Anke Biekötter Heidelberg University

with Fabian Keilbach, Rhea Moutafis, Tilman Plehn and Jennifer Thompson

Higgs Couplings, November 8, 2017

INTERNATIONAL MAX PLANCK RESEARCH SCHOOL

FOR PRECISION TESTS OF FUNDAMENTAL SYMMETRIES

Motivation

• Higgs decays to invisible particles

• [Shrock, Suzuki, 1982]

Higgs portal models

- [Silveira, Zee, 1985]
- [Burgess, Pospelov, Veldhuis, 2001]
- [Patt, Wilczek, 2006]
- [Englert, Plehn, Zerwas, Zerwas, 2011]
- Dark matter candidates
 - Scalar (minimal/extended Higgs sector)
 - Fermion (MSSM) [Butter, Murgia, Plehn, Tait, 2016]
 - . . .

Outline

- Introduction: Signatures of invisible Higgs decays
- Weak boson fusion and its backgrounds
- Quark gluon discrimination
- BDT analysis
- Conclusion and outlook

work in progress

Outline

- Introduction: Signatures of invisible Higgs decays
- Weak boson fusion and its backgrounds
- Quark gluon discrimination
- BDT analysis
- Conclusion and **outlook**
- Discussion: Your input?

work in progress

Introduction

strongest channels [ATLAS: CERN-PH-EP-2015-191]

Weak boson fusion

WBF signature

EW process: Jets + missing energy

- 2 jets with large η separation
- opposite hemispheres $\eta_1 \cdot \eta_2 < 0$
- large MET
- no central jet activity

[Eboli, Zeppenfeld, 2000]

[Bernaciak, Plehn, Schichtel, Tattersall, 2014]

Trigger

- CMS-HIG-16-016:
 - *p*_{*T,j*} > 40 GeV
 - $m_{jj} > 600 \, {
 m GeV}$
 - $E_T^{\text{miss}} > 140 \text{ GeV}$
 - $\Delta \eta_{jj} > 3.5$
 - $\eta_{j1} * \eta_{j2} < 0$
- outlook for HL-LHC
 - $E_{\tau}^{\text{miss}} > 200 \,\text{GeV}?$

• ...?

• How dangerous is this?

WBF backgrounds

 $Z \rightarrow \nu \nu$

 $W \to (l) \nu$

Z EW

W EW

WBF backgrounds

 $Z \rightarrow \nu \nu$

 $W \rightarrow (l) \nu$

Z EW

W EW

Z QCD

W QCD

WBF backgrounds

 $Z \rightarrow \nu \nu$

Z EW

W EW losing a lepton

 $W \rightarrow (l) \nu$

Z QCD

W QCD Losing a Lepton

WBF distributions

WBF distributions

W and Z backgrounds similar in signal region

WBF distributions

• W background peaks at 3 jets

W and Z backgrounds different for N_{jets} distribution

• W background peaks at 3 jets

W and Z backgrounds different for N_{jets} distribution

- W background peaks at 3 jets
- W background contains single-top events

 $(m_{jj} > 200 \text{ GeV}: 30\% \text{ 2jet}, 50\% \text{ 3jet}; \text{ preselection}: 5\%, 12\%)$ preselection: $p_{T,j} > 40 \text{ GeV}, m_{jj} > 600 \text{ GeV}, \Delta \eta_{jj} > 3.5, N_{\text{Lep}} = 0, p_T(V) > 80 \text{ GeV}$

W and Z backgrounds different for N_{jets} distribution

- W background peaks at 3 jets
- W background contains single-top events

 $(m_{jj} > 200 \text{ GeV}: 30\% \text{ 2jet}, 50\% \text{ 3jet}; \text{ preselection}: 5\%, 12\%)$

WBF - dependence on jet cone size

Simulated process: h + 2/3 jets merged (Sherpa, parton shower) variation of jet cone size in Delphes

kinematics unchanged

Signal grows stronger with R than EW background

preselection: $p_{T,j} > 40 \text{ GeV}, m_{jj} > 600 \text{ GeV}, \Delta \eta_{jj} > 3.5, N_{\text{Lep}} = 0, p_T(V) > 80 \text{ GeV}$

WBF - dependence on jet cone size (2)

similar results in fixed-order calculation [Rauch, Zeppenfeld, 2017]

Dependence on jet cone size - hZ, $Z \rightarrow j j$

same final state, different topology

variable	cut
MET	120 - 160 GeV
Njets	2 - 3
ΔR_{jj}	0.7 - 2.0
m_{jj} (2jets)	70 - 100
m_{jj} (3jets)	50 - 100

Dependence on jet cone size - hZ, $Z \rightarrow j j$

same final state, different topology

variable	cut
MET	120 - 160 GeV
Njets	2 - 3
ΔR_{jj}	0.7 - 2.0
m_{jj} (2jets)	70 - 100
m_{jj} (3jets)	50 - 100

Dependence on jet cone size - hZ, $Z \rightarrow j j$

Quark gluon discrimination

QCD backgrounds more likely to have hard gluon jets

- wider angle soft emissions
- more splittings in parton evolution

Variables for quark gluon discrimination

• n_{PF} : number of particle flow (PF) objects (tracks and towers)

$$w_{\mathsf{PF}} = \frac{\sum_{\mathsf{PF} \in jet} p_{\mathcal{T},\mathsf{PF}} \Delta R_{\mathsf{PF},jet}}{\sum_{\mathsf{PF} \in jet} p_{\mathcal{T},\mathsf{PF}}}$$
$$C = \frac{\sum_{i_{\mathsf{PF}},j_{\mathsf{PF}}} p_{\mathcal{T},i} p_{\mathcal{T},j} (\Delta R_{ij})^{0.2}}{(\sum_{i_{\mathsf{PF}}} p_{\mathcal{T},i})^2}$$

[ATLAS-CONF-2016-034]

preselection: $p_{T,j} > 40 \text{ GeV}, \ m_{jj} > 600 \text{ GeV}, \ \Delta \eta_{jj} > 3.5, \ N_{\text{Lep}} = 0, \ p_T(V) > 80 \text{ GeV}$

Expect best discrimination power for second jet.

preselection: $p_{T,j} > 40 \text{ GeV}, m_{jj} > 600 \text{ GeV}, \Delta \eta_{jj} > 3.5, N_{\text{Lep}} = 0, p_T(V) > 80 \text{ GeV}$

Expect best discrimination power for second jet.

preselection: $p_{T,j} > 40 \text{ GeV}, \ m_{jj} > 600 \text{ GeV}, \ \Delta \eta_{jj} > 3.5, \ N_{\text{Lep}} = 0, \ p_T(V) > 80 \text{ GeV}$

Expect best discrimination power for second jet.

preselection: $p_{T,j} > 40 \text{ GeV}, \ m_{jj} > 600 \text{ GeV}, \ \Delta \eta_{jj} > 3.5, \ N_{\text{Lep}} = 0, \ p_T(V) > 80 \text{ GeV}$

Quark gluon discrimination - distributions

preselection: $p_{T,j} > 40 \text{ GeV}, \ m_{jj} > 600 \text{ GeV}, \ E_T^{\text{miss}} > 140 \text{ GeV}, \ \Delta \eta_{jj} > 3.5, \ N_{\text{Lep}} = 0$

Quark gluon discrimination - distributions

Quark gluon discrimination variables are p_T dependent

preselection: $p_{T,j} > 40$ GeV, $m_{jj} > 600$ GeV, $E_T^{\text{miss}} > 140$ GeV, $\Delta \eta_{jj} > 3.5$, $N_{\text{Lep}} = 0$

Quark gluon discrimination - distributions

Third jet gives best separation (here: $p_T > 20$ GeV)

preselection: $p_{T,j} > 40 \text{ GeV}, m_{jj} > 600 \text{ GeV}, E_T^{\text{miss}} > 140 \text{ GeV}, \Delta \eta_{jj} > 3.5, N_{\text{Lep}} = 0$

BDT analysis

BDT - WBF

 p_T , η , ϕ of third jet + p_T of fourth jet

same $+ C + n_{\rm PF}$ of jet 1 - 3

 $\begin{array}{l} \label{eq:preselection: $p_{T,j} > 40 \, {\rm GeV}, $m_{jj} > 600 \, {\rm GeV}, $E_T^{\rm miss} > 140 \, {\rm GeV}, $\Delta\eta_{jj} > 3.5, $N_{\rm Lep} = 0$ \\ \mbox{variables used: $p_T(j), $\Delta\eta_{jj}, $\Delta\phi_{jj}$ of leading two jets, $E_T^{\rm miss}, $\Delta\phi(E_T^{\rm miss}, j1), $\Delta\phi(E_T^{\rm miss}, j2), $m_{jj}, $N_{\rm jets}(p_T > 20 \, {\rm GeV})$ \\ \end{array}$

BDT - WBF

 $\begin{array}{l} \label{eq:preselection: $p_{T,j} > 40 \, {\rm GeV}, \; m_{jj} > 600 \, {\rm GeV}, \; E_T^{\rm miss} > 140 \, {\rm GeV}, \; \Delta\eta_{jj} > 3.5, \; {\it N}_{\rm Lep} = 0 \\ \mbox{variables used: $p_T(j), \; \Delta\eta_{jj}, \; \Delta\phi_{jj}$ of leading two jets,} \\ E_T^{\rm miss}, \; \Delta\phi(E_T^{\rm miss}, j1), \; \Delta\phi(E_T^{\rm miss}, j2), \; m_{jj}, \; {\it N}_{\rm jets}(p_T > 20 {\rm GeV}) \end{array}$

BDT - WBF

 $\begin{array}{l} \label{eq:preselection: $p_{T,j} > 40 \, {\rm GeV}, \; m_{jj} > 600 \, {\rm GeV}, \; E_T^{\rm miss} > 140 \, {\rm GeV}, \; \Delta\eta_{jj} > 3.5, \; {\sf N}_{\rm Lep} = 0 \\ \mbox{variables used: $p_T(j), \; \Delta\eta_{jj}, \; \Delta\phi_{jj}$ of leading two jets, $$ $E_T^{\rm miss}, \; \Delta\phi(E_T^{\rm miss}, j1), \; \Delta\phi(E_T^{\rm miss}, j2), \; m_{jj}, \; {\sf N}_{\rm Jets}(p_T > 20 {\rm GeV}) $ \end{array}$

Conclusion

WBF

- Backgrounds: different behavior for N_{jets}
- Signal cross section growing with ${\bf R}$
- Useful quark gluon discrimination variables: $n_{\rm PF}, C$
- Third jet best for quark gluon discrimination $p_{\mathsf{T}} > 10 \text{ GeV}$
- However, no large improvement by QG variables when full information of additional jets is present

Conclusion

WBF

- Backgrounds: different behavior for N_{jets}
- Signal cross section growing with ${\bf R}$
- Useful quark gluon discrimination variables: $n_{\rm PF}, C$
- Third jet best for quark gluon discrimination $p_{\mathsf{T}} > 10 \text{ GeV}$
- However, no large improvement by QG variables when full information of additional jets is present

Outlook

- Compare to Zh, $Z \rightarrow ll$
- WBF still most sensitive channel after trigger update?

Thank you for your attention!

Tool chain

Use TMVA with

- 70 trees
- 3 Layers
- nCuts = 20
- $\bullet\,$ minimum node size 5 $\%\,$
- preselection

Associated Zh production

Zh production - signature

- boosted SFOS leptons $m_{\iota\iota} \sim m_Z$
- Z+ jets not taken into account (irrelevant at high MET)

Zh production - backgrounds

Zh production - backgrounds

WΖ

WW

 $t\bar{t}$

Z+jets

Zh - distributions

signal: Z boosted

Zh - distributions

signal: Z boosted

Zh - distributions

non-resonant bkgs flat

signal: Z boosted