

Constraining the charm and light quark Yukawa couplings with ATLAS

Higgs Couplings 2017, Heidelberg

9th November 2017
Andy Chisholm (CERN)
on behalf of the ATLAS collaboration

Why are the charm and light quark Yukawa couplings important?

- The smallness of the light (u,d,s) and charm (c) quark couplings $(y_q = \frac{\sqrt{2}m_q}{v} \approx \frac{m_q}{174\,\mathrm{GeV}})$ make them highly susceptible to modifications from potential new physics
- $H \rightarrow c\bar{c}$ decays constitute the largest part of the SM prediction for Γ_H for which we have no experimental evidence
- To date, we only have experimental evidence for 3rd generation Yukawa couplings!

38.9% 2.9% $\begin{array}{c} 0.01\% \\ 2.9\% \end{array}$ $\begin{array}{c} B \\ H \\ \Rightarrow b\bar{b} \\ H \\ \Rightarrow c\bar{c} \\ H \\ \Rightarrow s\bar{s} \\ H \\ \Rightarrow other$

Cartoon of SM 125 GeV $H o q \bar{q}$ branching fractions, $H o u \bar{u}/d\bar{d}$ too small to show!

What are the existing indirect constraints?

- Constraints on unobserved Higgs decays impose around $\mathcal{B}(H \to c\bar{c}) < 20\%$, global fits to LHC data indirectly bound Γ_H leading to $y_c/y_c^{SM} < 6$, assuming SM Higgs production and no BSM decays (arXiv:1310.7029, arXiv:1503.00290)
- Direct bound of around $\Gamma_H < 1$ GeV from $H \to \gamma \gamma$ and $H \to 4\ell$ lineshapes impose around $y_c/y_c^{SM} < 120$, but this is model independent (arXiv:1503.00290)
- Analogous but much looser bounds on the light (u, d, s) quark couplings...

How can we constrain these couplings in a more direct way?

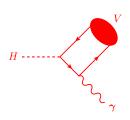
Exclusive $H o \mathcal{Q} \gamma$ decays

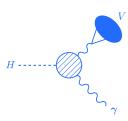
- Rare exclusive radiative Higgs decays to vector mesons are sensitive to $Hq\bar{q}$ couplings
- ATLAS Results: Searches for the rare decays $H \to J/\psi \, \gamma$ (arXiv:1501.03276) and $H \to \phi/\rho \, \gamma$ (ATLAS-CONF-2017-057)

Inclusive $H o q \bar{q}$ decays

- Study inclusive $H \rightarrow c\bar{c}$ decays with c-tagged jets
- ATLAS Results: Search for $Z(\ell\ell)H(c\bar{c})$ production (ATLAS-CONF-2017-078)
- New result for Higgs Couplings 2017!

Kinematic distributions in inclusive production

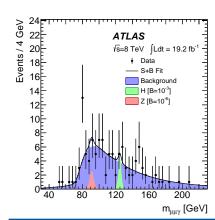

- Shape of p_T^H or y^H distributions sensitive to modified Yukawa couplings (arXiv:1606.09621)
 - ATLAS Results: Differential cross section measurements in $H \to \gamma \gamma$ (ATLAS-CONF-2017-045) and $H \to 4\ell$ channels (arXiv:1708.02810)


Will focus on the first two approaches, results pertinent to the third approach already covered by Monday's speakers

$extit{H} o extit{Q} \, \gamma$ decays could provide a clean probe of the charm and light quark couplings

- Q is a vector $(J^{PC}=1^{--})$ light meson or quarkonium state such as $V=J/\psi,\,\phi,\,\rho(770)$
- Interference between direct $(H \rightarrow q\bar{q})$ and indirect $(H \rightarrow \gamma \gamma^*)$ contributions
- Direct (upper diagram) amplitude provides sensitivity to the magnitude and sign of the $Hq\bar{q}$ couplings (i.e. $Q = J/\psi$ sensitive to $Hc\bar{c}$ coupling)
- Indirect (lower diagram) amplitude provides dominant contribution to the width, not sensitive to Yukawa couplings
- Very rare decays in the SM!

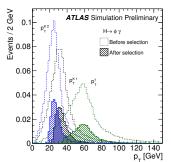
$$\mathcal{B} (H o J/\psi \, \gamma) = (2.8 \pm 0.2) imes 10^{-6} \;\; \ddagger \ \mathcal{B} (H o \phi \, \gamma) = (2.3 \pm 0.1) imes 10^{-6} \;\; \dagger \ \mathcal{B} (H o \rho \, \gamma) = (1.7 \pm 0.1) imes 10^{-5} \;\; \dagger$$



First search for such rare Higgs decays was performed by ATLAS with Run 1 dataset

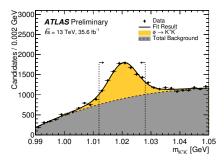
- Studied quarkonium decays, in particular $H \to J/\psi \gamma$ (with $J/\psi \to \mu^+\mu^-$)
- Similar limit subsequently found by CMS[†]
- **First direct information** on decay modes sensitive to the *Hcc̄* coupling
- Interpreted as $Hc\bar{c}$ coupling limit of $y_c/y_c^{SM} < 220$ at 95% CL^{\ddagger} (assuming dependence on $\sigma(pp \to H)/\Gamma_H$ is removed by considering ratio with $H \to 4\ell$ rate)

Branching fraction limit (95% CL): ${\cal B} \, (H o J/\psi \, \gamma) < 1.5 imes 10^{-3}$ Around 500× the SM expectation


† Phys. Lett. B753 (2016) 341 (arXiv:1507.03031)

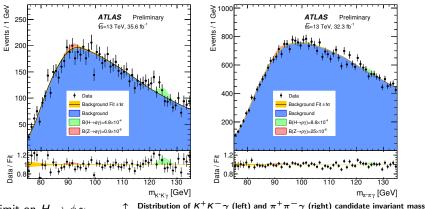
‡ Phys. Rev. D92, 033016 (2015) (arXiv:1503.00290)

Recent search for $H/Z \to \phi/\rho \gamma$ using up to 35.5fb⁻¹ of $\sqrt{s} = 13$ TeV pp collisions



Decays characterised by high $p_{\rm T}$ isolated photon recoiling against high $p_{\rm T}$ pair of oppositely charged tracks

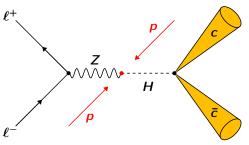
 \uparrow p_{T} distributions for $H \to \phi(K^{+}K^{-}) \gamma$ decay products, before and after selection


- Focus on high rate channels $\phi o K^+K^-$ ($\mathcal{B} pprox 49\%$) and $ho o \pi^+\pi^-$ ($\mathcal{B} pprox 99\%$)
- Dedicated $\gamma + \text{di-track triggers}$ (based on existing τ lepton triggers) developed
- Background dominated by γ + jet and multi-jet production, modelled with data-driven method

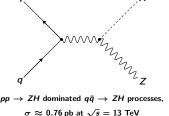
 \uparrow Clear ϕ meson peak observed for selected $K^+K^-\gamma$ candidates

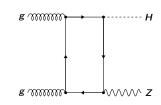
$H o \phi \, \gamma$ and $H o ho \, \gamma$ - Run 2 Results

First constraint on the light quark Yukawa couplings from search for ${\it H}
ightarrow
ho \, \gamma$ decays!

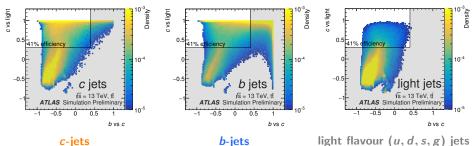

■ Limit on $H \rightarrow \phi \gamma$ improved by almost $2 \times$ w.r.t. earlier ATLAS search[†]

† Phys. Rev. Lett. 117 (2016), 111802 (arXiv:1607.03400) | Distribution of K · K · γ (left) and π · π · γ (right) candidate invariant mass

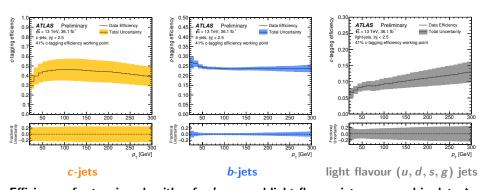

Decay	Expected	Observed	Obs./ $\mathcal{B}_{\mathit{SM}}$
$\mathcal{B}(H o \phi \gamma)$	$(4.2^{+1.8}_{-1.2}) \times 10^{-4}$	4.8×10^{-4}	208 ×
$\mathcal{B}\left(\mathcal{H} ightarrow ho\gamma ight)$	$(8.4^{+4.1}_{-2.4}) \times 10^{-4}$	8.8×10^{-4}	52 ×


95% CL upper limits on \mathcal{B} ($H o \mathcal{Q}\gamma$), absolute and relative to SM prediction \uparrow

Given the success of the W/Z associated production channel in providing evidence for $H\to b\bar b$ decays[†], this channel is an obvious first candidate for a $H\to c\bar c$ search


- Focus on ZH production with $Z \to e^+e^-$ and $Z \to \mu^+\mu^-$ decays for first ATLAS analysis
- Low exposure to experimental uncertainties, main backgrounds from Z + jets, Z(W/Z) and $t\bar{t}$
- Pioneer use of **new** *c*-tagging algorithms developed by ATLAS for Run 2 to identify the experimental signature of an inclusive $H \rightarrow c\bar{c}$ decay

Smaller contributions from $gg \to ZH$, but harder $p_{\rm T}^H$, $\sigma \approx 0.12\,{\rm pb}$ at $\sqrt{s}=13\,{\rm TeV}$



- Multivariate discriminant(s) built from input variables from low-level b-tagging algorithms (e.g. track impact parameter likelihood, secondary vertex finder)
- Trained with the same input variables used by the standard ATLAS Run 2 *b*-tagging algorithm (see <u>ATL-PHYS-PUB-2015-022</u> for details)
- Implemented as two BDT discriminants, one trained to separate c-jets from b-jets (x-axis), another to separate c-jets from light-jets (y-axis)

"c-tag" jets by making a cut in the 2D discriminant space, working point optimised for $ZH, H \to c\bar{c}$ is shown in the rectangular selection (shaded region rejected)

Introduction to jet c-tagging: Performance

Efficiency of c-tagging algorithm for b-, c- and light flavour jets measured in data \uparrow

- Working point for $ZH, H o c\bar{c}$ exhibits a c-jet tagging efficiency of around 40%
- $lue{}$ Rejects b-jets by around a factor 4 imes and light jets by around a factor 10 imes
- Efficiency calibrated in data with samples of *b*-jets from $t \to Wb$ decays and *c*-jets from $W \to cs$, cd decays (in $t\bar{t}$ events)
- Typical total relative uncertainties of around 20%, 5% and 20% for *c*-, *b* and light jets, respectively

Use a $\sqrt{s}=13\,{\rm TeV}$ pp collision sample collected during 2015 and 2016 corresponding to an integrated luminosity of 36.1 fb $^{-1}$

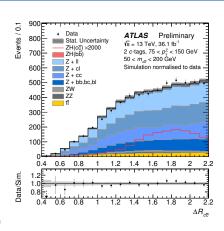
$Z \rightarrow \ell^+ \ell^-$ Selection

- Trigger with lowest available p_T single electron or muon triggers
- Exactly two same flavour reconstructed leptons $(e \text{ or } \mu)$
- Both leptons p_T > 7 GeV and at least one with p_T > 27 GeV
- Require opposite charges (dimuons only)
- $81 < m_{\ell\ell} < 101 \; \text{GeV}$
- $p_{\rm T}^{Z} > 75 \; {\rm GeV}$

$H \rightarrow c\bar{c}$ Selection

- \blacksquare Consider anti- $k_{\rm T}~R=0.4$ calorimeter jets with $|\eta|<2.5$ and $p_{\rm T}>20~{\rm GeV}$
- At least two jets with leading jet $p_T > 45 \text{ GeV}$
- Form $H \rightarrow c\bar{c}$ candidate from the two highest p_T jets in an event
- At least one *c*-tagged jet from $H \rightarrow c\bar{c}$ candidate
- Dijet angular separation ΔR_{jj} requirement which varies with p_T^Z

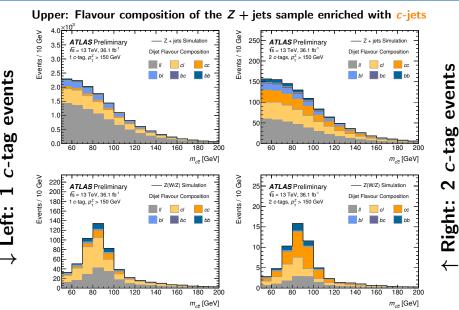
Split events into 4 categories (with varying S/B) based on $H \to c\bar{c}$ candidates with 1 or 2 c-tags and $p_{\rm Z}^{\rm T}$ above/below 150 GeV


Signal and Background Modelling

Background Modelling

- Background dominated by $Z + \text{jets} \rightarrow$ (enriched in heavy flavour jets)
- Smaller contributions from $ZZ(q\bar{q})$, $ZW(q\bar{q}')$ and $t\bar{t}$
- Negligible (< 0.5%) contributions from $W+{\rm jets},~WW,$ single-top and multi-jet

Simulation of $ZH(c\bar{c}/b\bar{b})$


- Normalised with LHC Higgs XS WG YR4 recommendations (arXiv:1610.07922)
- $ZH(b\bar{b})$ treated as background normalised to SM expectation (with $\sigma \times \mathcal{B}$ uncertainty)

Process	MC Generator	Normalisation Cross section
$qar{q} ightarrow ZH(car{c}/bar{b})$	Powheg+GoSaM+MiNLO+Pythia8	NNLO (QCD) NLO (EW)
$gg ightarrow ZH(car{c}/bar{b})$	Powheg+Pythia8	NLO+NLL (QCD)
Z + jets	Sherpa 2.2.1	NNLO
$Z\!Z$ and $Z\!W$	Sherpa 2.2.1	NLO
t₹	Powheg+Pythia8	NNLO+NNLL

The nominal MC generators used to model the signal and backgrounds

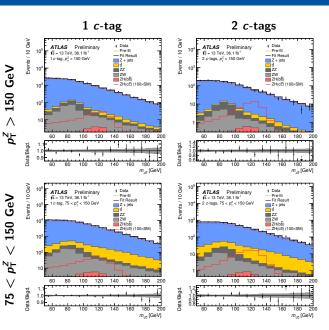
events

Lower: c-tagged Z(Z/W) production enriched in $Z \to c\bar{c}$ and $W \to cs, cd$ decays

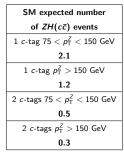
Statistical Model

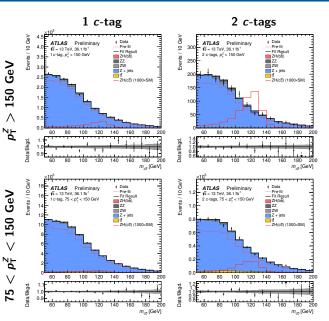
- Use the $H \rightarrow c\bar{c}$ candidate invariant mass $m_{c\bar{c}}$ as S/B discriminant
- Perform simultaneous binned likelihood fit to 4 categories within region $50 < m_{c\bar{c}} < 200 \text{ GeV}$
- **Z** $H(c\bar{c})$ signal parameterised with free signal strength parameter, μ , common to all categories
- ightharpoonup Z+ jets background determined directly from data with separate free normalisation parameter for each of the four categories

Systematic Uncertainties

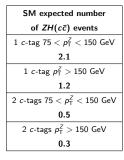

- Included in the fit model as constrained nuisance parameters which parametrize the constraints from auxiliary measurements (e.g. lepton/jet calibrations)
- Experimental uncertainties associated with luminosity, c-tagging, lepton and jet performance are all included in the model
- Normalisation, acceptance and $m_{c\bar{c}}$ shape uncertainties associated with signal and background simulation are also included

Sensitivity dominated by systematic uncertainties, clear that these uncertainties should be reduced in order to fully exploit a larger dataset in the future


Source	σ/σ_{tot}
Statistical	49%
Floating $Z+$ jets Normalisation	31%
Systematic	87%
Flavour Tagging	73%
Background Modeling	47%
Lepton, Jet and Luminosity	28%
Signal Modeling	28%
MC statistical	6%


Note: correlations between nuisance parameters within groups leads to $\sum_i \sigma_i^2
eq \sigma_{\text{Syst.}}^2$

- Background modelling (particularly *Z* + jets shape uncertainties) followed by *c*-tagging uncertainties have the dominant impact
- However, we can expect many of these uncertainties (particularly effect of the Z + jets normalisation) to reduce with a larger dataset



- No significant evidence for $ZH(c\bar{c})$ production
- Data consistent with background only hypothesis

- No significant evidence for $ZH(c\bar{c})$ production
- Data consistent with background only hypothesis

Cross check with ZV production

- To validate background modelling and uncertainty prescriptions, measure production rate of the sum of ZZ and ZW relative to the SM expectation
- Observe (expect) ZV production with significance of 1.4σ (2.2 σ)
- Measure ZV signal strength of $0.6^{+0.5}_{-0.4}$, consistent with SM expectation

Limits on $ZH(c\bar{c})$ production

95% CL $\mathit{CL}_{\mathtt{s}}$ upper limit on $\sigma(\mathit{pp} \to \mathit{ZH}) \times \mathcal{B}(\mathit{H} \to c\bar{c})$ [pb]			
Observed Median Expected Expected $+1\sigma$ Expected -1			
2.7	3.9	6.0	2.8

- No evidence for $ZH(c\bar{c})$ production with current dataset (as expected)
- Upper limit of $\sigma(pp \to ZH) \times \mathcal{B}(H \to c\bar{c}) < 2.7$ pb set at 95% CL, to be compared to an SM value of 2.55×10^{-2} pb
- Corresponds to 110× the SM expectation

World's most stringent direct constraint on $H o c\bar{c}$ decays!

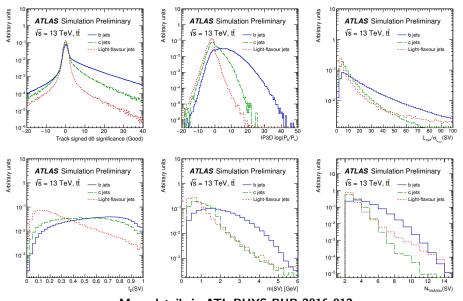
ATLAS is pioneering the study of several novel channels sensitive to the charm and light quark Yukawa couplings

- Limit on $\mathcal{B}(H \to J/\psi \gamma)$ corresponds to an upper bound on the $Hc\bar{c}$ coupling of 220× SM expectation
- New search for $ZH(c\bar{c})$ production exploiting new c-tagging techniques provides limit of $\sigma(pp \to ZH) \times \mathcal{B}(H \to c\bar{c}) < 2.7 \, \mathrm{pb}$ excluding $110 \times \mathrm{SM}$ expectation
- Limits on $\mathcal{B}(H \to \phi(\rho) \gamma)$ exclude values above $208(52) \times$ SM expectations

These channels will become ever more important as larger datasets are collected!

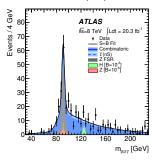
What next for inclusive $H \rightarrow c\bar{c}$ decays?

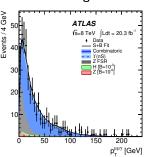
- Large gains in sensitivity possible with multivariate techniques and other VH channels (e.g. $W(\ell\nu)/Z(\nu\nu)$) or a dedicated search/category in the high p_T^H boosted regime
- exploiting advanced ML techniques (ATL-PHYS-PUB-2017-013)

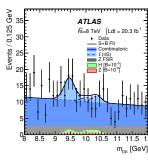

What next for exclusive $H \to Q \gamma$ decays?

■ Performance of c-tagging is developing rapidly, next generation of algorithms

- \blacksquare Limit on $H\to\rho\gamma$ "only" $52\times$ from SM expectation with $32\,{\rm fb^{-1}}$, very promising for HL-LHC scenario
- First "proof of principle" analyses employ cut-based selection, scope for improvement with advanced MVA techniquies, distinct signatures with several handles to exploit

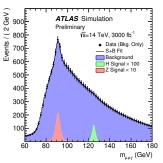

Additional Slides

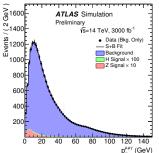

Examples of *c*-tagging input variables



More details in ATL-PHYS-PUB-2016-012

$H \to \Upsilon(nS) \gamma$ decays sensitive to magnitude and sign of $Hb\bar{b}$ coupling



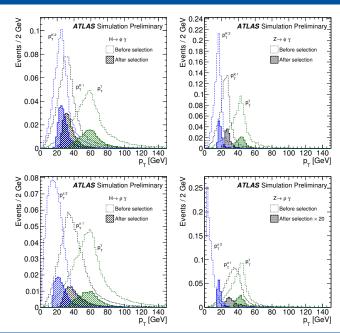


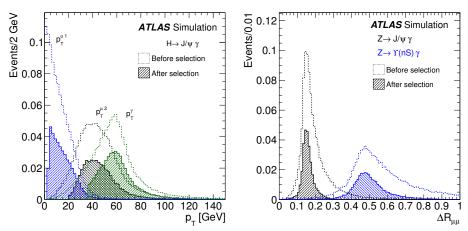
- Within same analysis, seach for $H \to \Upsilon(nS) \gamma$ also performed
- \blacksquare Much rarer decay than J/ψ case due to near cancelation in interference between direct/indirect aplitudes
- $\mathcal{B}(H \to \Upsilon(1S)\gamma) \approx 6 \times 10^{-10}$ predicted within SM (arXiv:1407.6695)

		95% CL_s Upper Limits				
		J/ψ	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$	$\sum^{n} \Upsilon(nS)$
			$\mathcal{B}\left(Z \to \mathcal{Q}\right)$	$(2\gamma) [10^{-6}]$		
	Expected	$2.0^{+1.0}_{-0.6}$	$4.9^{+2.5}_{-1.4}$	$6.2^{+3.2}_{-1.8}$	$5.4^{+2.7}_{-1.5}$	$8.8^{+4.7}_{-2.5}$
0	Observed	2.6	3.4	6.5	5.4	7.9
n	$\mathcal{B}\left(H o\mathcal{Q}\gamma ight)\left[\ 10^{-3}\ ight]$					
	Expected	$1.2^{+0.6}_{-0.3}$	$1.8^{+0.9}_{-0.5}$	$2.1^{+1.1}_{-0.6}$	$1.8^{+0.9}_{-0.5}$	$2.5^{+1.3}_{-0.7}$
	Observed	1.5	1.3	1.9	1.3	2.0
	$\sigma (pp \rightarrow H) \times \mathcal{B} (H \rightarrow Q \gamma) [fb]$					
	Expected	26^{+12}_{-7}	38^{+19}_{-11}	45^{+24}_{-13}	38^{+19}_{-11}	54^{+27}_{-15}
	Observed	33	29	41	28	44

Prospects for $H o J/\psi \, \gamma$ in a HL-LHC scenario

Run 1 $H \to J/\psi \, \gamma$ analysis projected to $\sqrt{s} = 14$ TeV scenario with 300(0) fb⁻¹


	Expected branching ratio limit at 95% CL		
	${\cal B}\left(H o J/\psi\gamma ight)$ [10^{-6}]	$\mathcal{B}\left(Z ightarrow J/\psi\gamma ight)\left[\ 10^{-7}\ ight]$	
	Cut Based Multivariate Analysis	Cut Based	
$300 {\rm fb^{-1}}$	185 ⁺⁸¹ ₋₅₂ 153 ⁺⁶⁹ ₋₄₃	$7.0^{+2.7}_{-2.0}$	
$3000{\rm fb^{-1}}$	55^{+24}_{-15} 44^{+19}_{-12}	$4.4^{+1.9}_{-1.1}$	
	Standard Model ex	rpectation	
	${\cal B}\left(H o J/\psi\gamma ight)$ [10^{-6}]	$\mathcal{B}\left(Z ightarrow J/\psi\gamma ight)\left[\ 10^{-7}\ ight]$	
	2.9 ± 0.2	0.80 ± 0.05	


- Optimistic scenario with MVA analysis still only sensitive to \mathcal{B} ($H \to J/\psi \, \gamma$) 15× SM value with 3000 fb⁻¹
- New ideas likely required to reach SM sensitivity in a HL-LHC scenario!

More details in ATL-PHYS-PUB-2015-043

Decay	Expected	Observed	Obs./ \mathcal{B}_{SM}
$\mathcal{B}(H o \phi \gamma)$	$(4.2^{+1.8}_{-1.2}) \times 10^{-4}$	4.8×10^{-4}	208 ×
$\mathcal{B}(Z o \phi \gamma)$	$(1.3^{+0.6}_{-0.4}) imes 10^{-6}$	0.9×10^{-6}	87×
$\mathcal{B}(H o ho \gamma)$	$(8.4^{+4.1}_{-2.4}) \times 10^{-4}$	8.8×10^{-4}	52 ×
$\mathcal{B}(Z o ho\gamma)$	$(33^{+13}_{-9}) \times 10^{-6}$	25×10^{-6}	595 ×

95% CL upper limits on $\mathcal{B}\left(H,Z
ightarrow\mathcal{Q}\gamma\right)$, absolute and relative to SM prediction \uparrow

More details in HIGG-2014-03