Dark Matter in the Context of 2HDMs with an Extra U(1) Symmetry

FOR PRECISION TESTS OF FUNDAMENTAL SYMMETRIES UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Miguel Campos

based on JHEP **1708** (2017) 092 & arXiv:1712.XXXXX

Max-Planck-Institut für Kernphysik & Heidelberg Universität Heidelberg, November 2017.

Outline

Hereit Introduction: 2HDMs The 2HDM Framework

High 2HDMs with $U(1)_{\chi}$ Symmetries

Theoretical Constraints
 Interlude: Dark Matter
 Parameters
 Experimental Constraints
 Higgs Physics
 Other Constraints

Dark Matter Constraints

Introduction 1: 2HDMs

Original Motivation

History goes back to 1973, with T. D. Lee. It was an attempt to find new sources of CP Violation.

In 1977 Glashow & Weinberg realize that to avoid tree-level flavor changing neutral interactions (FCNIs), all fermions of a given electric charge can couple to at most one Higgs doublet.

A Theory of Spontaneous T Violation*

T. D. Lee Department of Physics, Columbia University, New York, New York 10027 (Received 11 April 1973)

Natural conservation laws for neutral currents*

Sheldon L. Glashow and Steven Weinberg Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 (Received 20 August 1976)

Introduction: 2HDMs

Original Motivation

History goes back to 1973, with T. D. Lee. It was an attempt to find new sources of CP Violation.

In 1977 Glashow & Weinberg realize that to avoid tree-level flavor changing neutral interactions (FCNIs), all fermions of a given electric charge can couple to at most one Higgs doublet.

A Theory of Spontaneous T Violation*

T. D. Lee Department of Physics, Columbia University, New York, New York 10027 (Received 11 April 1973)

Natural conservation laws for neutral currents*

Sheldon L. Glashow and Steven Weinberg Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 (Received 20 August 1976)

Many top-down attempts at going beyond the SM lead to an enlargement of the Higgs sector. **It is of general interest then to constrain these models.**

Introduction: 2HDMs

Initial Considerations

Two important observational constraints are relevant when considering an enlarged Higgs sector:

Electroweak Precision Tests

$$\rho = \frac{\sum_{i=1}^{n} \left[I_i(I_i+1) - \frac{1}{4} Y_i^2 \right] v_i}{\sum_{i=1}^{n} \frac{1}{2} Y_i^2 v_i} = 1$$

Two possibilities to keep this value equal to 1:
ℜ Scalar doublets with *Y*=±1
ℜ Scalar singlets with *Y*=0

Hereit Introduction: 2HDMs

Initial Considerations

Two important observational constraints are relevant when considering an enlarged Higgs sector:

Electroweak Precision Tests

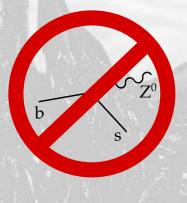
$$\rho = \frac{\sum_{i=1}^{n} \left[I_i(I_i+1) - \frac{1}{4} Y_i^2 \right] v_i}{\sum_{i=1}^{n} \frac{1}{2} Y_i^2 v_i} = 1$$

Two possibilities to keep this value equal to 1:
☆ Scalar doublets with *Y*=±1
☆ Scalar singlets with *Y*=0

Relavor Changing Neutral Interactions

Not present at tree-level

GIM-suppressed at loop-level



Here Introduction: 2HDMs

Types of Models

The most general 2HDM Lagrangian produces FCNIs at tree level. Solution: ad hoc Z_2 symmetry in which

 $\begin{array}{rcl} \Phi_1 & \rightarrow & -\Phi_1 \\ \Phi_2 & \rightarrow & +\Phi_2 \end{array}$

The different possible fermion assignments lead to different types of 2HDMs:

Model	Φ_1	Φ_2	u_R	d_R	e_R	Q_L	L_L
Type I	-	+	+	+	+	+	+
Type II	-	+	+	—	<u> </u>	+	+
Lepton-specific	-	+	+	+		+	+
Flipped	_	+	+	—	4	+	+

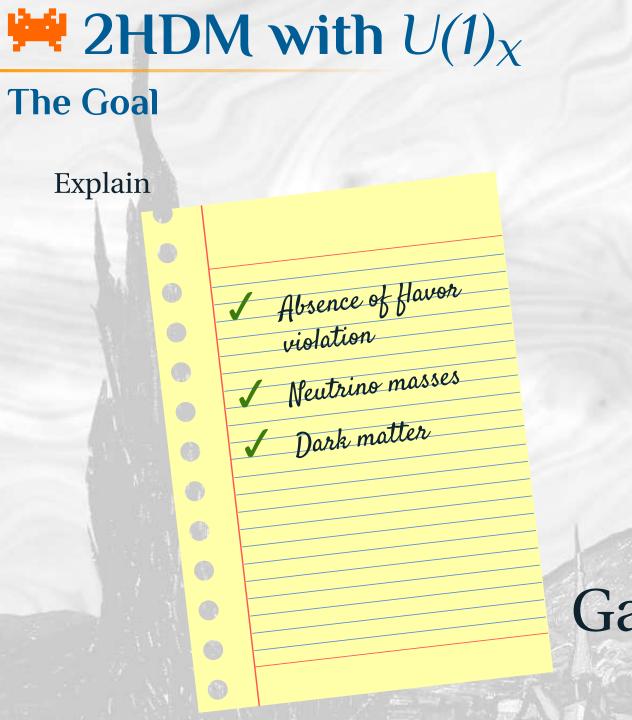
Introduction: 2HDMs

Types of Models

The most general 2HDM Lagrangian produces FCNIs at tree level. Solution: ad hoc Z_2 symmetry in which

The different possible fermion assignments lead to different types of 2HDMs:

Model	Φ_1	Φ_2	u_R	d_R	e_R	Q_L	L_L
Type I	-	+	+	+	+	+	+
Type II	_	+	+	-	<u> </u>	+	+
Lepton-specific		+	+	+	_	+	+
Flipped	_	+	+	_	+	+	+



via Gauge principles.

Theoretical Constraints

We can explain this Z_2 symmetry from gauge principles as coming from a U(1) abelian symmetry. We demand

Gauge invarianceAnomaly cancellation

Again, the fermion charges under $U(1)_X$ define the different models

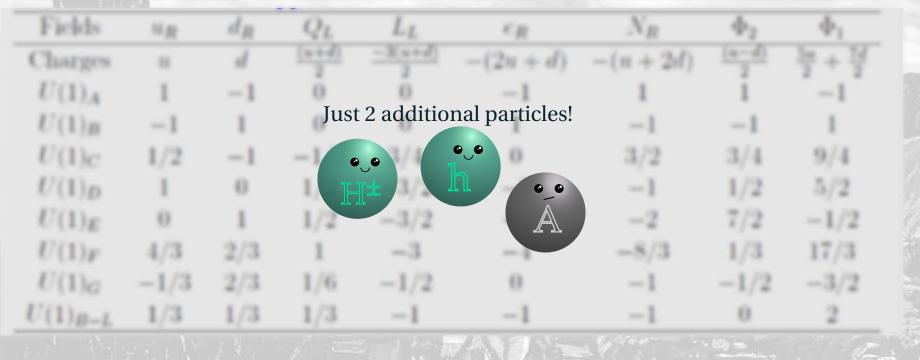
Fields	u_R	d_R	Q_L	L_L	e_R	N_R	Φ_2	Φ_1
Charges	u	d	$\frac{(u+d)}{2}$	$\frac{-3(u+d)}{2}$	-(2u+d)	-(u+2d)	$\frac{(u-d)}{2}$	$\frac{5u}{2} + \frac{7d}{2}$
$U(1)_A$	1	-1	0	0	-1	1	1	-1
$U(1)_B$	-1	1	0	0	1	-1	-1	1
$U(1)_C$	1/2	-1	-1/4	3/4	0	3/2	3/4	9/4
$U(1)_D$	1	0	1/2	-3/2	-2	-1	1/2	5/2
$U(1)_E$	0	1	1/2	-3/2	-1	-2	7/2	-1/2
$U(1)_F$	4/3	2/3	1	-3	-4	-8/3	1/3	17/3
$U(1)_G$	-1/3	2/3	1/6	-1/2	0	-1	-1/2	-3/2
$U(1)_{B-L}$	1/3	1/3	1/3	-1	-1	-1	0	2

Theoretical Constraints

We can explain this Z_2 symmetry from gauge principles as coming from a U(1) abelian symmetry. We demand

Gauge invarianceAnomaly cancellation

Again, the fermion charges under $U(1)_X$ define the different models



Neutrino Masses

Additionally, we include neutrino masses through a seesaw type I mechanism, by adding a scalar singlet

$$-\mathcal{L}_{\nu} \supset y_{ij}^D \bar{L}_{iL} \widetilde{\Phi}_2 N_{jR} + Y_{ij}^M \overline{(N_{iR})^c} \Phi_s N_{Rj}$$

If $\langle \Phi_s \rangle = v_s \sim {
m TeV}$, $y^M \sim 1$ and $y^D \sim 10^{-4}$ then $m_\nu \sim 0.1~{
m eV}$

Neutrino Masses

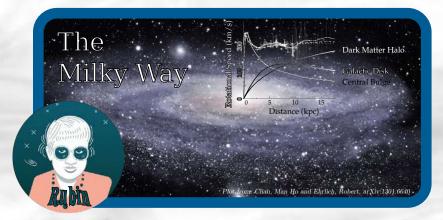
Additionally, we include neutrino masses through a seesaw type I mechanism, by adding a scalar singlet $-\mathcal{L}_{\nu} \supset y_{ij}^D \bar{L}_{iL} \Phi_2 N_{jR} + Y_{ij}^M (N_{iR})^c \Phi_s N_{Rj}$ $\langle \Phi_s \rangle = v_s \sim \text{TeV}, \quad y^M \sim 1 \quad \text{and} \quad y^D \sim 10^{-4}$ If then $m_{\nu} \sim 0.1 \, \text{eV}$ $\mathcal{G} = \dots$? ↓? $SU(3)_C \otimes SU(2)_L \otimes U(1)_V \otimes U(1)_X$ $\Downarrow \langle \Phi_s \rangle = v_s$ $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \otimes Z_2$ $\Downarrow \langle \Phi_2 \rangle = v_2$ $SU(3)_C \otimes U(1)_{em} \otimes Z_2$

Interlude: Dark Matter

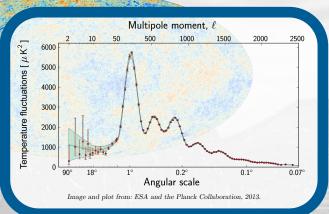
Evidence

The Coma Cluster

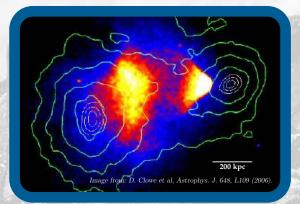
Galactic rotation curves



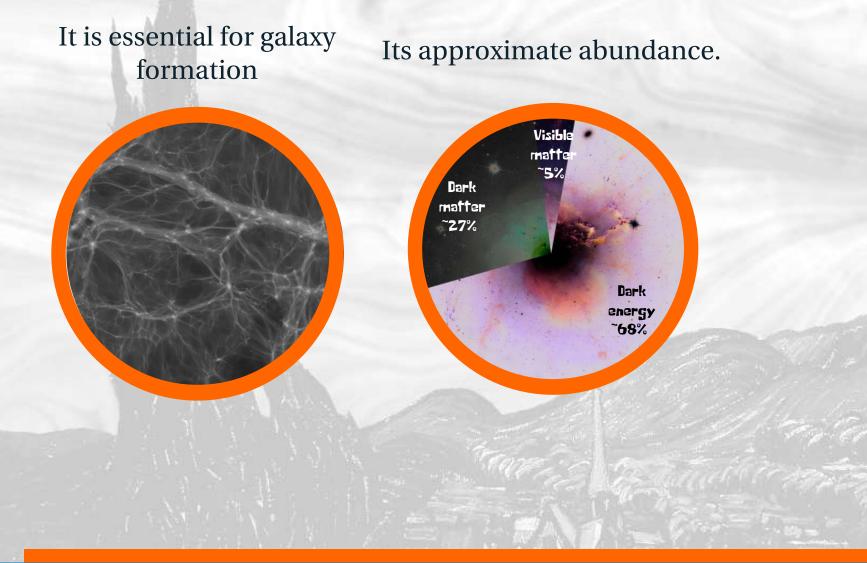
The CMB spectrum



The Bullet cluster



What we know so far:



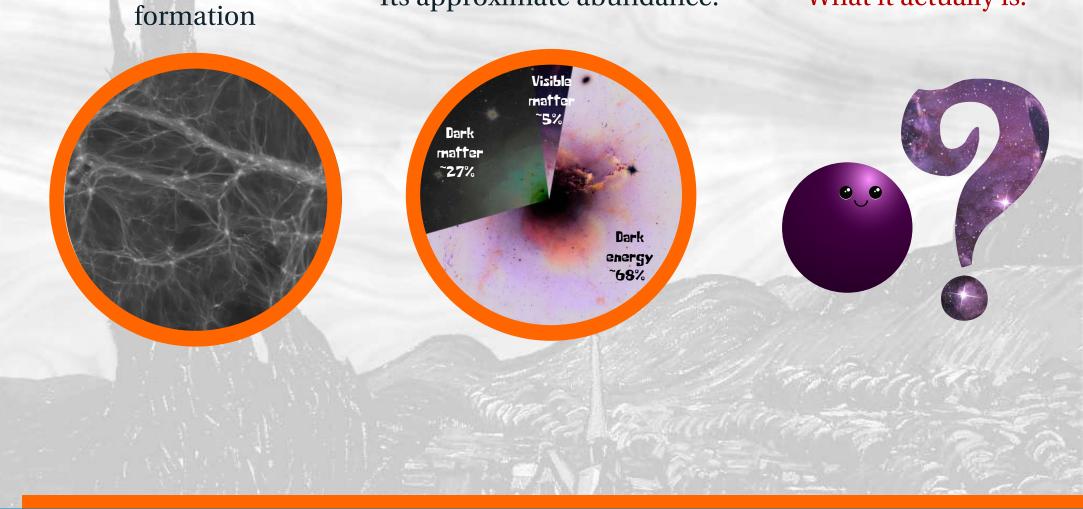
What we know so far:

It is essential for galaxy

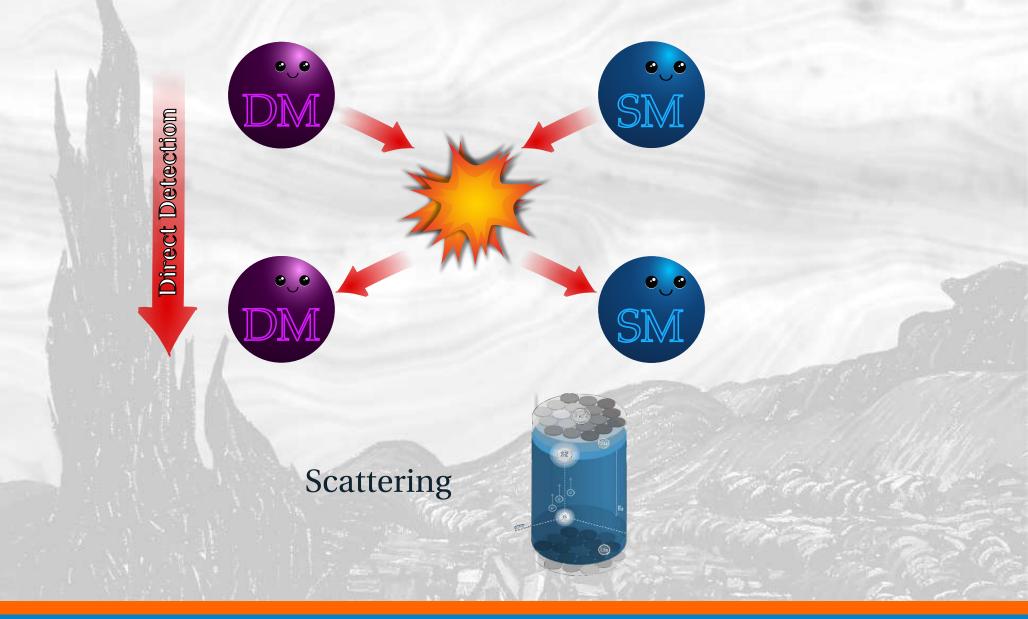
Its approximate abundance.

What we don't know:

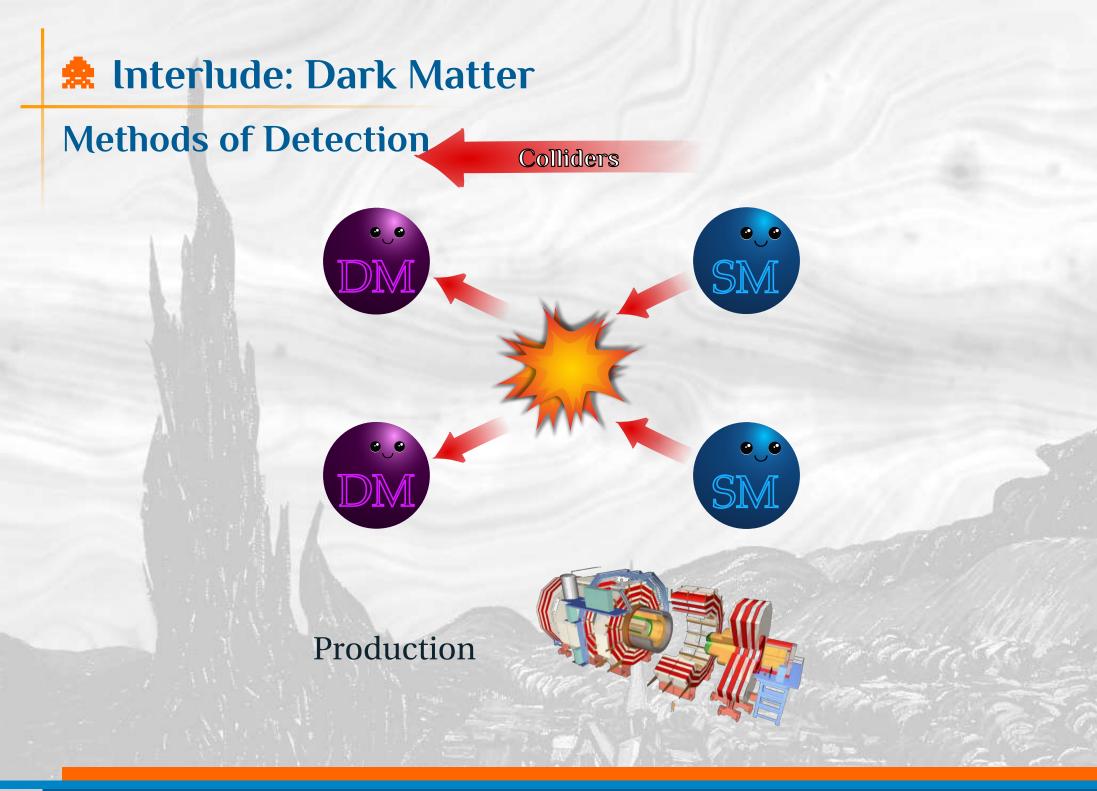
What it actually is!



Methods of Detection



Methods of Detection



Dark Matter

We add a vector-like fermion as a DM candidate charged under $U(1)_X$

In order to maintain the theory anomaly free

ſ

It introduces an extra parameter: M_{γ}

Important Parameters

The free parameters of the theory come from...

...the extra scalars

$$\tan \beta := \frac{v_2}{v_1} \qquad v^2 = v_1^2 + v_2^2 = (246 \quad \text{GeV})^2 \qquad v_s$$
$$\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \quad \text{with} \quad \tan 2\alpha = \frac{2(\lambda_3 + \lambda_4)v_1v_2}{\lambda_1v_1^2 - \lambda_2v_2^2}$$

HOM with $U(1)_X$

Important Parameters

The free parameters of the theory come from...

... the extra scalars

$$\tan \beta := \frac{v_2}{v_1} \qquad v^2 = v_1^2 + v_2^2 = (246 \quad \text{GeV})^2 \qquad v_s$$
$$\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \quad \text{with} \quad \tan 2\alpha = \frac{2(\lambda_3 + \lambda_4)v_1v_2}{\lambda_1v_1^2 - \lambda_2v_2^2}$$

...the extra gauge boson

kinetic mixing

$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} + \frac{\epsilon}{2\cos\theta_W} \hat{X}_{\mu\nu} \hat{B}^{\mu\nu} - \frac{1}{4} \hat{X}_{\mu\nu} \hat{X}^{\mu\nu}$$

$$D_{\mu} = \partial_{\mu} + igT^{a} W^{a}_{\mu} + ig' \frac{Q_{Y}}{2} \hat{B}_{\mu} + ig_{X} \frac{Q_{X}}{2} \hat{X}_{\mu}$$

$$\delta = \delta(\epsilon_{Z})$$

$$M_{Z'} = M_{Z'}(v_{s}, g_{X}, \beta)$$

$$M_{Z'} \ll M_{Z}$$

Important Parameters

The free parameters of the theory come from...

... the extra scalars

$$\tan \beta := \frac{v_2}{v_1} \qquad v^2 = v_1^2 + v_2^2 = (246 \quad \text{GeV})^2 \qquad v_s$$
$$\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \quad \text{with} \quad \tan 2\alpha = \frac{2(\lambda_3 + \lambda_4)v_1v_2}{\lambda_1v_1^2 - \lambda_2v_2^2}$$

...the extra gauge boson

kinetic mixing

$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} + \underbrace{\frac{\epsilon}{2\cos\theta_W}} \hat{X}_{\mu\nu} \hat{B}^{\mu\nu} - \frac{1}{4} \hat{X}_{\mu\nu} \hat{X}^{\mu\nu}$$

$$D_{\mu} = \partial_{\mu} + igT^{a} W^{a}_{\mu} + ig' \frac{Q_{Y}}{2} \hat{B}_{\mu} + ig_{X} \frac{Q_{X}}{2} \hat{X}_{\mu}$$

$$\delta = \delta(\epsilon_{Z})$$

$$M_{Z'} = M_{Z'}(v_{s}, g_{X}, \beta)$$

$$M_{Z'} \ll M_{Z}$$

 M_{γ}

...the extra vector-like fermion

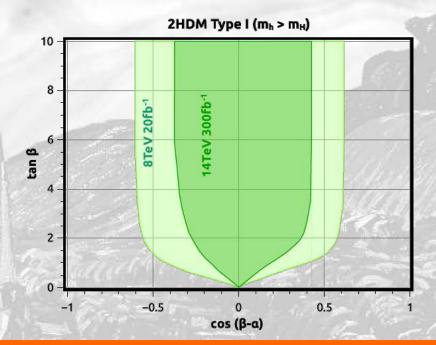
Experimental Constraints: Higgs Physics

If we assume that Φ_s does not mix with Φ_1 and Φ_2 , the eigenstates masses are given by

Experimental Constraints: Higgs Physics

If we assume that Φ_s does not mix with Φ_1 and Φ_2 , the eigenstates masses are given by

In 2HDMs the limits are usually expressed in terms of this plot, valid for new Higgs more massive than the SM one.
For this UV complete family of models we are going to need more, due to the interesting phenomenology.



Experimental Constraints: Higgs Physics

There were several experiments at LEP looking for Z + scalar decaying into fermions or invisibly.

These searches did not cover fermions with small invariant masses (from a light Z'), so we focus on invisible decays.

ZX $\frac{\sigma(Zh)}{\sigma(ZH_{SM})}BR(h \to inv)$

Experimental Constraints: Higgs Physics

There were several experiments at LEP looking for Z + scalar decaying into fermions or invisibly.

These searches did not cover fermions with small invariant masses (from a light Z'), so we focus on invisible decays.

vertex	coupling constant
$H t \bar{t}, H b \bar{b}, H \tau \bar{\tau}$	$\frac{\sin \alpha}{\sin \beta}$
HWW, HZZ	$\cos(\beta - \alpha)$
$h t \bar{t}, h b \bar{b}, h \tau \bar{\tau}$	$\frac{\cos \alpha}{\sin \beta}$
hWW, hZZ	$\sin(\beta - \alpha)$

DELPHI

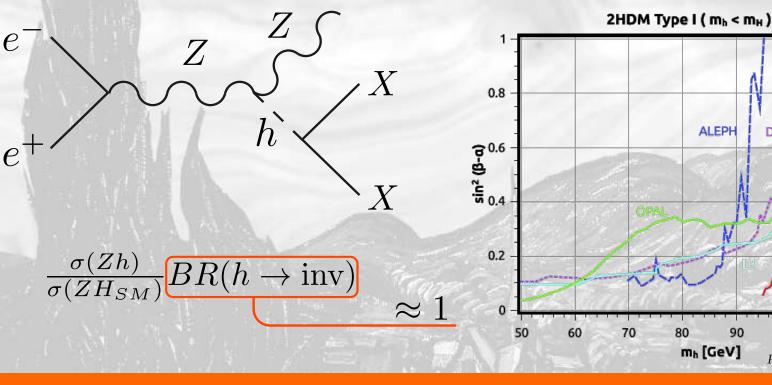
100

ALEPH

110

120

Phys. Rev. D 87, no. 11, 115009 (2013)



Experimental Constraints: Higgs Physics

Thanks to the accurate Higgs branching ratios measurements performed by the Higgs Working Group @ LHC...

Higgs decay channel	branching ratio	error
$b\bar{b}$	5.84×10^{-1}	1.5%
$c\bar{c}$	2.89×10^{-2}	6.5%
g g	8.18×10^{-2}	4.5%
ZZ^*	2.62×10^{-1}	2%
WW*	2.14×10^{-1}	2%
$\tau^+\tau^-$	6.27×10^{-2}	2%
$\mu^+\mu^-$	2.18×10^{-4}	2%
$\gamma\gamma$	2.27×10^{-3}	2.6%
$Z\gamma$	1.5×10^{-3}	6.7%
$ZZ^* \to 4\ell$	2.745×10^{-4}	2%
$ZZ^* \to 2\ell 2\nu$	1.05×10^{-4}	2%

Experimental Constraints: Higgs Physics

Thanks to the accurate Higgs branching ratios measurements performed by the Higgs Working Group @ LHC...

Higgs decay channel	branching ratio	error
$b\bar{b}$	5.84×10^{-1}	1.5%
$c\bar{c}$	2.89×10^{-2}	6.5%
g g	8.18×10^{-2}	4.5%
ZZ^*	2.62×10^{-1}	2%
WW*	2.14×10^{-1}	2%
$\tau^+\tau^-$	6.27×10^{-2}	2%
$\mu^+\mu^-$	2.18×10^{-4}	2%
$\gamma\gamma$	2.27×10^{-3}	2.6%
$Z\gamma$	1.5×10^{-3}	6.7%
$ZZ^* \to 4\ell$	2.745×10^{-4}	2%
$ZZ^* \to 2\ell 2\nu$	1.05×10^{-4}	2%

... we can constrain the parameters of these models

$$(H \to ZZ') = \frac{g_Z^2}{64\pi} \frac{(M_H^2 - M_Z^2)^3}{M_H^3 M_Z^2} \delta^2 \tan \beta^2 \sin^2(\beta - \alpha)$$

enforcing
$$\frac{\Gamma(H \to ZZ' \to 4\ell)}{\Gamma} \quad \text{with} \quad \Gamma_{\text{total}} = 4.1 \,\text{MeV}$$

to match the measured value within the errors.

 $\overline{\Gamma}_{ ext{total}}$

$$\Rightarrow \delta^2 \le \frac{4.6 \times 10^{-6}}{BR(Z' \to l^+ l^-) \sin^2(\beta - \alpha) \tan \beta^2}$$

one needs to choose a model

Experimental Constraints: Meson Decays

If kinematically allowed, rare mesons decays can also constrain these models

Rare K Decays

 $BR(K^+ \to \pi^+ Z') \simeq 4 \times 10^{-4} \, \delta^2$

$$\begin{split} \delta \lesssim \frac{2 \times 10^{-2}}{\sqrt{BR(Z' \to l^+ l^-)}}, \\ \delta \lesssim \frac{7 \times 10^{-4}}{\sqrt{BR(Z' \to \text{missing energy})}} \end{split}$$

DD

 $BR(B \to KZ') \simeq 0.1\delta^2$

$$\begin{split} \delta &\lesssim \frac{2 \times 10^{-3}}{\sqrt{BR(Z' \to l^+ l^-)}}, \\ \delta &\lesssim \frac{1.2 \times 10^{-2}}{\sqrt{BR(Z' \to \text{missing energy})}} \end{split}$$

Experimental Constraints: Atomic Parity Violation

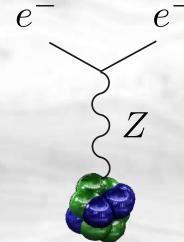
While high energy colliders experiments provide a direct observation of new particles, low energy searches provide indirect yet highly precise probes.

Experimental Constraints: Atomic Parity Violation

While high energy colliders experiments provide a direct observation of new particles, low energy searches provide indirect yet highly precise probes.

The PNC measurements are interpreted in terms of the weak nuclear charge Q_W

 $Q_W = -N + (1 - 4\sin^2 \theta_W)Z + \text{rad. corr.} + \text{New Physics}$



Experimental Constraints: Atomic Parity Violation

While high energy colliders experiments provide a direct observation of new particles, low energy searches provide indirect yet highly precise probes.

The PNC measurements are interpreted in terms of the weak nuclear charge Q_W

 $Q_W = -N + (1 - 4\sin^2\theta_W)Z + \text{rad. corr.} + \text{New Physics}$

quantifies the strength of the electroweak coupling between atomic electrons and quarks in the nucleus

e

 ρ

Experimental Constraints: Atomic Parity Violation

While high energy colliders experiments provide a direct observation of new particles, low energy searches provide indirect yet highly precise probes.

The PNC measurements are interpreted in terms of the weak nuclear charge Q_W

 $Q_W = -N + (1 - 4\sin^2\theta_W)Z + \text{rad. corr.} + \text{New Physics}$

Because

 $|\Delta Q_W(Cs)| = |Q_W^{\exp} - Q_W^{SM}| < 0.6$

we can use the "Master Formula":

 $\left| 73.16\delta^2 - 220\delta\left(\epsilon \frac{M_Z}{m_Z'}\right) \sin \theta_W \cos \theta_W - \delta^2 \frac{188(q+u)}{Q_{x1}\cos^2\beta + Q_{x2}\sin^2\beta} - \delta^2 \frac{211(q+d)}{Q_{x1}\cos^2\beta + Q_{x2}\sin^2\beta} \left(1 - \frac{l-e}{Q_{x1}\cos^2\beta + Q_{x2}\sin^2\beta}\right) \right| \times K(Cs) < 0.6$

to impose constraints.

quantifies the strength of the electroweak coupling between atomic electrons and quarks in the nucleus

 ρ

ρ

Experimental Constraints: Atomic Parity Violation

While high energy colliders experiments provide a direct observation of new particles, low energy searches provide indirect yet highly precise probes.

The PNC measurements are interpreted in terms of the weak nuclear charge Q_W

 $Q_W = -N + (1 - 4\sin^2\theta_W)Z + \text{rad. corr.} + \text{New Physics}$

Because

$$|\Delta Q_W(Cs)| = |Q_W^{\exp} - Q_W^{SM}| < 0.6$$

we can use the "Master Formula":

$$73.16\delta^{2} - 220\delta\left(\epsilon\frac{M_{Z}}{m_{Z}'}\right)\sin\theta_{W}\cos\theta_{W} - \delta^{2}\frac{188(q+u)}{Q_{x1}\cos^{2}\beta + Q_{x2}\sin^{2}\beta}$$
$$\delta^{2}\frac{211(q+d)}{Q_{x1}\cos^{2}\beta + Q_{x2}\sin^{2}\beta}\left(1 - \frac{l-e}{Q_{x1}\cos^{2}\beta + Q_{x2}\sin^{2}\beta}\right) \times K(Cs) < 0.6$$

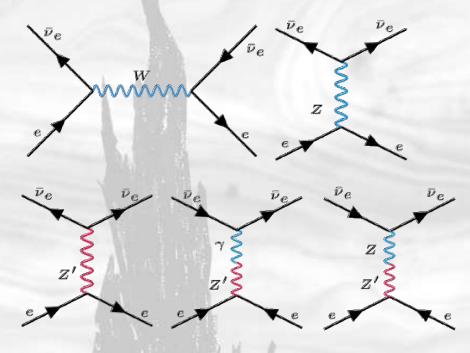
to impose constraints.

quantifies the strength of the electroweak coupling between atomic electrons and quarks in the nucleus

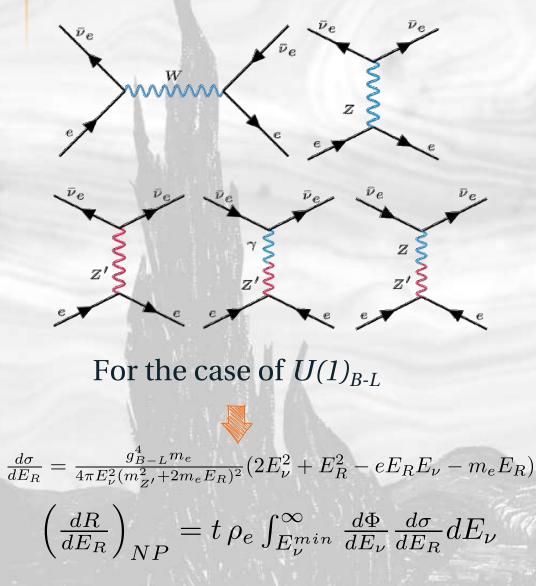
e

Experiment	$\langle Q \rangle$	$\sin^2 \theta_W(m_Z)$	Bound on dark Z (90% CL)
Cesium APV	2.4 MeV	0.2313(16)	$\varepsilon^2 < \frac{39 \times 10^{-6}}{\delta^2} \left(\frac{m_{Z_d}}{m_Z}\right)^2 \frac{1}{K(m_{Z_d})^2}$
E158 (SLAC)	$160 { m MeV}$	0.2329(13)	$\varepsilon^2 < \frac{62 \times 10^{-6}}{\delta^2} \left(\frac{(160 \text{ MeV})^2 + m_{Z_d}^2}{m_Z m_{Z_d}} \right)^2$
Qweak (JLAB)	170 MeV	± 0.0007	$\varepsilon^2 < \frac{7.4 \times 10^{-6}}{\delta^2} \left(\frac{(170 \text{ MeV})^2 + m_{Z_d}^2}{m_Z m_{Z_d}} \right)^2$
Moller (JLAB)	$75 \mathrm{MeV}$	± 0.00029	$\varepsilon^2 < \frac{1.3 \times 10^{-6}}{\delta^2} \left(\frac{(75 \text{ MeV})^2 + m_{Z_d}^2}{m_Z m_{Z_d}} \right)^2$
MESA (Mainz)	50 MeV	± 0.00037	$\varepsilon^2 < \frac{2.1 \times 10^{-6}}{\delta^2} \left(\frac{(50 \text{ MeV})^2 + m_{Z_d}^2}{m_Z m_{Z_d}} \right)^2$

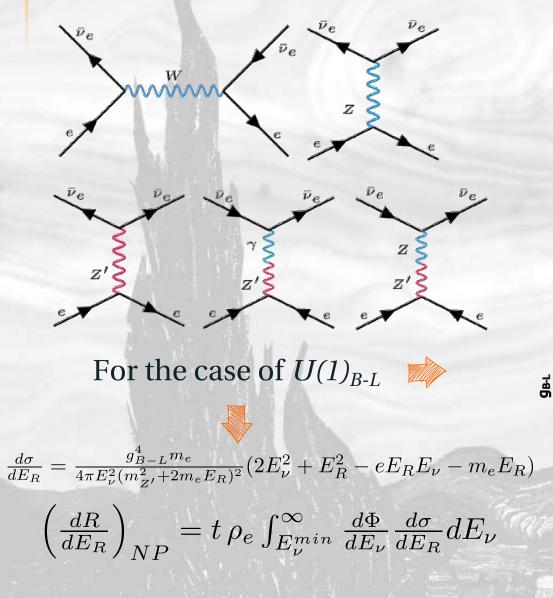
Experimental Constraints: Neutrino-Electron Scattering



Experimental Constraints: Neutrino-Electron Scattering

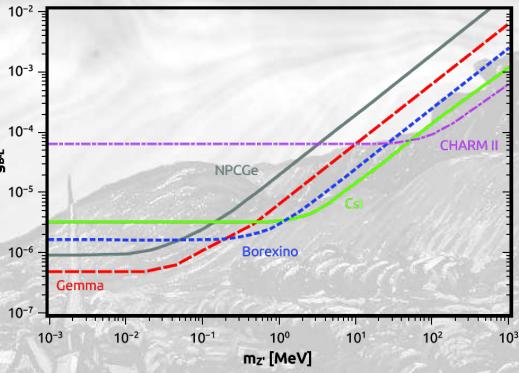


Experimental Constraints: Neutrino-Electron Scattering



Experiment	Type of neutrino	$\langle E_{\nu} \rangle$	T
TEXONO-NPCGe [110]	$\bar{\nu}_{\mathrm{e}}$	$1-2 { m MeV}$	0.35 - 12 keV
TEXONO-HPGe [111, 112]	$\bar{ u}_{\mathrm{e}}$	$1-2 { m MeV}$	12-60 keV
TEXONO-CsI(Tl) [113]	$ar{ u}_{ m e}$	$1-2 { m MeV}$	$3-8 { m MeV}$
LSND [114]	ν_{e}	$36 { m MeV}$	$18-50 { m MeV}$
BOREXINO [115]	ν_{e}	862 keV	270 - 665 keV
GEMMA [116]	$ar{ u}_{ m e}$	$1-2 { m MeV}$	$3-25 {\rm ~keV}$
CHARM II [117]	$ u_{\mu}$	$23.7~{\rm GeV}$	$3-24 \mathrm{GeV}$
CHARM II [117]	$\bar{ u}_{\mu}$	$19.1 \ { m GeV}$	$3-24~{\rm GeV}$

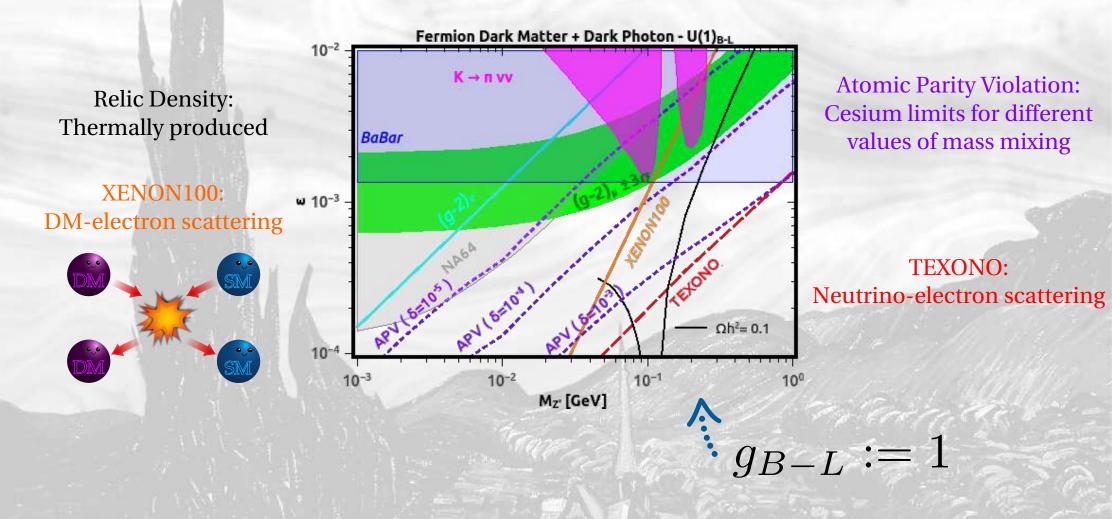
Constraints from neutrino-electron scattering experiments



Experimental Constraints: Dark Matter

Example: 50 MeV DM in a 2HDM+ $U(1)_{B-L}$

RELIMINAR)



Conclusions

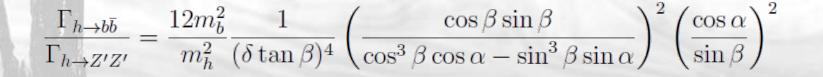
A We have shown that it is possible to cure 2HDMs flavor changing interactions from gauge principles while providing neutrino masses through a see-saw mechanism and a dark matter candidate.

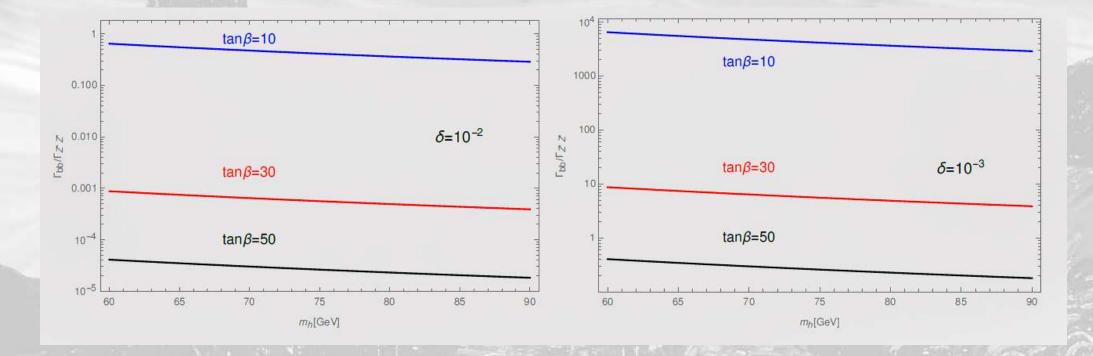
The rich phenomenology that this family of models offer has been explored while trying to remain as general as possible.

Thank you!

Backup Slides

On the robustness of $BR(h \to inv) \approx 1$





Backup Slides

Dark photon searches in comparison with neutrino-electron scattering

