Probing rare Higgs decays at **ATLAS** and **CMS**

Higgs Couplings November 7th 2017 Heidelberg

Andrew Brinkerhoff

abrinke1@cern.ch

Standard Model couplings

- Rare SM Higgs decays to light fermions
 - e, μ , or bound quarks; directly or via Z/γ
 - Between electrons and strange quarks, a factor of 200 range in particle mass (and 40k in Higgs branching fraction)
 - Branching fractions: 0.0000005% 0.02%
 - Huge backgrounds for u, d, and s quark jets at the LHC have to get clever (also applies to charm)
 - $H \rightarrow ee$ decays out of reach *if* SM *is* correct!
 - Edging closer to SM sensitivity for $H \rightarrow \mu \mu!$

[1] Image: <u>http://scienceblogs.com/startswithabang/files/2013/08/particle_masses.png</u> Credit: Gordon Kane, Scientific American, May 2003.

Non-SM couplings

- Many BSM scenarios enhance the light-fermion couplings
- Potential for lepton flavor-violating $H \rightarrow \mu \tau$, $H \rightarrow e \tau$, or $H \rightarrow e \mu$ decays
- Up to 34% of H(125) decays could be non-SM (CMS+ATLAS limits)
- One summary of BSM implications for Higgs $\rightarrow \mu / \tau$ decays below: a few ruled out experimentally ("X"), most not yet confirmed or excluded ("?")

-	Model	$\left(\frac{\sigma(pp \to h)^{\rm SM}}{\sigma(pp \to h)} \frac{\Gamma_{\rm tot}}{\Gamma_{\rm tot}^{\rm SM}}\right) R_{\tau^+ \tau^-}$	$X_{\mu^+\mu^-}/(m_{\mu}^2/m_{\tau}^2)$	$X_{\mu\tau}$
Standard Model	SM	1 ?	1 ?	0 ?
Nat. Flav. Conservation	NFC	$(V_{h\ell}^{*}v/v_{\ell})^{2}$?	1 ?	0 ?
Minimal SUSY	MSSM	$(\sin \alpha / \cos \beta)^2$?	1 ?	0 ?
Min. Flav. Violation	MFV	$1+2av^2/\Lambda^2$?	$1-4bm_{ au}^2/\Lambda^2$?	0 ?
Froggatt-Nielsen	FN	$1 + \mathcal{O}(v^2/\Lambda^2)$?	$1 + \mathcal{O}(v^2/\Lambda^2)$?	$\mathcal{O}(U_{23} ^2 v^4 / \Lambda^4)$?
Higgs-depend. Yukawa	GL	9 X	25/9 X	$\mathcal{O}(X_{\mu^+\mu^-})$?

[1] https://arxiv.org/abs/1302.3229

H→SM particle analyses

Decay	ATLAS			CMS			
mode	Dataset	ID	Link	Dataset	ID	Link	
H→ee				25 fb ⁻¹ , 7/8 TeV	PLB 744	<u>1410.6679</u>	
H→µµ	36 fb ⁻¹ , 13 TeV	PRL 119	<u>1705.04582</u>	36 fb ⁻¹ , 13 TeV	HIG-17-019	<u>cds:2292159</u>	
H→eµ				20 fb ⁻¹ , 8 TeV	PLB 763C	<u>1607.03561</u>	
H→eτ	20 fb-1 g TaV	EDIC 77	1604 07720	26 fb-1 12 ToV		ada.2264540	
H→μτ	20 ID ⁻ , 8 Iev	EFJC //	1004.07730	50 10 ² , 15 1e v	ПIG-17-001	<u>cus.2204340</u>	
$H \rightarrow Z \gamma \rightarrow \ell \ell \gamma$	36 fb ⁻¹ , 13 TeV	JHEP 10	<u>1708.00212</u>	25 fb ⁻¹ , 7/8 TeV	PLB 726	<u>1307.5515</u>	
$H \rightarrow \gamma^* \gamma \rightarrow \ell \ell \gamma$				$20 \text{ fb-}1 \text{ g T}_{0} \text{ V}$	DI D 752	1507 02021	
H→J/ψ γ	20 fb-1 8 TaV	DDI 114	1501 02076	2010 ⁻ , 81ev	PLD 733	1507.05051	
$H \rightarrow \Upsilon \gamma$	20 ID ¹ , 8 Iev	FKL 114	1501.05276				
Η→φγ	26 fb-1 12 ToV	CONE 17 057	ada.0072072				
Η→ργ	30 ID -, 13 IEV	COINF-17-037	<u>cus:22/38/3</u>				

• Many channels, not all ATLAS+CMS, ~half with full 13 TeV dataset so far

H→SM particle results

Decay	SM	ATLAS			CMS		
mode	BR	Dataset	Exp. lim.	Obs. lim.	Dataset	Exp. lim.	Obs. lim.
H→ee	$\sim 5 \times 10^{-9}$				20 fb ⁻¹ , 8 TeV	2.4×10^{-3}	1.9×10^{-3}
H→µµ	2.2×10^{-4}	36 fb ⁻¹ , 13 TeV	6.4 × 10 ⁻⁴	6.2 × 10 ⁻⁴	36 fb ⁻¹ , 13 TeV	4.1 × 10 ⁻⁴	5.7 × 10 ⁻⁴
H→eµ	0				20 fb ⁻¹ , 8 TeV	4.8×10^{-4}	3.5×10^{-4}
H→eτ	0	20 f_{b-1} 9 T_{a} V	1.2×10^{-2}	1.0×10^{-2}	36 fb ⁻¹ , 13 TeV	3.7×10^{-3}	6.1 × 10 ⁻³
H→μτ	0	20 ID ⁻¹ , 8 Iev	1.0×10^{-2}	1.4×10^{-2}		2.5×10^{-3}	2.5 × 10 ⁻³
$H \rightarrow Z \gamma \rightarrow \ell \ell \gamma$	1.0×10^{-4}	36 fb ⁻¹ , 13 TeV	4.6 × 10 ⁻⁴	6.8 × 10 ⁻⁴	25 fb ⁻¹ , 7/8	~1 × 10 ⁻³	$\sim 1 \times 10^{-3}$
$H \rightarrow \gamma^* \gamma \rightarrow \ell \ell \gamma$	1.2×10^{-4}					7.0 × 10 ⁻⁴	7.9 × 10 ⁻⁴
H→J/ψ γ	3.0×10^{-6}	$20 \mathbf{f}_{\mathbf{b}} = 1 0 \mathbf{T}_{\mathbf{a}} \mathbf{V}$	1.2×10^{-3}	1.5×10^{-3}	20 ID ⁻¹ , 8 Iev	1.6×10^{-3}	1.5×10^{-3}
$H \rightarrow \Upsilon \gamma$	5.1×10^{-9}	20 ID ⁻¹ , 8 Iev	2.5×10^{-3}	2.0×10^{-3}			
Η→φγ	2.3×10^{-6}	26 fb-1 12 ToV	4.2×10^{-4}	4.8×10^{-4}			
Η→ργ	1.7×10^{-5}	30 ID ⁻¹ , 13 IeV	8.4×10^{-4}	8.8×10^{-4}			

• $H \rightarrow \mu\mu$ and $H \rightarrow Z\gamma/\gamma^*\gamma$ branching limits < 7 × SM, $H \rightarrow e\tau/\mu\tau$ < 0.6%

H->vector meson+ γ

- $H \rightarrow uu/dd/ss/cc$ decays difficult to find
 - Smaller BR than $H \rightarrow bb$, higher backgrounds
 - qq bound states provide a cleaner signature (lower backgrounds, better mass resolution) but with a much reduced production rate: 10 - 5000 × smaller than H→µµ!
 - Diagram interference, sometimes destructive
- Search for resonances with a high- $p_T e_{\gamma} + J/\psi \rightarrow \mu\mu$ or $\Upsilon \rightarrow \mu\mu$, or φ or ρ meson decays to charged hadrons

H

W

$H \rightarrow J/\psi \gamma \rightarrow \mu \mu \gamma$

- Latest results use 8 TeV dataset
- Even in 2.9 < m($\mu\mu$) < 3.3 GeV window, 5 × **more H** $\rightarrow\gamma^*\gamma\rightarrow\mu\mu\gamma$ **signal** than H \rightarrow J/ $\psi\gamma$
- CMS: Fit m(μμγ) in data, with 4th order polynomial modeling the background
- **ATLAS:** Single bkg. estimate for Z and Higgs
 - Create pdf models of QCD background kinematics from data with looser selection on p_T of μμ and γ, generate pseudo-data events with 4-vector and isolation values for μ and γ
 - Simultaneous S+B fit to $m(\mu\mu\gamma)$ and $p_T(\mu\mu\gamma)$
- ATLAS BR limit: 1.5 obs. (1.2 exp.) × 10⁻³
- CMS BR limit: 1.5 obs. (1.6 exp.) × 10⁻³

- Target $\phi \rightarrow KK$ and $\rho \rightarrow \pi\pi$ decays, visible only as **pairs of oppositely-charged tracks**
- Requires dedicated triggers: high $p_T \gamma$ plus high p_T tracks with invariant mass cuts

 $H \rightarrow Z\gamma \rightarrow \ell \ell \gamma$

- $H \rightarrow Z\gamma$ decays very similar to $H \rightarrow \gamma\gamma$
 - $Z\gamma$ branching fraction = 0.154%, $\gamma\gamma = 0.227\%$
 - But huge backgrounds in Z→qq and Z→νν, only 6.7% in "golden" Z→ee /μμ channels
 - Even here, higher backgrounds from SM Z+ γ
- Basic analysis strategy (ATLAS & CMS)
 - Select eeq / $\mu\mu\gamma$ events with m($\ell\ell$) ~ 91 GeV
 - Categorize to suppress Z+γ background and enhance VBF Higgs signal
 - Measure $m(\ell \ell \gamma)$ signal peak over analytic fit to data in wide mass window as background

- **5 cut-based** categories in **CMS**: high m(jj) forward dijets (VBF), forward γ , plus 3 categories defined by ℓ rapidity and γ quality
- **ATLAS** uses a **BDT** to identify VBF Higgs events, one category for $p_T(\gamma) > 0.4 \times m(\ell \ell \gamma)$, others divided by p_T of $\ell \ell \gamma$ system
 - Higher stats, more kinematic separation using 36 fb⁻¹ 13 TeV dataset

	gg	gF	V	BF	W	H	Z	H
Category	$\epsilon [\%]$	f[%]						
VBF-enriched	0.25	30.5	6.5	67.5	0.34	1.3	0.24	0.6
High relative $p_{\rm T}$	1.1	71.5	2.6	14.3	4.0	8.3	4.1	5.3
<i>ee</i> high p_{Tt}	1.7	80.8	2.8	11.0	3.2	4.7	3.6	3.3
<i>ee</i> low $p_{\mathrm{T}t}$	7.1	93.2	3.6	4.1	3.7	1.5	4.2	1.1
$\mu\mu$ high $p_{\mathrm{T}t}$	2.2	80.4	3.6	11.3	4.1	4.8	4.2	3.1
$\mu\mu$ low $p_{\mathrm{T}t}$	9.2	93.4	4.7	4.1	4.6	1.5	4.8	1.0
Total efficiency (%)	21.5		23.8		20.2		21.0	
Expected events	3	5	3	.3	1.	.0	0.	7

Lepton flavor-violating decays

- $H \rightarrow \mu \tau$ and $H \rightarrow e \tau$ decays provide unique probe of off-diagonal Yukawa couplings
 - LHC can provide stronger constraints than any current precision measurements
 - H \rightarrow eµ decays also interesting, but existing $\mu \rightarrow$ eγ searches highly constrain coupling
- CMS results sparked interest with H→µτ excess in 8 TeV analysis
 - Not seen in subsequent ATLAS result at 8 TeV, motivated even more sophisticated analysis and cross-checks from CMS in 13 TeV data

H→µτ

 $m_{\rm T}^{e, E_{\rm T}^{\rm miss}}$ [GeV] τhad channels: MC bkg, Missing, Massi, Calculator for signal (accounts for 140 direction in a decay

20

20

- τ_{lep} channels: Measure \mathcal{H} ference between (l, τ_{lep}^2) collinear mass spectrum $\frac{1}{4}m^{0}$ in $\mu \tau_{lep}$ and $e \tau_{lep}$ data
- Categories: m_T(τ_{had}, ME[¶]) vs. m_T(e/μ, MET
- $H \rightarrow \mu \tau BR limit: 1.4 \times 10^{-100} (0.080 + 0.010 + 120 + 40.000)$ $m_{\rm T}^{e, E_{\rm T}^{\rm miss}}$ [GeV]
- H \rightarrow er BR limit: 1.0 × 10⁻² obs. (1.2 × 10⁻² exp.)

0.5

0.5

Expected ± 1

Expected ± 20

Observed

Excluded

 $\mu \tau_{had}$, SR1

 $\mu \tau_{had}$, SR2

 $\mu \tau_{had}$, Comb

 $\mu \tau_{len}$, SR_{no.let}

 $\mu \tau_{len}$, SR_{withJet}

 $\mu \tau_{lep}$, Comb

uτ, Comb

10

13

12

14 2

14

μτ), %

40 60 80 100 120 140

Andrew Brinkerhoff

200

 $m_{e\tau}^{\text{MMC}}$ [GeV]

150

100

UF FIORID

+ Observed Z→ττ

Bkg. unc.

Z→ee/µµ tt,t+jets

Diboson Reducible

SM H→ττ — Η→μτ (B=5%)

$H \rightarrow \mu \tau$ and $H \rightarrow e \tau$ in CMS

UF FLORIDA

H→µµ

125

130

CMS Preliminary Simulation

- "Rare" decay with
 - If found, will prov: Higgs coupling to
 - ATLAS and (new!)
- Clean signature, gc 0.002
 - Backgrounds most
- Similar strategies in ALLAS and CIVIS
 - Muons in barrel have the best p_T resolution
 - Categorize using kinematics of $\mu\mu$ system (p_T , $\Delta \phi$, and/or $\Delta \eta$) to separate ggH from Z+jets

⊐0.012

0.01

0.008

0.006

0.004

0 110

115

120

- Distinct VBF signal region(s) with forward jets
- S+B fit to $m(\mu\mu)$ distribution in each category

$H \rightarrow \mu \mu$ in ATLAS

- 2 categories from BDT targeting VBF Higgs,
 6 cut-based categories targeting ggH, reject
 ttbar background with b-jet veto
- Background m(μμ) fit analytically in data
 - Breit-Wigner × Gaussian × exponential / cubic
 - Bias evaluated against Z+jets MC

• 7+8+13 TeV BR limit: 6.2 obs. (6.4 exp.) × 10⁻⁴

	S	В	S/\sqrt{B}	FWHM (GeV)	Data
Central low $p_{\rm T}^{\mu\mu}$	11	8000	0.12	5.6	7885
Noncentral low $p_{\rm T}^{\mu\mu}$	32	38000	0.16	7.0	38777
Central medium $p_{\rm T}^{\mu\mu}$	23	6400	0.29	5.7	6585
Noncentral medium $p_{\rm T}^{\mu\mu}$	66	31000	0.37	7.1	31291
Central high $p_{\rm T}^{\mu\mu}$	16	3300	0.28	6.3	3160
Noncentral high $p_{\rm T}^{\mu\mu}$	40	13000	0.35	7.7	12829
VBF loose	3.4	260	0.21	7.6	274
VBF tight	3.4	78	0.38	7.5	79

$H \rightarrow \mu \mu$ in CMS

- Two-stage categorization: BDT + muon η
- Inclusive BDT for all signal vs. all bkg.
 - Only variables un-correlated to $m(\mu\mu)$
 - ggH somewhat separated from Z+jets
 - ttbar rejected with jet b-tagging
 - VBF signal events have highest BDT score
- Mass resolution by maximum muon |η|
 - Custom signal vs. background decision tree combines BDT and η info to generate categories with optimal expected signal sensitivity
 - 15 categories based on 7 BDT and 3 η regions

$H \rightarrow \mu \mu$ in CMS

- Background fit functions vary by category
 - Modified Breit-Wigner × polynomial (order 0 4), sum of 2 exponentials
 - Chosen to minimize bias relative to pseudo-data generated by 10 other functions: Breit-Wigners, exponentials, NNLO FEWZ template, polynomials
- 7+8+13 TeV limt: 5.7 obs. (5.1 exp.) × 10⁻⁴, 2.6 (2.1) × SM

- Many possible $H \rightarrow X_1 X_2$ decays, where Xs are neutral BSM particles
- **X** \rightarrow **SM or BSM** particles: multiple μ , τ , or (b)-jet objects (plus MET)
- Mostly lower p_T, sometimes highly collimated (for low X masses) usually need unique triggering and offline reconstruction
- Huge phase space, highly specialized analyses: What to prioritize?

H→BSM particle analyses

Decay mode		ATLAS		CMS			
Decay mode	Dataset ID		Link	Dataset	ID	Link	
H→aa→4b	3.2 fb ⁻¹ , 13 TeV	EPJC 76	<u>1606.08391</u>				
H→aa→µµbb							
H→aa→μμττ	20 fb ⁻¹ , 8 TeV	PRD 92	<u>1505.01609</u>	20 fb ⁻¹ , 8 TeV	JHEP 10	<u>1701.02032</u>	
H→aa→4τ							
H→aa→4µ	26 fb-1 12 TaV	CONT. 17.040	ada:0072949	20 fb ⁻¹ , 8 TeV	PLB 744	1506.00424	
$H \rightarrow Z_{(d)} Z_d \rightarrow 4\ell$	30 ID ⁻¹ , 13 Iev	CONF-17-042	<u>cus:2273848</u>				
H→Gχ→GGγ	$20 \text{ fb}_1 2 \mathbf{T}_2 \mathbf{V}$	CONIE 1E 001	- do:10004 2 E	20 fb ⁻¹ , 8 TeV	PLB 753	<u>1507.00359</u>	
$H \rightarrow \chi \chi \rightarrow G \gamma G \gamma$	20 ID ⁻¹ , 8 Iev	CONF-15-001	<u>cus:1988425</u>				
$H \rightarrow f_d f_d \rightarrow 4\ell + \chi$	3.2 fb-1 12 ToV	CONIE 16 042	ada.2206092				
$H \rightarrow f_d f_d \rightarrow 8\ell + \chi$	5.2 ID *, 15 IEV	COINF-10-042	<u>cas:2206083</u>				

• Eclectic set of final states, not much overlap between ATLAS andCMS, **just one analysis so far with full 13 TeV dataset**

UF FLORIDA

$H \rightarrow aa/Z_dZ_d \rightarrow 4\mu$ (low mass)

- $H \rightarrow aa \rightarrow 4\mu (CMS 8 TeV)$
 - $2 m(\mu) < m(a) < 2 m(\tau)$: highest BR($a \rightarrow \mu \mu$)
 - $|m_1(\mu\mu) m_2(\mu\mu)| < 0.13 \text{ GeV} + 0.033 \times (m_1 + m_2)$
 - Count events over bb, J/ψ , and Z/γ_{z}^{*} background
 - 1 event observed over 2.2 ± 0.7 expected bkg.
- $H \rightarrow aa/Z_dZ_d \rightarrow 4\mu$ (ATLAS 13 TeV, 36 fb⁻¹)
 - $0.88 < m(\mu\mu) < 15 \text{ GeV}, 120 < m(4\mu) < 130 \text{ GeV}_3$
 - $m_2(\mu\mu) / m_1(\mu\mu) > 0.85$, veto J/ψ and Υ
 - Bkg. ~30% ZZ*, ~29% H→ZZ*, ~19% VVV, remainder from multi-b events
 - 0 events observed over 0.4 ± 0.1 expected bkg.

Andrew Brinkerhoff

SR data

$H \rightarrow Z_{(d)}Z_d \rightarrow 4\ell$ (high mass)

- $H \rightarrow Z_d Z_d \rightarrow 4\ell$ (ATLAS 13 TeV, 36 fb⁻¹)
 - $15 < m(Z_d) < 60 \text{ GeV}, 120 < m(4\ell) < 130 \text{ GeV}$
 - $m_2(\ell\ell) / m_1(\ell\ell) > 0.85$, veto J/ψ , Υ , and Z
 - Bkg. ~29% ZZ*, ~63% H→ZZ*, ~17% VVV
 - 6 observed over 3.9 ± 0.3 expected bkg.
- $H \rightarrow ZZ_d \rightarrow 4\ell$ (ATLAS 13 TeV, 36 fb⁻¹)
 - $50 < m(Z) < 106 \text{ GeV}, 12 < m(Z_d) < 115 \text{ GeV}, 200 \text{ GeV}, 115 < m(4\ell) < 130 \text{ GeV}, 200 \text{ Veto } J/\psi$
 - Bkg. ~30% ZZ*, ~64% H→ZZ*, ~6% nonprompt leptons from Z+jets/ttbar/WZ
 - 102 observed over 87 ± 7 expected bkg.

H \rightarrow aa, a \rightarrow μμ/ττ/bb

24

- $H \rightarrow aa \rightarrow bbbb$ (ATLAS 13 TeV, 3.2 fb⁻¹)
 - WH, W $\rightarrow \ell v$ to trigger, 20 < m(a) < 60 GeV
 - Sig. vs bkg. BDT including m(3b) and m(4b)
- $H \rightarrow aa \rightarrow \mu\mu bb/\mu\mu\tau\tau$ (CMS 8 TeV, 20 fb⁻¹)
 - $15 < m(a) < 65 \text{ GeV}, 100 < m(\mu\mu\tau\tau) < 150 \text{ GeV}$
 - Find m(a) with m($\mu\mu$) peak over poly. bkg.
 - **ATLAS** $\mu\mu\tau\tau$ scans down to m(a) = 3.7 GeV, includes J/ ψ and Υ resonances in bkg. model
- $H \rightarrow aa \rightarrow \tau \tau \tau \tau (CMS 8 \text{ TeV}, 20 \text{ fb}^{-1})$
 - 5 < m(a) < 15 GeV, at least one $a \rightarrow \tau_{\mu} \tau_{\chi}$ decay
 - Trigger on μ from high- $p_T \tau_{\mu}$, or VH, V $\rightarrow \mu \nu / \mu \mu$
 - Special reconstruction for $\tau_{\mu}\tau_{X}$ merged object

Conclusions and questions

- Searches for $H \rightarrow \ell \ell$ well-advanced at both CMS and ATLAS
 - $H \rightarrow \mu \mu$ sensitivity now close to 2 × SM!
 - **How low** do we need to push limits on processes we don't expect to see (in the SM) at the LHC, e.g. **ee**, **flavor-violating**?
- $H \rightarrow \gamma^* \gamma$ and $Z\gamma$ limits already < 7 × SM, searches will likely continue until we find them
- **H** \rightarrow **vector** meson+ γ long time to reach SM sensitivity, some never
 - **How interesting** are these searches right now?
- **H**→**BSM** coverage hit-or-miss, analyses technically challenging
 - Which are the most interesting channels, providing unique insight?
 - **How much** will indirect constrains limit this phase space anyway?

UF FLORIDA

BACKUPS

Non-SM branching

- ATLAS+CMS combination from 7 and 8 TeV data restrict non-SM Higgs decay fraction to < 34% with 95% confidence
 - Simultaneous fit to Z, W, t, b, and τ couplings, plus effective γ and gluon "couplings", using measured production cross sections × branching fractions
 - Assumes $|\kappa_W| \le 1$ and $|\kappa_Z| \le 1$, κ_W and κ_Z have the same sign

https://arxiv.org/abs/1606.02266

$H \rightarrow G\chi / \chi\chi \rightarrow GG\gamma(\gamma)$ in ATLAS

• Primarily target VBF production with γ +MET trigger (40+60 GeV)

$H \rightarrow f_d f_d \rightarrow 4(8)\ell + 2(4) LSP in ATLAS$

$H \rightarrow f_d f_d \rightarrow 4(8)\ell + 2(4) LSP in ATLAS$

31

Figure 10: The 95% upper limits on the $\sigma \times BR$ for the FRVZ 125 GeV Higgs $\rightarrow 2\gamma_d + X$ (left) and Higgs $\rightarrow 4\gamma_d + X$ (right) benchmark models as a function of the γ_d lifetime ($c\tau$). The horizontal lines correspond to $\sigma \times BR$ for two values of the BR of the Higgs boson decay to dark photons.

Figure 11: The 95% upper limits on the $\sigma \times BR$ for the FRVZ 800 GeV Higgs $\rightarrow 2\gamma_d + X$ benchmark model as a function of the γ_d lifetime ($c\tau$). The horizontal lines correspond to a $\sigma \times BR$ of 5 pb.

UNIVERSITY of **FLORID**

 $H \rightarrow aa \rightarrow \mu\mu bb$ in CMS

$H \rightarrow aa \rightarrow \mu\mu\tau\tau$ in ATLAS

Andrew Brinkerhoff

$H \rightarrow aa \rightarrow \tau \tau \tau \tau$ in CMS

U

H->aa, a-> $\mu\mu/\tau\tau/bb$ in CMS

Andrew Brinkerhoff

38

UF UNIVERSITY of

$H \rightarrow aa/Z_d Z_d \rightarrow 4\mu$ (low mass, ATLAS)

$H \rightarrow aa \rightarrow 4\mu$ (low mass, CMS)

Andrew Brinkerhoff

UNIVERSITY of

$H \rightarrow Z_{(d)}Z_d \rightarrow 4\ell$ (high mass, ATLAS)

Decays to BSM particles

Decay mode	ATLAS			CMS		
Decay mode	Dataset	Exp. lim.	Obs. lim.	Dataset	Exp. lim.	Obs. lim.
H→aa→4b	3.2 fb ⁻¹ , 13 TeV					
H→aa→µµbb						
H→aa→μμττ	20 fb ⁻¹ , 8 TeV			20 fb ⁻¹ , 8 TeV		
H→aa→4τ						
H→aa→4µ				20 fb ⁻¹ , 8 TeV		
$H \rightarrow Z_d Z_d \rightarrow 4\ell$	20 fb ⁻¹ , 8 TeV					
H→Gχ→GGγ	$20 \text{ fb}_{-1} 0 \text{T}_{0} \text$			20 fb ⁻¹ , 8 TeV		
$H \rightarrow \chi \chi \rightarrow G \gamma G \gamma$	20 ID ⁻¹ , 8 Iev					
$H \rightarrow f_d f_d \rightarrow 4\ell \ 2LSP$	$2.0 \text{ ft} 1.12 \text{ T}_{2} \text{V}$					
$H \rightarrow f_d f_d \rightarrow 8\ell \ 2LSP$	3.2 ID ⁻¹ , 13 IeV					

 $H \rightarrow Z\gamma \rightarrow \ell \ell \gamma$

Kinematic selection						
	ATLAS	CMS				
$\ell_1/\ell_2 p_T$	>~25/10 GeV	>20/10 GeV				
γp_{T}	>15 GeV	>15 GeV				
$\Delta R(\gamma, \ell)$	> 0.3	> 0.4				
$m(\ell\ell)$	76 - 106 GeV	>50 GeV				
m($\ell\ell\gamma$)	115 - 170 GeV	100 - 190 GeV				
Other		m(<i>ll</i>) + m(<i>ll</i> γ) > 185 GeV				