

Higgs Couplings'17 Heidelberg, 10th Nov. 2017

David d'Enterria (on behalf of FCC-ee study group) CERN

Standard Model of particles & interactions

Renormalizable QFT of electroweak SU(2)_L×U(1)_Y & strong SU(3)_c gauge interactions O(20) parameters: Couplings, H mass&vev, H-f Yukawa, CKM mix., CP phases. Experimentally confirmed to great precision for over 40(!) years:

Standard Model of particles & interactions

Renormalizable QFT of electroweak SU(2)_L×U(1)_Y & strong SU(3)_c gauge interactions O(20) parameters: Couplings, H mass&vev, H-f Yukawa, CKM mix., CP phases. Experimentally confirmed to great precision for over 40(!) years:

Open questions in the SM (1)

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu})$$
 [Gauge interactions: U(1)_Y, SU(2)_L, SU(3)_c]
+ $(\bar{\nu}_L, \bar{e}_L) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} + \bar{e}_R \sigma^{\mu} i D_{\mu} e_R + \bar{\nu}_R \sigma^{\mu} i D_{\mu} \nu_R + (h.c.)$ [Lepton dynamics]
$$-\frac{\sqrt{2}}{v} \left[(\bar{\nu}_L, \bar{e}_L) \phi M^e e_R + \bar{e}_R \bar{M}^e \bar{\phi} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{e}_L, \bar{\nu}_L) \phi^* M^{\nu} \nu_R + \bar{\nu}_R \bar{M}^{\nu} \phi^T \begin{pmatrix} -e_L \\ \nu_L \end{pmatrix} \right]$$
[Lepton masses]
+ $(\bar{u}_L, \bar{d}_L) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_L \\ d_L \end{pmatrix} + \bar{u}_R \sigma^{\mu} i D_{\mu} u_R + \bar{d}_R \sigma^{\mu} i D_{\mu} d_R + (h.c.)$ [Quark dynamics]
$$-\frac{\sqrt{2}}{v} \left[(\bar{u}_L, \bar{d}_L) \phi M^d d_R + \bar{d}_R \bar{M}^d \bar{\phi} \begin{pmatrix} u_L \\ d_L \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{d}_L, \bar{u}_L) \phi^* M^u u_R + \bar{u}_R \bar{M}^u \phi^T \begin{pmatrix} -d_L \\ u_L \end{pmatrix} \right]$$
Quark masses]
+ $(\overline{D_{\mu} \phi) D^{\mu} \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2 / 2v^2.$ [Higgs dynamics & mass]

Light masses: Higgs mechanism for lightest fermions (u,d,s,e;v's) to be proven

Open questions in the SM (2)

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \qquad [\text{Gauge interactions: U(1)}_{Y}, \text{SU(2)}_{L}, \text{SU(3)}_{c}] \\ + (\bar{\nu}_{L}, \bar{e}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} + \bar{e}_{R} \sigma^{\mu} i D_{\mu} e_{R} + \bar{\nu}_{R} \sigma^{\mu} i D_{\mu} \nu_{R} + (\text{h.c.}) \qquad [\text{Lepton dynamics}] \\ - \frac{\sqrt{2}}{v} \left[(\bar{\nu}_{L}, \bar{e}_{L}) \phi M^{e} e_{R} + \bar{e}_{R} \bar{M}^{e} \bar{\phi} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{e}_{L}, \bar{\nu}_{L}) \phi^{*} M^{\nu} \nu_{R} + \bar{\nu}_{R} \bar{M}^{\nu} \phi^{T} \begin{pmatrix} -e_{L} \\ \nu_{L} \end{pmatrix} \right] \qquad [\text{Lepton masses} \\ + (\bar{u}_{L}, \bar{d}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} + \bar{u}_{R} \sigma^{\mu} i D_{\mu} u_{R} + \bar{d}_{R} \sigma^{\mu} i D_{\mu} d_{R} + (\text{h.c.}) \qquad [\text{Quark dynamics}] \\ - \frac{\sqrt{2}}{v} \left[(\bar{u}_{L}, \bar{d}_{L}) \phi M^{d} d_{R} + \bar{d}_{R} \bar{M}^{d} \bar{\phi} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{d}_{L}, \bar{u}_{L}) \phi^{*} M^{u} u_{R} + \bar{u}_{R} \bar{M}^{u} \phi^{T} \begin{pmatrix} -d_{L} \\ u_{L} \end{pmatrix} \right] \qquad [\text{Quark masses}] \\ + (\bar{D}_{\mu} \phi) D^{\mu} \phi \left[-\frac{m_{h}^{2} [\bar{\phi} \phi - v^{2}/2]^{2} / 2v^{2}} \right] \qquad [\text{Higgs dynamics \& mass]}$$

Light masses: Higgs mechanism for lightest fermions (u,d,s,e;v's) to be proven
 Higgs potential: Higgs triple & quartic self-couplings to be measured

Open questions in the SM (3)

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \qquad [\text{Gauge interactions: U(1)}_{Y}, \text{SU(2)}_{L}, \text{SU(3)}_{c}] \\ + (\bar{\nu}_{L}, \bar{e}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} + \bar{e}_{R} \sigma^{\mu} i D_{\mu} e_{R} + \bar{\nu}_{R} \sigma^{\mu} i D_{\mu} \nu_{R} + (\text{h.c.}) \qquad [\text{Lepton dynamics}] \\ - \frac{\sqrt{2}}{v} \left[(\bar{\nu}_{L}, \bar{e}_{L}) \phi M^{e} e_{R} + \bar{e}_{R} \bar{M}^{e} \phi \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{e}_{L}, \bar{\nu}_{L}) \phi^{*} M^{\nu} \nu_{R} + \bar{\nu}_{R} \bar{M}^{\nu} \phi^{T} \begin{pmatrix} -e_{L} \\ \nu_{L} \end{pmatrix} \right] \qquad [\text{Lepton masses}] \\ + (\bar{u}_{L}, \bar{d}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} + \bar{u}_{R} \sigma^{\mu} i D_{\mu} u_{R} + \bar{d}_{R} \sigma^{\mu} i D_{\mu} d_{R} + (\text{h.c.}) \qquad [\text{Quark dynamics}] \\ - \frac{\sqrt{2}}{v} \left[(\bar{u}_{L}, \bar{d}_{L}) \phi M^{d} d_{R} + \bar{d}_{R} \bar{M}^{d} \phi \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{d}_{L}, \bar{u}_{L}) \phi^{*} M^{u} u_{R} + \bar{u}_{R} \bar{M}^{u} \phi^{T} \begin{pmatrix} -d_{L} \\ u_{L} \end{pmatrix} \right] \qquad [\text{Quark masses}] \\ + (\bar{D}_{\mu} \phi) D^{\mu} \phi \left[- \frac{m_{h}^{2} [\bar{\phi} \phi - v^{2}/2]^{2} / 2v^{2}} \right] \qquad [\text{Higgs dyn. \& mass]} \qquad + \text{new particles/symmetries ?}$$

Light masses: Higgs mechanism for lightest fermions (u,d,s,e;v's) to be proven

- **×** Higgs potential: Higgs triple & quartic self-couplings to be measured
- **×** <u>Fine-tuning</u>: Higgs mass virtual corrections «untamed» up to Planck scale

Open questions in the SM (4)

$$\mathcal{L} = -\frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{8}tr(\mathbf{W}_{\mu\nu}\mathbf{W}^{\mu\nu}) - \frac{1}{2}tr(\mathbf{G}_{\mu\nu}\mathbf{G}^{\mu\nu}) \qquad [\text{Gauge interactions: U(1)}_{Y}, \text{SU(2)}_{L}, \text{SU(3)}_{c}] \\ + (\bar{\nu}_{L}, \bar{e}_{L})\tilde{\sigma}^{\mu}iD_{\mu}\begin{pmatrix}\nu_{L}\\e_{L}\end{pmatrix} + \bar{e}_{R}\sigma^{\mu}iD_{\mu}e_{R} + \bar{\nu}_{R}\sigma^{\mu}iD_{\mu}\nu_{R} + (\text{h.c.}) \qquad [\text{Lepton dynamics}] \\ - \frac{\sqrt{2}}{v}\left[(\bar{\nu}_{L}, \bar{e}_{L})\phi M^{e}e_{R} + \bar{e}_{R}\bar{M}^{e}\bar{\phi}\begin{pmatrix}\nu_{L}\\e_{L}\end{pmatrix}\right] - \frac{\sqrt{2}}{v}\left[(-\bar{e}_{L}, \bar{\nu}_{L})\phi^{*}M^{\nu}\nu_{R} + \bar{\nu}_{R}\bar{M}^{\nu}\phi^{T}\begin{pmatrix}-e_{L}\\\nu_{L}\end{pmatrix}\right] \qquad [\text{Lepton masses}] \\ + (\bar{u}_{L}, \bar{d}_{L})\tilde{\sigma}^{\mu}iD_{\mu}\begin{pmatrix}u_{L}\\d_{L}\end{pmatrix} + \bar{u}_{R}\sigma^{\mu}iD_{\mu}u_{R} + \bar{d}_{R}\sigma^{\mu}iD_{\mu}d_{R} + (\text{h.c.}) \qquad [\text{Quark dynamics}] \\ - \frac{\sqrt{2}}{v}\left[(\bar{u}_{L}, \bar{d}_{L})\phi M^{d}d_{R} + \bar{d}_{R}\bar{M}^{d}\bar{\phi}\begin{pmatrix}u_{L}\\d_{L}\end{pmatrix}\right] - \frac{\sqrt{2}}{v}\left[(-\bar{d}_{L}, \bar{u}_{L})\phi^{*}M^{u}u_{R} + \bar{u}_{R}\bar{M}^{u}\phi^{T}\begin{pmatrix}-d_{L}\\u_{L}\end{pmatrix}\right] \qquad [\text{Quark masses}] \\ + \overline{(D_{\mu}\phi)}D^{\mu}\phi - m_{h}^{2}[\bar{\phi}\phi - v^{2}/2]^{2}/2v^{2}. \qquad [\text{Higgs dyn. \& mass]} + \text{new particles/symmetries ?}$$

× Light masses: Higgs mechanism for lightest fermions (u,d,s,e;v's) to be proven

- **×** Higgs potential: Higgs triple & quartic self-couplings to be measured
- **×** <u>Fine-tuning</u>: Higgs mass virtual corrections «untamed» up to Planck scale
- X <u>Dark matter</u>: SM describes only 4% of Universe (visible fermions+bosons): Higgs portal to dark world?

Open questions in the SM

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu})$$
 [Gauge interactions: U(1)_Y, SU(2)_L, SU(3)_c]
 $+ (\bar{\nu}_L, \bar{e}_L) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} + \bar{e}_R \sigma^{\mu} i D_{\mu} e_R + \bar{\nu}_R \sigma^{\mu} i D_{\mu} \nu_R + (h.c.)$ [Lepton dynamics]
 $- \frac{\sqrt{2}}{v} \left[(\bar{\nu}_L, \bar{e}_L) \phi M^e e_R + \bar{e}_R \bar{M}^e \bar{\phi} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{e}_L, \bar{\nu}_L) \phi^* M^{\nu} \nu_R + \bar{\nu}_R \bar{M}^{\nu} \phi^T \begin{pmatrix} -e_L \\ \nu_L \end{pmatrix} \right]$ [Lepton masses]
 $+ (\bar{u}_L, \bar{d}_L) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_L \\ d_L \end{pmatrix} + \bar{u}_R \sigma^{\mu} i D_{\mu} u_R + \bar{d}_R \sigma^{\mu} i D_{\mu} d_R + (h.c.)$ [Quark dynamics]
 $- \frac{\sqrt{2}}{v} \left[(\bar{u}_L, \bar{d}_L) \phi M^d d_R + \bar{d}_R \bar{M}^d \bar{\phi} \begin{pmatrix} u_L \\ d_L \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{d}_L, \bar{u}_L) \phi^* M^u u_R + \bar{u}_R \bar{M}^u \phi^T \begin{pmatrix} -d_L \\ u_L \end{pmatrix} \right]$ [Quark masses]
 $+ (\bar{D}_\mu \phi) D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2 / 2v^2.$ [Higgs dyn. & mass] + new particles/symmetries ?

Light masses: Higgs mechanism for lightest fermions (u,d,s,e;v's) to be proven

- **×** Higgs potential: Higgs triple & quartic self-couplings to be measured
- **×** Fine-tuning: Higgs mass virtual corrections «untamed» up to Planck scale
- Dark matter: SM describes only 4% of Universe (visible fermions+bosons) Higgs portal to dark world?

Some/Most(?) of these questions will not be fully answered at the LHC

CERN Future Circular Collider (FCC) project

Solving those & others HEP open problems requires higher-energy collider:

- 100 km ring, Nb₃Sn 16 T magnets, LHC used as injector:
- pp at $\sqrt{s=100 \text{ TeV}}$, L~2x10³⁵, L_{int}=2 ab⁻¹/yr (also pPb, PbPb at $\sqrt{s}=39-63 \text{ TeV}$)
- e⁺e⁻ option (before pp) at √s=90–350 GeV -L~10³⁵–4·10³⁶, L_{int}=1–40 ab⁻¹/yr for H, Z
- e-h collider option at $\sqrt{s=3.5 \text{ TeV}}$, L~10³⁴

Why new e⁺e⁻ colliders ?

- New physics (NP): Hiding well ? Beyond present reach ? At larger masses? At smaller couplings? Or both?
- Electron-positron colliders:
 - **Direct** model-indep. discovery of new particles coupling to Z^*/γ^* up to $m^{-1}/s/2$
 - Low, very-well understood backgrounds: Fill "blind spots" in p-p searches
 - → Indirect NP constraints via virtual corrections. From generic EFT $L_{eff} = \sum \frac{c_n}{\Lambda^2} O_n$

New <u>scalar-coupled</u> physics: $\Lambda \gtrsim (1 \text{ TeV})/\sqrt{(\delta g_{_{HXX}}/g_{_{HXX}}^{_{SM}})/5^{9}}$ HL-LHC: ~5% deviations of Higgs couplings wrt. SM $\Rightarrow \Lambda > 1$ TeV With 10⁶ Higgs: ~0.1% Higgs couplings precision $\Rightarrow \Lambda > 7$ TeV

New <u>electroweak-coupled</u> physics: $\Lambda \propto (1~{
m TeV})/\sqrt{\delta X}$

NP excluded below $\Lambda \sim 3$ TeV by current EWK precision fit.

```
e<sup>+</sup>e<sup>-</sup> with R~80–100 km:
×10<sup>4</sup> more stats. (10<sup>8</sup> W's, 10<sup>11</sup> Z's) 
×10<sup>2</sup> precision w.r.t. LEP (10<sup>4</sup> W's, 10<sup>7</sup> Z's)
i.e. \Lambda >30 TeV
```


Circular vs. linear e⁺e⁻ colliders

HiggsCouplings'17, Heidelberg, Nov'17

FCC-ee exploits lessons & recipes from past e⁺e⁻ and *pp* colliders

FCC-ee physics programme in a nutshell

HiggsCouplings'17, Heidelberg, Nov'17

David d'Enterria (CERN)

FCC-ee = Higgs boson factory

- Cross section: $\sigma(e^+e^-\rightarrow H+X) \approx 200 + 50 \text{ fb}$
- Large number of Higgs produced: ~2.10⁶, with small & controlled backgrounds, plus no pileup:

HiggsCouplings'17, Heidelberg, Nov'17

Open SM issue (1): Generation of lightest fermion (u,d,s, v's) masses

LHC can only access 3rd (plus few 2nd)-gen.Yukawas. What about the rest?

1st-generation quark Yukawa couplings

 1^{st} & 2^{nd} gen. quark Yukawa accessible via exclusive $H \rightarrow V\gamma$, $V=\rho,\omega,\phi$

[G. Perez et al, arXiv:1505.06689]

Mode	Branching Fraction [10 ⁻⁶]		
Method	LCDA LO [170]	LCDA NLO [173]	
$\operatorname{Br}(H \to \rho^0 \gamma)$	19.0 ± 1.5	16.8 ± 0.8	
${\rm Br}(H o \omega \gamma)$	1.60 ± 0.17	1.48 ± 0.08	
$\operatorname{Br}(H \to \phi \gamma)$	3.00 ± 0.13	2.31 ± 0.11	

• $H \rightarrow \rho(\pi\pi)\gamma$ channel most promising: N~40 counts expected, low backgds

- Sensitivity to u/d quark Yukawa couplings: $\frac{BR_{h\to\rho\gamma}}{BR_{h\to b\bar{b}}} = \frac{\kappa_{\gamma} \left[(1.9 \pm 0.15) \kappa_{\gamma} - \frac{0.24 \bar{\kappa}_u - 0.12 \bar{\kappa}_d}{0.57 \bar{\kappa}_b^2} \times 10^{-5} \right]}{(\kappa_a = y_a / y_b)}$
- All channels also accessible with higher stats at FCC-pp, but much worse backgrounds (QCD and pileup).

e Yukawa via s-channel $e^+e^- \rightarrow H$ production

Higgs decay to e+e- is unobservable: BR(H→e⁺e⁻) ≈ 5·10⁻⁹
 Resonant Higgs production considered so far only for muon collider: σ(μμ→H) ≈ 70 pb. Tiny g_{eH} Yukawa coupling ⇒ Tiny σ(ee→H):

$$\sigma(e^+e^- \to H) = \frac{4\pi\Gamma_H^2 Br(H \to e^+e^-)}{(\hat{s} - M_H^2)^2 + \Gamma_H^2 M_H^2} = 1.64 \text{ fb (m}_{H} = 125 \text{ GeV, } \Gamma_{H} = 4.2 \text{ MeV})$$

= Huge luminosities available at FCC-ee:

In theory, FCC-ee running at H pole-mass $L_{int} \approx 45 \text{ ab}^{-1}/\text{yr}$ would produce O(75.000) H's

X=W.Z.b.q

IFF we can handle: (i) beam-energy spread, (ii) ISR, and (iii) huge backgrounds, then:

→ Electron Yukawa coupling measurable?

→ Higgs width measurable (threshold scan)?

→ Separation of possible nearly-degen. H's?

s-channel $e^+e^- \rightarrow H$ visible cross section

- $\sigma(e^+e^- \rightarrow H) = 1.64$ fb for Breit-Wigner with $\Gamma_{\mu} = 4.2$ MeV width. Higgs production greatly suppressed off resonant peak.
- Convolution of Gaussian energy spread of each e[±] beam with Higgs B.-W. results on a (Voigtian) effective cross-section decrease:

HiggsCouplings'17, Heidelberg, Nov'17

s-channel $e^+e^- \rightarrow H$ visible cross section

s-channel e⁺e⁻→H measurement at FCC(125 GeV)

PYTHIA8 e^+e^- at $\sqrt{s} = m_{H}^- = 125$ GeV to generate 10 final-states for Higgs signal plus backgrounds ($e^+e^- \rightarrow WW^*$, ZZ*, $\gamma\gamma$, gg, $\tau\tau$, bb, cc, qq):

BACKGROUNDS

Exclusive e⁺e⁻ (2,4) k_τ jet algorithm. Realistic b,c,q,τ (mis)reco efficiencies
 Reducible backgrounds:

– Cuts on single & pair jets, leptons kin.vars: $p_{T,i}$, η_i , ϕ_i , mass_i, charge, Δr_{isol} ,

 $p_{T,max}$, $p_{T,min}$, η_{max} , η_{min} , ϕ_{max} , ϕ_{min} , m_{inv} , $cos(\theta_{ij})$, $\Delta \eta_i$, $\Delta \phi_i$, H_T

- Global evt variables: E_{tot} , (ME, m_{ME}), sphericity, aplanarity, thrust min,max...
- Irreducible continuum background: MVA BTD

HiggsCouplings'17, Heidelberg, Nov'17

Most significant channel: $e^+e^- \rightarrow H(WW^*) \rightarrow Ivjj$

Final state (retains 80% of σ (WW*(Ivjj)) = 28 ab): 1 isolated e, μ , τ (e), τ (μ) + ME>2 GeV + 2 jets (excl.)

Analysis cuts:

- ✓ $E_{j1,j2}$ < 52,45 GeV ¬ Kills e⁺e⁻→qq̄ ✓ $m_{w(lv)}$ > 12 GeV/c² ¬ Kills e⁺e⁻→qq̄ ✓ E_{lepton} > 10 GeV ¬ Kills e⁺e⁻→qq̄ ✓ ME > 20 GeV ¬ Kills e⁺e⁻→qq̄ ✓ m_{ME} < 3 GeV/c² ¬ Kills e⁺e⁻→ττ
- ✓ BDT MVA ¬ Kills e⁺e⁻→WW^{*} continuum (exploits opposite W[±] polarizations in H decay)
- Signal & backgrounds before/after cuts:

qq:	σ = 22 pb	\Rightarrow	$\sigma(after) = 4 ab$
ττ:	$\sigma = 1 \text{ pb}$	\Rightarrow	$\sigma(after) = 2.6 ab$
WW*:	σ = 16.3 ft	$c \Rightarrow$	$\sigma(after) = 2.7 \text{ fb}$
H(WW*):	σ = 23 ab	\Rightarrow	$\sigma(after) = 8 ab$

Decays of a 125 GeV Standard-Model Higgs boson

For L_{int}=10 ab⁻¹
S/
$$\sqrt{B} = 80/\sqrt{27.e3} \approx 0.5$$

Significance ≈ 0.5

e[±] Yukawa coupling at FCC-ee(125)

Counting experiment combining signal+backgd in 10 Higgs decay channels:

Significance on e-Yukawa coupling:

$$3\sigma$$
 evidence requires $L_{int} = 90 \text{ ab}^{-1}$

HiggsCouplings'17, Heidelberg, Nov'17

Higgs couplings to heavy-neutrinos

- (Symmetry-protected) low-mass seesaw scenario with 2 sterile v (N_i): large neutrino Yukawa couplings & masses: $y_v \approx 10^{-3}$, $m_N \approx 10^2$ GeV
- N_i decay to Higgs+v. Signature: mono-Higgs(jj) plus missing energy

FCC-ee sensitivity down to $|y_{ve}| \sim 5 \times 10^{-3}$ for unexplored $m_N \sim 100 - 300$ GeV

Open SM issue (2): Higgs self-coupling

Higgs trilinear indirectly constrained through loop corrections to $\sigma(H+Z)$:

[M. McCullough, 2014]

Self-coupling correction δ_h : energy-dependent δ_z : energy-independent (distinguishable).

Tiny effect, but visible thanks to extreme (0.4%) precision on σ_{ZH} coupling reachable at FCC-ee.

Indirect limits on trilinear λ coupling at ~40% level combining 240+350GeV [G. Durieux, Wed. session]

FCC-ee

Higgs self-coupling through σ (H+Z)

FCC-ee + HL-LHC

 Higgs self-coupling constrained to within
 ~40%. Higher-energy
 e⁺e⁻ collisions required to reduce it to ~20%

[G. Durieux, Wed. session]

Addition of FCC-ee 240+350GeV Higgs cross section solves 2nd minimum on λ from HL-LHC data alone.

HiggsCouplings'17, Heidelberg, Nov'17

David d'Enterria (CERN)

Open issue in the SM (3): Hierarchy/Naturalness (BSM scalar-coupled physics)

Solved via many BSM realizations: SUSY, composite-H, little-H,...

Parametrize (B)SM as an Effective Theory:

$$\mathcal{L}_{\mathrm{Eff}} = \sum_{d=4}^{\infty} \frac{1}{\Lambda^{d-4}} \mathcal{L}_d = \mathcal{L}_{\mathrm{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \cdots$$

$$\mathcal{L}_d = \sum_i C_i^d \mathcal{O}_i \qquad \qquad [\mathcal{O}_i] = d$$

Indirect (loop) constraints on new physics coupled to Higgs:

$$\Lambda \gtrsim (1 \,\mathrm{TeV}) / \sqrt{(\delta g_{_{\mathrm{HXX}}} / g_{_{\mathrm{HXX}}}^{_{\mathrm{SM}}}) / 5\%}$$

~5% deviations of Higgs couplings wrt. SM: Λ >1 TeV

~0.1% Higgs couplings precision (~10⁶ Higgs) $\Rightarrow \Lambda$ >7 TeV

HiggsCouplings'17, Heidelberg, Nov'17

Precision H couplings, width, mass at FCC-ee

 e^+ **Recoil method** in H-Z(*ll*) unique to lepton collider: reconstruct H 4-mom. independent of H decay mode. High-precision (0.4%) $\sigma_{_{7H}}$ provides model-indep.

 g_7 coupling $\sigma(ee \rightarrow ZH) \propto g_7^2$, with ±0.2% uncert.

Total width (Γ_{μ}) with ~1% precision from combination of measurements $\sigma(ee \rightarrow ZH), \sigma(ee \rightarrow ZH \rightarrow ZZ^*), \Gamma_{H \rightarrow ZZ}: \sigma(e^+e^- \rightarrow HZ \rightarrow ZZZ) = \sigma(e^+e^- \rightarrow HZ) \times \frac{\Gamma(H \rightarrow ZZ)}{\Gamma}$ Limits in BR to invisible from missing mass: <0.5% (95% CL) Higgs mass (m_µ) from recoil mass in $Z \rightarrow \mu\mu$,ee

HiggsCouplings'17, Heidelberg, Nov'17

Ζ

H couplings, width, mass: FCC-ee vs. others

e⁺e⁻ colliders provide factor > 50 (10) improvement in precision w.r.t. model-dependent! LHC (HL-LHC) expectations:

	Parameter	Current*	HL-LHC*	FCC-ee	ILC	CEPC	CLIC
		7+8+13 TeV	$14 { m TeV}$	Baseline	Lumi upgrade	Baseline	Baseline
DdE, arXiv:17	01.02663]	$\mathcal{O}\left(70~\mathrm{fb^{-1}} ight)$	(3 ab^{-1})	(10 yrs)	(20 yrs)	(10 yrs)	(15 yrs)
	$\sigma({\rm HZ})$	_	_	0.4%	0.7%	0.5%	1.6%
	g _{zz}	10%	$2\!-\!4\%$	0.15%	0.3%	0.25%	0.8%
	g _{ww}	11%	2–5%	0.2%	0.4%	1.6%	0.9%
	g _{bb}	24%	5 - 7%	0.4%	0.7%	0.6%	0.9%
	g _{cc}	_	—	0.7%	1.2%	2.3%	1.9%
	$g_{\tau\tau}$	15%	5 - 8%	0.5%	0.9%	1.4%	1.4%
	$g_{t\bar{t}}$	16%	6 - 9%	13%	6.3%	_	4.4%
	$g_{\mu\mu}$	_	8%	6.2%	9.2%	17%	7.8%
	$g_{e^+e^-}$	_	—	<100%	_	_	_
	ggg	_	3–5%	0.8%	1.0%	1.7%	1.4%
	$g_{\gamma\gamma}$	10%	2–5%	1.5%	3.4%	4.7%	3.2%
	$g_{z_{\gamma}}$	_	10 - 12%	(*	to be determined	l)	9.1%
	$\Delta m_{_{\rm H}}$	$200 { m MeV}$	$50 { m MeV}$	11 MeV	$15 { m MeV}$	$5.9 { m MeV}$	$32 { m MeV}$
	$\Gamma_{\mathbf{H}}$	$<\!26~{ m MeV}$	5 - 8%	1.0%	1.8%	2.8%	3.6%
	Γ_{inv}	$<\!\!24\%$	< 6-8%	<0.45%	$<\!0.29\%$	< 0.28%	< 0.97%

Most precise $g_{ZZ} \sim 0.15\%$ coupling sets limit on new scalar-coupled physics at: $\Lambda \gtrsim (1 \text{ TeV}) / \sqrt{(\delta g_{HXX} / g_{HXX}^{SM}) / 5\%} > 6 \text{ TeV}$

Precision H properties: Concrete BSM bounds

FCC-ee precision measurements greatly improve scalar-coupled BSM limits.

4D-Composite Higgs models:

FCC-ee sensitivity on composite-scale parameter: f > 4–5 TeV

Benchmark SUSY models (CMSSM, NUHM1) Best Fit Predictions $h \rightarrow \gamma\gamma$ $h \rightarrow ZZ$

David d'Enterria (CERN)

Precision H properties: Generic BSM bounds

FCC-ee precision measurements greatly improve scalar-coupled BSM limits.

From H+EWPO combined:

NP bounds from FCC-ee Higgs:

David d'Enterria (CERN)

Open issue in the SM (4): Dark matter (Higgs-portal)

HiggsCouplings'17, Heidelberg, Nov'17

Dark Matter ($m_{DM} < m_{H}/2$) via H decays

Precision (<10⁻³ and <10⁻¹) measurements of invisible Z & H widths are best collider option to test any m_{DM} <m_{Z,H}/2 that couples via SM mediators.

HiggsCouplings'17, Heidelberg, Nov'17

David d'Enterria (CERN)

Summary

FCC provides unparalleled luminosities (up to 20 ab⁻¹) in e⁺e⁻ at c.m. energy 125–350 GeV for high-precision Higgs studies (down to ~0.15% uncert.): Testing SM (g_{1st-gen},λ₃), constraining scalar-coupled BSM up to multi-TeV:

HiggsCouplings'17, Heidelberg, Nov'17

33/33

David d'Enterria (CERN)

Backup slides

BSM reach at e⁺e⁻ colliders

- Indirect <u>searches through loops</u> in high-stats W, Z, H, top precision studies (<<1% accuracy) in very high-luminosity e⁺e⁻ collisions.
- Indirect constraints on new physics from generic EFT: $L_{eff} = \sum_{n} \frac{c_n}{\Lambda^2} O_n$

New <u>scalar-coupled</u> physics: $\Lambda \gtrsim (1 \, \text{TeV}) / \sqrt{(\delta g_{\text{HXX}} / g_{\text{HXX}}^{\text{SM}}) / 5\%}$

HL-LHC: ~5% deviations of Higgs couplings wrt. SM $\Rightarrow \Lambda > 1$ TeV With 10⁶ Higgs: ~0.1% Higgs couplings precision $\Rightarrow \Lambda > 7$ TeV

New <u>electroweak-coupled</u> physics: $\Lambda \propto (1~{
m TeV})/\sqrt{\delta X}$

NP excluded below $\Lambda \sim 3$ TeV by current EWK precision fit:

BSM reach at e⁺e⁻ colliders

- Indirect searches <u>through loops</u> in high-stats W, Z, H, top precision studies (<<1% accuracy) in very high-luminosity e⁺e⁻ collisions.
- Indirect constraints on new physics from generic EFT: $L_{eff} = \sum_{n} \frac{c_n}{\Lambda^2} O_n$

New <u>scalar-coupled</u> physics: $\Lambda \gtrsim (1 \, \text{TeV}) / \sqrt{(\delta g_{\text{HXX}} / g_{\text{HXX}}^{\text{SM}}) / 5\%}$

HL-LHC: ~5% deviations of Higgs couplings wrt. SM $\Rightarrow \Lambda > 1$ TeV With 10⁶ Higgs: ~0.1% Higgs couplings precision $\Rightarrow \Lambda > 7$ TeV

New <u>electroweak-coupled</u> physics: $\Lambda \propto (1~{
m TeV})/\sqrt{\delta X}$

NP excluded below $\Lambda_{\mbox{\tiny NP}} \sim$ 3 TeV by current EWK precision fit:

e⁺e⁻ circular collider with R~80–100 km: ×10⁴ more stats. (10⁸ W's, 10¹¹ Z's) ×10² precision w.r.t. LEP (10⁴ W's, 10⁷ Z's) i.e. Λ ~30 TeV

High-precision W, Z, top: FCC-ee uncertainties

[D.d'E., arXiv:1602.05043]

Exp. uncertainties (stat. uncert. ~negligible) improved by factors ×3–100:

Observable	Measurement	Current precision	FCC-ee stat.	Possible syst.	Challenge
$m_{ m z}~({ m MeV})$	Z lineshape	91187.5 ± 2.1	0.005	< 0.1	QED corr.
Γ_z (MeV)	Z lineshape	2495.2 ± 2.3	0.008	< 0.1	QED corr.
R_ℓ	Z peak	20.767 ± 0.025	0.0001	< 0.001	QED corr.
$R_{ m b}$	Z peak	0.21629 ± 0.00066	0.000003	< 0.00006	$g ightarrow { m b}ar{ m b}$
$N_{m u}$	Z peak	2.984 ± 0.008	0.00004	0.004	Lumi meas.
$N_{m u}$	$e^+e^- \rightarrow \gamma Z(inv.)$	2.92 ± 0.05	0.0008	< 0.001	-
$A^{\mu\mu}_{{f FB}}$	Z peak	0.0171 ± 0.0010	0.000004	< 0.00001	E_{beam} meas.
$lpha_{ m s}(m_{ m z})$	$R_\ell, \sigma_{ m had}, \Gamma_{ m z}$	0.1190 ± 0.0025	0.000001	0.00015	New physics
$1/\alpha_{\rm QED}(m_{\rm z})$	$A^{\mu\mu}_{_{\mathbf{FB}}}$ around Z peak	128.952 ± 0.014	0.004	0.002	EW corr.
$m_{ m w}~({ m MeV})$	WW threshold scan	80385 ± 15	0.3	< 1	QED corr.
$lpha_{ m s}(m_{ m W})$	$\Gamma_{\mathbf{W}}, B_{\mathbf{had}}^{\mathbf{W}}$	$B_{ m had}^{ m W} = 67.41 \pm 0.27$	0.00018	0.00015	CKM matrix
$m_{ m t}~({ m MeV})$	$tar{t}$ threshold scan	173200 ± 900	10	10	QCD
Γ_{t} (MeV)	$tar{t}$ threshold scan	1410^{+290}_{-150}	12	?	$lpha_{ m s}(m_{ m z})$
$y_{ m t}$	$tar{t}$ threshold scan	$\mu=2.5\pm1.05$	13%	?	$lpha_{ m s}(m_{ m z})$
$F_{1{ m V},2{ m V},1{ m A}}^{\gammat,Zt}$	$\mathrm{d}\sigma^{tar{t}}/\mathrm{dx}\mathrm{d}\mathrm{cos}(heta)$	4%–20% (LHC-14 TeV)	(0.1-2.2)%	(0.01–100)%	–

Theoretical developments needed to match expected experimental uncertainties

s-channel e⁺e⁻→H measurement at FCC(125 GeV)

Counting experiment over 10 decay channels:

Decays of a 125 GeV Standard-Model Higgs boson

 Other 2-jet final-state (cc) swamped by e⁺e⁻→ Z^{*}, γ^{*}→ cc (20 pb)
 Other 4-jet final-state (ZZ^{*}) swamped by e⁺e⁻→ Z^{*}, γ^{*}→ qq (100 pb), e⁺e⁻→ WW^{*},ZZ^{*} (20 fb)
 Rarer decays (4 t) have ~0 counts.
 HiggsCouplings'17, Heidelberg, Nov'17

1) bb (2 b-jets): σ = 156 ab Dominant bckgd (ee \rightarrow bb): σ =20 pb (S/B~10⁻⁵) **2) WW* (4j)**: σ = 28 ab Dominant bckgd (ee \rightarrow 4j): σ =16 fb (S/B~10⁻³) **3) WW* (2**ilv): $\sigma = 27$ ab Dom. bckgd (ee \rightarrow WW*): σ =20 fb (S/B~10⁻³) **4) WW* (2l2v)**: σ = 6.7 ab Dom. bckgd (ee \rightarrow WW*): σ =5 fb (S/B~10⁻³) **5) gg (2 jets)**: σ = 24 ab Dom. bckgd (ee \rightarrow "gg"): σ =0.9 pb (S/B~10⁻⁴) **6) ττ (2 τ-jets)**: σ = 7.5 ab Dom. bckgd (ee $\rightarrow \tau \tau$): $\sigma = 10 \text{ pb} (S/B \sim 10^{-7})$ **7) ZZ* (2j2ν)**: σ = 2.3 ab Dom. bckgd (ee \rightarrow ZZ^{*}): σ =213 ab (S/B~10⁻²) **8) ZZ* (2l2j)**: σ = 1.14 ab Dominant bckgd (ee \rightarrow ZZ^{*}): σ =114 ab (S/B~10⁻²) **9) ZZ* (2l2v)**: σ = 0.34 ab Dominant bckgd (ee $\rightarrow \tau \tau$): $\sigma = 10 \text{ pb}$ (S/B~10⁻⁸) **10) γγ (2 isolated γ)**: σ = 0.65 ab 38 Beominant bckgd (ee $\rightarrow \gamma \gamma$): $\sigma = 36 p_{0} (S \neq B = 10^{10} \text{ (S} \neq B = 10^{10} \text{ (S}$

ee→H significance: Multi-Channel Combination

Channels combination using Roostats-based tool for LHC Higgs analyses: Profile likelihood & hybrid significances all give ~identical results (very close to naive S/√B expectation, negligible background uncertainty).

Channel	Significance (1 ab ⁻¹)	Significance (10 ab ^{.1})
WW→lv2j,2l2v,4j	0.15⊕0.09⊕0.03	0.50⊕0.30⊕0.08
ZZ→2j2v,2l2j,2l2v	0.07⊕0.05⊕0.01	0.21⊕0.16⊕0.03
bb	0.03	0.10
gg	0.03	0.09
ττ	-	0.02
γγ	-	0.01
Combined	0.2	0.7

■ For 10 ab⁻¹: Significance ≈ 0.7 (preliminary, optimizations under study) Limit (95% CL) for branching ratio: $BR(H \rightarrow ee) < 2.8 \times BR_{SM}(H \rightarrow ee)$ Limit (95% CL) for SM Yukawa: $g_{eH} < 1.7 \times g_{eH,SM}$

HiggsCouplings'17, Heidelberg, Nov'17

David d'Enterria (CERN)

mono-chromatization at 2x63 GeV?

direct *s* channel Higgs production $e^+e^- \rightarrow H$

rms beam energy spread at 63 GeV \sim 30 MeV total width of SM Higgs $\Gamma \sim$ 4 MeV

effective collision energy spread is decreased by introducing opposite-sign IP dispersion

$$\frac{\sigma_W}{W} = \sqrt{\frac{2\varepsilon_x}{\left(\frac{D_x^{*2}}{\beta_x^{*}} + \frac{\varepsilon_x}{\sigma_{\epsilon}^{2}}\right)}}$$

-	E+AE	E-AE	-
e ⁻	E .	E	_ e ⁺
	E-AE	E+ΔE	-

first proposed by A. Renieri (1975); historical studies for VEPP4, SPEAR, LEP, τ -c factory;never tested experimentally

reducing cm energy spread x1/10 w/o loss of luminosity?! implementation for crab-waist scheme?

FCC Lepton Collider Design Frank Zimmermann CERN Academic Training February 2016

Beam energy spread via resonant depolarization

Resonant depolarization

- use naturally occuring transverse beam polarization
- add fast oscillating horizontal B field to depolarize at Thomas precession frequency

Experience from LEP: Depolarization resonance very narrow: ~100 keV precision for each measurement

- However, final systematic uncertainty was 1.5 MeV due to transport from dedicated polarization runs
- At FCC-ee, continuous calibration with dedicated bunches: no transport uncertainty

Energy [GeV]

Scaling from LEP experience:

Polarization expected up to the WW threshold

< 100 keV beam energy calibration at Z peak and at WW threshold

0.48

0.482

0.484

v - 101

FCC-ee beam energy spread

Non-destructive focusing and collision of beams: - Center-of-mass energy spread by construction modest

Precision Higgs couplings: FCC-ee vs. ILC

