
{

ei k.(x−x′) I(x, x′)
}

e−iτ(x′) .

The heat kernel takes the form

K(x, x′|s) =

∫
ddk

(2π)d
ei k.(x−x′) eis[(∇+ik)2−U ] I(x, x′)

=
1

(4π2s)d/2

∫
ddk e−ik2+i s−1/2 k.(x−x′) e[is∇2−2s1/2k.∇−i sU ] I(x, x′) .

The second exponential should be expanded in a Taylor series.

Whenever a covariant derivative ∇b from this series hits I(x, x′),

we apply the identity (∗). Given a product U(x) I(x, x′), we rep-

resent it as

U(x) I(x, x′) = I(x, x′)
∞∑

n=0

1

n!
(x− x′)a1 . . . (x− x′)an∇′

a1
. . .∇′

an
U(x′) .
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A generic term in the Taylor expansion involves a Gaussian mo-

ment of the form

〈ka1 . . . kan〉 ≡ 1

(4π2s)d/2

∫
ddk e−ik2+i s−1/2 k.(x−x′) s1/2ka1 . . . s1/2kan ,

where each kai comes together with an s-independent factor of

∇ai
; there also occur insertions of s∇2 and sU . To compute the

moments, introduce a generating function Z(J),

Z(J) =
1

(4π2s)d/2

∫
ddk e−ik2+i s−1/2 k.(x−x′) +s1/2 J.k ,

〈ka1 . . . kan〉 =
∂n

∂Ja1 . . . ∂Jan

Z(J)|J=0 ,

Z(J) =
i

(4πis)d/2
ei(x−x′)2/4s e−isJ2/4+J.(x−x′)/2 .

As a result, the heat kernel takes the Schwinger-DeWitt form:

K(x, x′|s) =
i

(4πis)d/2
ei(x−x′)2/4s

∞∑
n=0

an(x, x′) (is)n ,

where

a0(x, x′) =

∞∑
p=0

1

p!
(x′ − x)m1 . . . (x′ − x)mp∇m1 . . .∇mp I(x, x′) = I(x, x′) .

The Schwinger-DeWitt coefficients an have the form

an(x, x′) = an(F (x),∇F (x), . . . ,U(x),∇U(x) . . . ; x− x′) I(x, x′)

= I(x, x′) a′n(F (x′),∇′F (x′), . . . ,U(x′),∇′U(x′) . . . ; x− x′) ,

where the functions an and a′n are straightforward to compute

using the scheme described above.
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Covariant derivative expansion in SYM theory

zm = (xm, θµ, θ̄µ̇) coordinates of N = 1 superspace.

DA = (∂a, Dα, D̄
α̇) flat superspace covariant derivatives.

Supersymmetric Cartan 1-forms ωA = (ωa, ωα, ω̄α̇)

dzM ∂M = ωA DA , ωA = (dxa − i dθσaθ̄ + i θσadθ̄, dθα, dθ̄α̇) .

Let zM(t) = (z − z′)M t + z′M be the straight line connecting two

points z and z′ in superspace, zM(0) = z′M and zM(1) = zM . We

then have żM ∂M = ζA DA, where the two-point function ζA ≡
ζA(z, z′) = −ζA(z′, z) is

ζA =


ρa = (x− x′)a − i(θ − θ′)σaθ̄′ + iθ′σa(θ̄ − θ̄′) ,

ζα = (θ − θ′)α ,

ζ̄α̇ = (θ̄ − θ̄′)α̇ .

The parallel displacement propagator along the straight

line, I(z, z′), is specified by the requirements:

(i) the gauge transformation law

I(z, z′) → eiτ(z) I(z, z′) e−iτ(z′) ;

(ii) the equation

ζADA I(z, z′) = ζA
(
DA + i ΓA(z)

)
I(z, z′) = 0 ;

(iii) the boundary condition

I(z, z) = 1 .
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Consequences:

I(z, z′) I(z′, z) = 1 .

We also have

ζAD′
A I(z, z′) = ζA

(
D′

A I(z, z′)− i I(z, z′) ΓA(z′)
)

= 0 .

Further, using the identity

ζB DBζA = ζA ,

from the master equation one deduces

ζAn . . . ζA1DA1 . . .DAn I(z, z′) = 0 .

The latter leads to

D(A1 . . .DAn} I(z, z′)|z=z′ = 0 , n ≥ 1 ,

where (. . .} means graded symmetrization of n indices (with a fac-

tor of 1/n!).

Covariant Taylor expansion

Let Ψ(z) be a superfield transforming in some representation of

the gauge group,

Ψ(z) → eiτ(z) Ψ(z) .

Then

Ψ(z) = I(z, z′)
∞∑

n=0

1

n!
ζAn . . . ζA1D′

A1
. . .D′

An
Ψ(z′) .
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The covariant Taylor expansion implies

Identity (?)

DBI(z, z′) = i I(z, z′)
∞∑

n=1

1

(n + 1)!

{
n ζAn . . . ζA1D′

A1
. . .D′

An−1
FAn B(z′)

+
1

2
(n− 1) ζAnTAn B

C ζAn−1 . . . ζA1D′
A1

. . .D′
An−2

FAn−1 C(z′)
}

,

or equivalently

Identity (??)

DBI(z, z′) = i

∞∑
n=1

(−1)n

(n + 1)!

{
− ζAn . . . ζA1DA1 . . .DAn−1FAn B(z)

+
1

2
(n− 1) ζAnTAn B

C ζAn−1 . . . ζA1DA1 . . .DAn−2FAn−1 C(z)
}

× I(z, z′) .

SMK, McArthur (2003)

Supersymmetric Fock-Schwinger gauge

I(z, z′) = 1 ⇐⇒ ζA ΓA(z) = 0 .

Orndorf (1986)

In this gauge

ΓB(z) =

∞∑
n=1

1

(n + 1)!
{n ζAn . . . ζA1D′

A1
. . .D′

An−1
FAn B(z′)

+
1

2
(n− 1) ζAnTAn B

C ζAn−1 . . . ζA1D′
A1

. . .D′
An−2

FAn−1 C(z′)} .
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We are finally prepared to study the superspace Green’s function

introduced at the beginning of this lecture.

(�v −m2) G(z, z′) = −1 δ8(z − z′) .

Introduce the proper-time representation for G

G(z, z′) = i

∫ ∞

0

ds e−is (m2−i ε) K(z, z′|s) , ε → +0 ,

where the heat kernel K(z, z′|s) has the formal representation

K(z, z′|s) = eis �v δ8(z − z′)1 ,

and possesses the gauge transformation

K(z, z′|s) → eiτ(z) K(z, z′|s) e−iτ(z′) .

Momentum representation for the superspace delta function:

δ8(z − z′) =

∫
d4k

(2π)4
eika(x−x′)a ζ2ζ̄2 =

∫
d4k

(2π)4
eikaρa ζ2ζ̄2

=
1

π4

∫
d4k

∫
d2κ

∫
d2κ̄ ei [kaρa+καζα+κ̄α̇ζ̄α̇] .

Covariant momentum representation:

δ8(z − z′)1 =

∫
d4k

(2π)4
eikaρa ζ2ζ̄2 I(z, z′)

=
1

π4

∫
d4k

∫
d2κ

∫
d2κ̄ ei [kaρa+καζα+κ̄α̇ζ̄α̇] I(z, z′) .
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The heat kernel can now be represented as follows:

K(z, z′|s) =

∫
d4k

(2π)4
ei kaρa eis[(D+ik)2−WαDα+W̄α̇D̄α̇]

× ζ2 ζ̄2 I(z, z′) .

The covariant derivative expansion for K(z, z′|s) follows from this

representation, in complete analogy with the non-supersymmetric

case.

Evaluation of the heat kernel obtained can be carried out in a

manner almost identical to that outlined for the non-supersymmetric

case. The result is the following asymptotic expansion:

K(z, z′|s) = − i

(4πs)2
eiζaζa/4s

∞∑
n=0

an(z, z′) (is)n ,

where

a0(z, z
′) =

∞∑
n=0

1

n!
(−1)n ρan . . . ρa1Da1 . . .Dan δ4(θ − θ′) I(z, z′)

= δ4(θ − θ′)

∞∑
n=0

1

n!
(−1)n ρan . . . ρa1Da1 . . .Dan I(z, z′)

= δ4(θ − θ′)
∞∑

n=0

1

n!
(−1)n ζAn . . . ζA1DA1 . . .DAn I(z, z′)

= δ4(θ − θ′) I(z, z′) = ζ2 ζ̄2 I(z, z′) .
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Append. A: Derivation of covariant Taylor expansion

Consider the straight line connecting two points z and z′.

zM(t) = (z − z′)M t + z′M , z(0) = z′ , z(1) = z ,

żM ∂M = ζA DA ,
d

dt
ζA = 0 .

Given a gauge invariant superfield U(z), for U(t) = U(z(t))

we have
dnU

dtn
= ζAn . . . ζA1 DA1 . . . DAn U ,

since ζ̇A = 0. This leads to a supersymmetric Taylor series

U(z) =

∞∑
n=0

1

n!
ζAn . . . ζA1 D′

A1
. . . D′

An
U(z′) .

Now, let Ψ(z) be a superfield transforming in some representation

of the gauge group. Then U(z) ≡ I(z′, z) Ψ(z) is gauge invariant

with respect to z, and therefore we are in a position to apply the

supersymmetric Taylor expansion.

Ψ(z) = I(z, z′)

∞∑
n=0

1

n!
ζAn . . . ζA1DA1 . . .DAn (I(z′, w) Ψ(w))|w=z′ .

This is equivalent to the covariant Taylor series, since

D(A1 . . .DAn} I(z′, z)|z=z′ = 0 , n ≥ 1 .
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Append. B: Derivation of identity (?)

Apply the covariant Taylor expansion to DBI(z, z′) considered as

a superfield at z,

DBI(z, z′) = I(z, z′)
∞∑

n=0

1

n!
ζAn . . . ζA1DA1 . . .DAnDB I(w, z′)|w=z′ .

We start with an obvious identity

(n + 1) ζAn . . . ζA1D(A1 . . .DAnDB} = ζAn . . . ζA1DA1 . . .DAnDB

+

n∑
i=1

(−1)B(Ai+...+An)ζAn . . . ζA1DA1 . . .DAi−1DBDAi
. . .DAn ,

and make use of the property of

D(A1 . . .DAnDB} I(z, z′)|z=z′ = 0 .

We thus have

0 = ζAn . . . ζA1DA1 . . .DAnDB I(z, z′)|z=z′ (? ? ?)

+

n∑
i=1

(−1)B(Ai+...+An)ζAn . . . ζA1DA1 . . .DAi−1DBDAi
. . .DAn I(z, z′)|z=z′ .

The next step is to represent

(−1)B(Ai+...+An)ζAn . . . ζA1DA1 . . .DAi−1DBDAi
. . .DAn

=− (−1)B(Ai+1+...+An)ζAn . . . ζA1DA1 . . .DAi−1[DAi
,DB}DAi+1 . . .DAn

+ (−1)B(Ai+1+...+An)ζAn . . . ζA1DA1 . . .DAi
DBDAi+1 . . .DAn

and make use of the covariant derivative algebra,

[DA,DB} = TAB
C DC + iFAB ,
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along with the observation

(−1)B(Ai+1+...+An)ζAn . . . ζA1DA1 . . .DAi−1FAi BDAi+1 . . .DAn I(z, z′)|z=z′

=

{
0 , i < n ;

ζAn . . . ζA1DA1 . . .DAn−1 FAn B , i = n .

Repeating this procedure, each contribution to the second terms

in (? ? ?) can be reduced to the first term plus additional terms

involving graded commutators of covariant derivatives. Since the

torsion TAB
C is constant, we then obtain

(n + 1) ζAn . . . ζA1DA1 . . .DAnDBI(z, z′)|z=z′

=

n∑
i=1

(−1)C(Ai+1+...+An)ζAiTAi B
CζAn . . . 1︸︷︷︸

i

. . . ζA1

×DA1 . . . DC︸︷︷︸
i

. . .DAn I(z, z′)|z=z′

+ni ζAn . . . ζA1DA1 . . .DAn−1 FAn B .

For the first term in the right hand side, we can again apply the

previous procedure, and this now simplifies since

TAB
C [DC,DD} = (−1)C TAB

C [DC,DD} = i TAB
C FCD .

After some algebra, one then arrives at (n > 0)

(n + 1) ζAn . . . ζA1DA1 . . .DAnDBI(z, z′)|z=z′

= i n ζAn . . . ζA1DA1 . . .DAn−1FAn B

+
i

2
(n− 1) ζAnTAn B

C ζAn−1 . . . ζA1DA1 . . .DAn−2FAn−1 C .
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