

Discovering Axion-like Particles in Exotic Higgs Decays

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Martin Bauer

$Br(H \rightarrow ?) \lesssim 34\%$

ATLAS & CMS 1606.02266

What can light New Physics tell us about the UV?

What can light New Physics tell us about the UV?

$$V(\phi) = \mu^2 \phi \phi^{\dagger} + \lambda (\phi \phi^{\dagger})^2$$

$$\phi = (f+s)e^{ia/f} \text{ with } \langle s \rangle = f = \sqrt{-\frac{\mu^2}{2\lambda}}$$

$$m_a^2 = 0$$

$$\mu^2 < 0$$

$$\mu^2 < 0$$

$$V(\phi)$$

$$\mu^2 < 0$$

$$V(\phi)$$

$$\psi^{(\phi)}$$

$$\psi^{(\phi$$

 $\mathrm{Im}\,\phi$

r

 $\operatorname{Re}\phi$

Two ways for Goldstone bosons to become massive (Pseudo-Nambu-Goldstone bosons)

• Explicit (external) symmetry breaking

$$\mathcal{L} \ni m^2 (\phi \phi + \phi^{\dagger} \phi^{\dagger}) \qquad m_a^2 = m^2$$

Anomalous symmetry breaking

What can light New Physics tell us about the UV?

$$V(\phi) = \mu^2 \phi \phi^{\dagger} + \lambda \, (\phi \phi^{\dagger})^2 + y_{\psi} \bar{\psi} \phi \psi$$

any other particle would be massive

$$m_s^2 = 4\lambda f^2 \qquad m_\psi = y_\psi f$$
$$m_a^2 = 0$$

A pseudo-Nambu-Goldstone boson can therefore be the harbinger of an otherwise (currently) inaccessible UV theory.

 \boldsymbol{a}

The most famous example is the pion

 $\mathcal{L}_{\text{QCD}} = \bar{q}_L i \not \!\!\!D q_L + \bar{q}_R i \not \!\!\!D q_R + m_q \bar{q}_L q_R$

 $\langle \bar{q}_L q_R \rangle = \Lambda_{\rm QCD}^3 \approx {\rm GeV}^3$

$$m_{\pi}^2 = \frac{m_u + m_d}{f_{\pi}^2} \Lambda_{\text{QCD}}^3 \approx (140 \,\text{MeV})^2$$

 ρ, P, N

 π

ALP Effective Lagrangian

ALP: A new pseudoscalar particle protected by an approximate shift symmetry

Most general dimension five Lagrangian

$$\mathcal{L}_{\text{eff}}^{D \leq 5} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{m_{a}^{2}}{2} a^{2} + \frac{\partial^{\mu} a}{\Lambda} \sum_{F} \bar{\psi}_{F} C_{F} \gamma_{\mu} \psi_{F} + g_{s}^{2} C_{GG} \frac{a}{\Lambda} G_{\mu\nu}^{A} \tilde{G}^{\mu\nu,A} + g^{2} C_{WW} \frac{a}{\Lambda} W_{\mu\nu}^{A} \tilde{W}^{\mu\nu,A} + g'^{2} C_{BB} \frac{a}{\Lambda} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

change of notation: $\Lambda = 4\pi f$

Georgi, Kaplan, Randall, Phys. Lett. 169B, 73 (1986)

ALPs and $(g-2)_{\mu}$

The anomalous magnetic moment of the muon

ALPs and $(g-2)_{\mu}$

$$\delta a_{\mu} = \frac{m_{\mu}^2}{\Lambda^2} \left\{ K_{a_{\mu}}(\mu) - \frac{(c_{\mu\mu})^2}{16\pi^2} h_1\left(\frac{m_a^2}{m_{\mu}^2}\right) - \frac{2\alpha}{\pi} c_{\mu\mu} C_{\gamma\gamma} \left[\ln \frac{\mu^2}{m_{\mu}^2} - h_2\left(\frac{m_a^2}{m_{\mu}^2}\right) \right] - \frac{\alpha}{2\pi} \frac{1 - 4s_w^2}{s_w c_w} c_{\mu\mu} C_{\gamma Z} \left(\ln \frac{\mu^2}{m_Z^2} - \frac{3}{2} \right) \right\}$$

ALPs can explain (g-2)µ for rather sizable photon couplings

Marciano, Masiero, Paradisi, Passera, Phys. Rev. D 94, 115033 (2016)

ALPs and $(g-2)_{\mu}$

This explanation is strongly constrained.

At dimension six and seven, derivative couplings to the Higgs appear

$$\mathcal{L}_{\text{eff}}^{D\geq 6} = \frac{C_{ah}}{\Lambda^2} \left(\partial_{\mu} a\right) \left(\partial^{\mu} a\right) \phi^{\dagger} \phi + \frac{C_{Zh}^{(7)}}{\Lambda^3} \left(\partial^{\mu} a\right) \left(\phi^{\dagger} i D_{\mu} \phi + \text{h.c.}\right) \phi^{\dagger} \phi + \dots$$

Dobrescu, Matchev, JHEP 0009, 031 (2000) Chang, Fox, Weiner, Phys. Rev. Lett 98, 111802 (2007) Draper, McKeen, Phys. Rev. D 85, 115023 (2012)

At dimension six and seven, derivative couplings to the Higgs appear

Dobrescu, Matchev, JHEP 0009, 031 (2000) Chang, Fox, Weiner, Phys. Rev. Lett 98, 111802 (2007) Draper, McKeen, Phys. Rev. D 85, 115023 (2012)

At dimension six and seven, derivative couplings to the Higgs appear

What about the Dimension 5 $O_{Zh} = \frac{(\partial^{\mu}a)}{\Lambda} \left(\phi^{\dagger} i D_{\mu} \phi + \text{h.c.} \right) \rightarrow -\frac{g}{2c_w} \frac{(\partial^{\mu}a)}{\Lambda} Z_{\mu} (v+h)^2$ operator?

At first sight, the h -> aZ decay can be mediated at dimension 5

$$O_{Zh} = \frac{(\partial^{\mu}a)}{\Lambda} \left(\phi^{\dagger} i D_{\mu} \phi + \text{h.c.} \right) \rightarrow -\frac{g}{2c_w} \frac{(\partial^{\mu}a)}{\Lambda} Z_{\mu} \left(v + h \right)^2$$

But this operator can be eliminated using the EoMs for the Higgs current

$$\partial^{\mu} \left(\phi^{\dagger} i D_{\mu} \phi + \text{h.c.} \right) \rightarrow - \left(1 + \frac{h}{v} \right) \sum_{f} 2T_{3}^{f} m_{f} \bar{f} i \gamma_{5} f$$

...unless New Physics get a sizable part of their masses from the electroweak scale $C^{(5)}$

$$\mathcal{L}_{\text{eff}}^{\text{non-pol}} \ni \frac{C_{Zh}^{(3)}}{\Lambda} \left(\partial^{\mu} a\right) \left(\phi^{\dagger} i D_{\mu} \phi + \text{h.c.}\right) \ln \frac{\phi^{\dagger} \phi}{\mu^{2}}$$

MB, Neubert, Thamm, PRL 117, 181801 (2016)

The Puzzle of the top contribution

This is not new. Integrating out New Physics leads to the operators

$$\mathcal{O}_1 = c_1 \frac{\alpha_s}{4\pi v^2} G^a_{\mu\nu} G^{\mu\nu}_a H^{\dagger} H \qquad \mathcal{O}_2 = c_2 \frac{\alpha_s}{8\pi} G^a_{\mu\nu} G^{\mu\nu}_a \log\left(\frac{H^{\dagger} H}{\mu^2}\right)$$

with consequences for Higgs pair production. The top only generates c_2 and $C_{Zh}^{(5)}$.

Pierce, Thaler, Wang, JHEP 0705, 070 (2007)

The Puzzle of the top contribution

Vectorlike Quarks
$$-\mathcal{L}_{\text{mass}} = \lambda_1 \left(QHT^c + Q\tilde{H}B^c \right) + \lambda_2 \left(Q^c\tilde{H}T + Q^cHB \right) + m_A QQ^c + m_B (TT^c + BB^c) + \text{h.c.},$$

generate

Pierce, Thaler, Wang, JHEP 0705, 070 (2007)

Exotic Higgs Decays: $h \rightarrow Za$

What makes $h \rightarrow Za$ special, is that the non-polynomial operator is the only dimension 5 operator that mediates that process.

$$\mathcal{L}_{\text{eff}}^{\text{non-pol}} \ni \frac{C_{Zh}^{(5)}}{\Lambda} \left(\partial^{\mu} a\right) \left(\phi^{\dagger} i D_{\mu} \phi + \text{h.c.}\right) \ln \frac{\phi^{\dagger} \phi}{\mu^{2}}$$

Particles which do not get their masses dominantly from the electroweak scale only contribute at dimension 7.

This can be confirmed in the non-linear language

$$\mathcal{A}_{2D}(h) = iv^2 \mathrm{Tr}[\mathbf{T}\mathbf{V}_{\mu}]\partial^{\mu}\frac{a}{f_a}\mathcal{F}_{2D}(h)$$

Brivio, Gavela, Merlo, Mimasu, No, del Rey, Sanz, 1701.05379

This gives a non-trivial handle on the UV completion.

$$h \to aa \qquad \Gamma(h \to aa) = \frac{v^2 m_h^3}{32\pi\Lambda^4} \left| C_{ah}^{\text{eff}} \right|^2 \left(1 - \frac{2m_a^2}{m_h^2} \right)^2 \sqrt{1 - \frac{4m_a^2}{m_h^2}}$$

$$h_{\text{max}} = \frac{h_{\text{max}}}{\int_{a}^{b} \frac{h_{\text{max}}}{$$

$$h \to Za \qquad \Gamma(h \to Za) = \frac{m_h^3}{16\pi\Lambda^2} \left| C_{Zh}^{\text{eff}} \right|^2 \lambda^{3/2} \left(\frac{m_Z^2}{m_h^2}, \frac{m_a^2}{m_h^2} \right)$$

Decays into photons

$$\mathcal{L}_{\text{eff}}^{D \le 5} \ni e^2 C_{\gamma\gamma} \frac{a}{\Lambda} F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{2e^2}{s_w c_w} C_{\gamma Z} \frac{a}{\Lambda} F_{\mu\nu} \tilde{Z}^{\mu\nu} + \frac{e^2}{s_w^2 c_w^2} C_{ZZ} \frac{a}{\Lambda} Z_{\mu\nu} \tilde{Z}^{\mu\nu}$$

and loop induced couplings

$$C_{\gamma\gamma}^{\text{eff}}(m_a \lesssim 1 \,\text{GeV}) \approx C_{\gamma\gamma} - (1.92 \pm 0.04) C_{GG} - \frac{m_a^2}{m_\pi^2 - m_a^2} \left[C_{GG} \frac{m_d - m_u}{m_d + m_u} + \frac{c_{uu} - c_{dd}}{32\pi^2} \right] + \sum_{q=c,b,t} \frac{N_c Q_q^2}{16\pi^2} c_{qq} B_1(\tau_q) + \sum_{\ell=e,\mu,\tau} \frac{c_{\ell\ell}}{16\pi^2} B_1(\tau_\ell) + \frac{2\alpha}{\pi} \frac{C_{WW}}{s_w^2} B_2(\tau_W).$$

$$a_{--,\star} - a_{-,\star} - a_{-,\star}$$

as a consequence of the anomaly equation:

$$\frac{c_{ff}}{2} \frac{\partial^{\mu}a}{\Lambda} \bar{f}\gamma_{\mu}\gamma_{5}f = -c_{ff} \frac{m_{f}}{\Lambda} a \bar{f} i\gamma_{5}f + c_{ff} \frac{N_{c}^{f}Q_{f}^{2}}{16\pi^{2}} \frac{a}{\Lambda} e^{2}F_{\mu\nu} \tilde{F}^{\mu\nu} + \dots,$$

$$C_{\gamma\gamma}^{\text{eff}}(m_a \lesssim 1 \,\text{GeV}) \approx C_{\gamma\gamma} - (1.92 \pm 0.04) C_{GG} - \frac{m_a^2}{m_\pi^2 - m_a^2} \left[C_{GG} \frac{m_d - m_u}{m_d + m_u} + \frac{c_{uu} - c_{dd}}{32\pi^2} \right] + \sum_{q=c,b,t} \frac{N_c Q_q^2}{16\pi^2} c_{qq} B_1(\tau_q) + \sum_{\ell=e,\mu,\tau} \frac{c_{\ell\ell}}{16\pi^2} B_1(\tau_\ell) + \frac{2\alpha}{\pi} \frac{C_{WW}}{s_w^2} B_2(\tau_W).$$

Exotic Higgs Decays: $h \rightarrow Za$

This decay can have sizable branching ratios, exceeding h -> Z gamma.

Define effective BRs

 $\operatorname{Br}(h \to Za \to \ell^+ \ell^- X\bar{X})\big|_{\operatorname{eff}} = \operatorname{Br}(h \to Za) \operatorname{Br}(a \to X\bar{X}) f_{\operatorname{dec}}^{Za} \operatorname{Br}(Z \to \ell^+ \ell^-)$

MB, Neubert, Thamm, 1708.00443

Future Searches $h \rightarrow Za$

The reach for future searches for h -> Za (and h -> aa) decays is immense

Ask for 100 events within the full 300 /fb dataset.

MB, Neubert, Thamm, 1704.08207

Future Searches

The reach for future searches for h -> Za and h -> aa decays is immense

As a bound on the New Physics scale.

Future Searches

It is not as implausible as it may seem to have a large hierarchy of Wilson coefficients

Integrating out the top quark gives

Future Searches

It is not as implausible as it may seem to have a large hierarchy of Wilson coefficients

Macroscopic Lifetime

If the alps are light, they are strongly boosted! The LHC only has a finite angular resolution putting a limit on the angle for which single photons can be separated from pairs,

$$\gamma_a < 625 \qquad \gamma_a = \begin{cases} \frac{m_h^2 - m_Z^2 + m_a^2}{2m_a m_h}, & \text{for } h \to Za, \\ \frac{m_h}{2m_a}, & \text{for } h \to aa. \end{cases}$$

Exciting possibility:

$$\sigma_{\rm eff}(h \to Z\gamma) = \left| h_{\rm max} \gamma \right|^2 + \left| h_{\rm max} \gamma \right|^2 + \left| h_{\rm max} \gamma \right|^2$$

MB, Neubert, Thamm, 1708.00443

 $\mathbf{\Lambda}$

Exotic Higgs Decays

Searches for h -> aa and h -> Za are strongly motivated in various final states. Current constraints:

From a $a \rightarrow \gamma \gamma$ decays

Exotic Higgs Decays

Searches for h -> aa and h -> Za are strongly motivated in various final states. Current constraints:

From a $a \to f\bar{f}$ decays

Exotic Higgs Decays

MB, Neubert, Thamm, 1708.00443

Very displaced Vertices

Currently we have constraints on long-lived particles with a lifetime of cosmological scales and ~10 m. What about the length scales in-between?

The idea is to probe these length scales with a dedicated detector during the high luminosity run of the LHC.

Very displaced Vertices

Currently we have constraints on long-lived particles with a lifetime of cosmological scales and ~10 m. What about the length scales in-between?

Chou, Curtin, Loubatti, 1606.06298

Very displaced Vertices

The reach for future searches for h -> Za decays

MATHUSLA physics case, to appear...1713....

What can light New Physics tell us about the UV?

A lot!

ALPs can be discovered in Higgs decays.

Different processes (h -> aa, h-> a Z, Z -> a gamma) would provide information on the scale and structure of the UV sector.

A UFO file is available. An ATLAS group works on the analysis.

Thank you!

Backup

ALP Effective Lagrangian

ALP: A new pseudoscalar particle protected by an approximate shift symmetry

Most general dimension five Lagrangian

$$\mathcal{L}_{\text{eff}}^{D \leq 5} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{m_{a}^{2}}{2} a^{2} + \frac{\partial^{\mu} a}{\Lambda} \sum_{F} \bar{\psi}_{F} C_{F} \gamma_{\mu} \psi_{F} + g_{s}^{2} C_{GG} \frac{a}{\Lambda} G_{\mu\nu}^{A} \tilde{G}^{\mu\nu,A} + g^{2} C_{WW} \frac{a}{\Lambda} W_{\mu\nu}^{A} \tilde{W}^{\mu\nu,A} + g'^{2} C_{BB} \frac{a}{\Lambda} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

below the QCD scale

$$\mathcal{L}_{\chi PT} = \frac{1}{2} \partial^{\mu} a \,\partial_{\mu} a - \frac{m_a^2}{2} a^2 + e^2 \left[C_{\gamma\gamma} - \frac{2}{3} \left(4\kappa_u + \kappa_d \right) C_{GG} \right] \frac{a}{\Lambda} F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{f_{\pi}^2}{8} \operatorname{tr} \left[D^{\mu} \Sigma D_{\mu} \Sigma^{\dagger} \right] + \frac{f_{\pi}^2}{4} B_0 \operatorname{tr} \left[m_q (\Sigma + \Sigma^{\dagger}) \right] + \frac{i f_{\pi}^2}{4} \frac{\partial^{\mu} a}{2\Lambda} \operatorname{tr} \left[\hat{c}_{qq} (\Sigma^{\dagger} D_{\mu} \Sigma - \Sigma D_{\mu} \Sigma^{\dagger}) \right]$$

Georgi, Kaplan, Randall, Phys. Lett. 169B, 73 (1986)

Bounds on ALPs

Jaeckel, Spannowsky, Phys. Lett. B 753, 482 (2016) Armengaud et al., JCAP 1311, 067 (2013) ...and others

Bounds from Precision Observables

$$S = 32\alpha \frac{m_Z^2}{\Lambda^2} C_{WW} C_{BB} \left(\ln \frac{\Lambda^2}{m_Z^2} - 1 \right) - \frac{\left(C_{Zh}^{(5)}\right)^2}{12\pi} \frac{v^2}{\Lambda^2} \left[\ln \frac{\Lambda^2}{m_h^2} + \frac{3}{2} + p\left(\frac{m_Z^2}{m_h^2}\right) \right],$$

$$T = -\frac{\left(C_{Zh}^{(5)}\right)^2}{4\pi e^2} \frac{m_h^2}{\Lambda^2} \left(\ln \frac{\Lambda^2}{m_h^2} + \frac{3}{2} \right),$$

$$U = \frac{32\alpha}{3} \frac{m_Z^2}{\Lambda^2} C_{WW}^2 \left(\ln \frac{\Lambda^2}{m_Z^2} - \frac{1}{3} - \frac{2c_w^2}{s_w^2} \ln c_w^2 \right) + \frac{\left(C_{Zh}^{(5)}\right)^2}{12\pi} \frac{v^2}{\Lambda^2} \left[\ln \frac{\Lambda^2}{m_h^2} + \frac{3}{2} + p\left(\frac{m_Z^2}{m_h^2}\right) \right],$$

Bounds from Precision Observables

$$S = 32\alpha \frac{m_Z^2}{\Lambda^2} C_{WW} C_{BB} \left(\ln \frac{\Lambda^2}{m_Z^2} - 1 \right) - \frac{\left(C_{Zh}^{(5)}\right)^2}{12\pi} \frac{v^2}{\Lambda^2} \left[\ln \frac{\Lambda^2}{m_h^2} + \frac{3}{2} + p\left(\frac{m_Z^2}{m_h^2}\right) \right],$$

$$T = -\frac{\left(C_{Zh}^{(5)}\right)^2}{4\pi e^2} \frac{m_h^2}{\Lambda^2} \left(\ln \frac{\Lambda^2}{m_h^2} + \frac{3}{2} \right),$$

$$U = \frac{32\alpha}{3} \frac{m_Z^2}{\Lambda^2} C_{WW}^2 \left(\ln \frac{\Lambda^2}{m_Z^2} - \frac{1}{3} - \frac{2c_w^2}{s_w^2} \ln c_w^2 \right) + \frac{\left(C_{Zh}^{(5)}\right)^2}{12\pi} \frac{v^2}{\Lambda^2} \left[\ln \frac{\Lambda^2}{m_h^2} + \frac{3}{2} + p\left(\frac{m_Z^2}{m_h^2}\right) \right]$$

ALP Decays into SM particles

Partial ALP widths for all Wilson coefficients set to 1.

