Imperial College London

Higgs-to-Invisible and Dark Matter Searches with the CMS experiment at the LHC

RICCARDO DI MARIA ON BEHALF OF THE CMS COLLABORATION

IMPERIAL COLLEGE LONDON RICCARDO.DI.MARIA@CERN.CH

Higgs Couplings 2017, 6-10 November 2017, Heidelberg (Germany)

Contents

- Introduction
- Physics Background
- Higgs-to-Invisible Searches
- Combination and Dark Matter Interpretation
- Mono-Higgs and Dark Matter Searches
- Conclusions

Motivation

- Strong astrophysical evidence indicates that dark matter (DM) exists [1].
- There is no evidence yet for non-gravitational interactions between DM and standard model (SM) particles.

3

 The LHC provides an opportunity to probe these interactions by directly producing DM particles.

Why Higgs to Invisible?

- Higgs boson decays to invisible final states predicted by many beyond the SM (BSM) theories, where final state particles can be DM candidates.
- The Higgs boson (125 GeV) measurements are compatible with SM expectations.
- However, large uncertainties can accommodate BSM properties.
- BSM Higgs decays affect the total Higgs boson width.
- The SM branching ratio H(inv.) is ~0.12% (H(4v)).
- Invisibly decaying Higgs boson is a hint of new physics.

The CMS experiment

• All the CMS sub-detectors are vital for MET-searches.

Direct Searches

- Higgs boson has to recoil against a visible system.
- Missing transverse energy (MET) has to be present in the final state.

Direct Searches

- Higgs boson has to recoil against a visible system.
- Missing transverse energy (MET) has to be present in the final state.

- CMS EXO-16-052 [Submitted to Eur. Phys. J. C] uses 35.9/fb (2016 data).
- Leptons (opposite-sign same-flavour) coming from Z boson decay are expected to be isolated from hadronic activity in the event.
- There are many SM processes that mimic the dilepton+MET final state:
 - continuum ZZ(2*l*2v), irreducible background (60%);
 - WZ(*tvtl*), where *t* from W is mis-identified (25%);
 - others: WW($\ell \nu \ell \nu$), Top quark, Drell Yang Z/ $\gamma^*(\ell \ell)$.
- Methods based on control samples in data are used to estimate backgrounds.
- minΔφ(jet,MET) > 0.5 rad is used to further reduce background due to jet mismeasurement.
- *Method* A: A shape-based analysis binned in MET is employed to extract the final result.
- Method B: A multivariate classifier is employed to increase the sensitivity, using a set of 12 variables to train a multiclass boosted decision tree (BDT).
- $|m_{\ell\ell} m_Z|$ (dilepton mass);
- $p_{\rm T}^{\ell 1}$ (leading lepton transverse momentum);
- $p_{\rm T}^{\ell 2}$ (subleading lepton transverse momentum);
- $p_{\rm T}^{\ell\ell}$ (dilepton transverse momentum);
- $|\eta^{\ell 1}|$ (leading lepton pseudorapidity);
- $|\eta^{\ell 2}|$ (subleading lepton pseudorapidity);
- $E_{\rm T}^{\rm miss}$ (missing transverse energy);
- $m_T(p_T^{\ell_1}, E_T^{\text{miss}})$ (leading lepton transverse mass);
- $m_T(p_T^{\ell 2}, E_T^{\text{miss}})$ (subleading lepton transverse mass);
- $\Delta \phi(\vec{p_T}^{\ell}, \vec{p_T}^{miss})$ (azimuthal separation between dilepton and missing energy);
- $\Delta R_{\ell\ell}$ (separation between leptons); and
- $|\cos \theta_{\ell 1}^{CS}|$ (cosine of Collins–Soper angle for leading lepton).

Higgs boson mass [GeV]

• Method B: 0.40 (0.42).

Direct Searches

- Higgs boson has to recoil against a visible system.
- Missing transverse energy (MET) has to be present in the final state.

ggH(inv.)/V(jj)H(inv.)

- CMS PAS EXO-16-048 uses 35.9/fb (2016 data).
- The final state is characterised by: no leptons, at least one energetic jet (from ISR, or hadronic decays of a W or Z boson), and large MET.
- mono-V: MET > 250 GeV, conditions on leading fat-jet $(p_T > 250 \text{ GeV}, \eta < 2.4, 65 < m_J < 105 \text{ GeV}).$
- mono-jet: MET > 200 GeV, fails any of the mono-V fat-jet requirements.

Category	Expected signal composition				
mono-jet	72.82% ggH, 21.52% VBF, 3.31% WH, 1.94% ZH, 0.63% ggZH				
mono-V	38.71% ggH, 7.05% VBF, 32.90% WH, 14.62% ZH, 6.72% ggZH				

- Backgrounds to this search are: Z(vv)+jets, irreducible background, and W(&)+jets, where l from W is mis-identified (90%).
- CRs: dimuon, dielectron, single-muon, single-electron, and γ+jets.
- minΔφ(jet,MET) > 0.5 rad is used to reduce QCD multijet background in which large MET arises from jet mismeasurement.
- V+jets backgrounds are determined through a simultaneous maximum likelihood fit to all the CRs (hadronic recoil p_T, proxy) and SRs (MET).

monoiet

400

10⁵

10

10

Data / Pred.

Data-Pred.)

γ/Ζ, W/Ζ.

The observed (expected) 95% confidence ٠ level upper limit on $\mathcal{B}(H(inv.))$ is: mono-jet 0.74 (0.57), mono-V 0.49 (0.45), combined 0.53 (0.40).

Monoiet

Mono-V

Direct Searches

- Higgs boson has to recoil against a visible system.
- Missing transverse energy (MET) has to be present in the final state.

VBF H(inv.)

- CMS HIG-16-016 [JHEP 02 (2017) 135] uses 5.1, 19.7, and 2.3/fb (2015 data).
- The VBF channel is the most sensitive, with no colour connection between the jets which have a large pseudo-rapidity gap.
- The final state is characterised by: two jets with large pseudo-rapidity separation and large MET well-separated from any jets.
- The major backgrounds are:
 - Z(vv)+jets, irreducible background;
 - W(*tv*)+jets, where *t* from W is missed;
 - QCD multijet.
- minΔφ(jet,MET) > 2.3 rad is used to reduce QCD multijet background in which large MET arises from jet mismeasurement.

VBF H(inv.)

Process		Signal	Control regions					
		Region	Single e	Single μ	Single τ	$\mu^+\mu^-$	QCD	
$7(u^+u^-)$ tiots	QCD				—	4.2 ± 1.1	—	
$\Sigma(\mu \ \mu)$ +jets	EW					2.0 ± 0.7		
$\mathbf{Z}(1,1,1)$ isto	QCD	47 ± 12						
$\Sigma(\nu\nu)$ +jets	EW	21 ± 7						
M(111) Lists	QCD	13 ± 2		53 ± 5	0.4 ± 0.2		45 ± 5	
$vv(\mu v)$ +jets	EW	4.3 ± 0.8		27 ± 3	_		6.0 ± 0.9	
M(au) lists	QCD	9.3 ± 1.5	17 ± 3		0.2 ± 2.2		39 ± 4	
w(ev)+jets	EW	5.4 ± 1.1	7.8 ± 1.3		0.2 ± 0.1		6.1 ± 1.0	
$\mathbf{W}(\boldsymbol{\tau}_{1})$ lieto	QCD	13 ± 2	0.06 ± 0.06		12 ± 2		74 ± 9	
$VV(\tau v)$ +jets	EW	5.5 ± 1.2			5.1 ± 1.2		24 ± 3	
Top quark		2.3 ± 0.4	1.5 ± 0.3	6.8 ± 0.9	7.1 ± 1.0	0.22 ± 0.06	82 ± 11	
QCD multijet		3 ± 23		5 ± 3	0.4 ± 0.3		1200 ± 170	
Dibosons		0.7 ± 0.3	0.4 ± 0.4	0.8 ± 0.4	_	0.02 ± 0.02	1.8 ± 0.7	
Total bkg.		125 ± 28	27 ± 3	91 ± 8	25 ± 4	6.4 ± 1.4	1500 ± 170	
Data		126	29	89	24	7	1461	
Signal	qqH	53.6 ± 4.9				,		
$m_{\rm H} = 125 {\rm GeV}$	ggH	5.4 ± 3.6						

- The search is based on a cut-and-count method, and no significant excess of events is observed over the SM expectation.
- The observed (expected) 95% confidence level upper limit on $\mathcal{B}(H(inv.))$ assuming SM production rate is: 0.44 (0.31) for the combination of Run1 + Run2-2015 VBF-only H(inv.).

• CMS HIG-16-016 [JHEP 02 (2017) 135]

• The data collected corresponds to integrated luminosities of 5.1, 19.7, and 2.3 /fb at centre-of-mass energies of 7, 8, and 13 TeV respectively.

Analysis	Final state	Int. \mathcal{L} (fb ⁻¹)		Expected signal composition (%)			
		7 TeV	8 TeV	13 TeV	7 or 8 TeV	13 TeV	
qqH-tagged	VBF jets		19.2 [17]	2.3	7.8 (ggH), 92.2 (qqH)	9.1 (ggH), 90.9 (qqH)	
	$Z(\ell^+\ell^-)$	4.9 [17]	19.7 [17]	2.3	100	(ZH)	
VH-tagged	$Z(bar{b})$		18.9 [17]		100 (ZH)		
	V(jj)	—	19.7 [61]	2.3	25.1 (ggH), 5.1 (qqH),	38.7 (ggH), 7.1 (qqH),	
					23.0 (ZH), 46.8 (WH)	21.3 (ZH), 32.9 (WH)	
ggH-tagged	Monojet		19.7 [61]	2.3	70.4 (ggH), 20.4 (qqH),	69.3 (ggH), 21.9 (qqH),	
					3.5 (ZH), 5.7 (WH)	4.2 (ZH), 4.6 (WH)	

 The observed (expected) 95% confidence level upper limit on *B*(H(inv.)) assuming SM production rate is: 0.24 (0.23).

DM Interpretation

- $\mathcal{B}(H(inv.))$ translated into DM-nucleon spin-independent cross-section limits as a function of DM mass (90% CL to compare to direct detection experiments).
- Use Higgs-Portal models [9] assuming scalar/fermion DM.
- LHC limits complementary to direct detection experiments.

mono-H(bb+ $\gamma\gamma$) + DM

- CMS EXO-16-012 [accepted by JHEP, arXiv 1703.05236] uses 2.3/fb (2015 data).
- <u>H(bb)</u>:
 - It has the largest branching fraction (~58%), but with relatively poor mass resolution (~10%).
 - The final state is characterised by: jet(s) in the boosted (resolved) regime with $p_T^{j(j)} > 150$ (200) GeV, and large MET.
 - Backgrounds:
 - VH is an irreducible background;
 - Z(vv)+jets, Top quark, and W+jets CRs (or Top quark + W+jets) for the resolved (boosted) regime.
 - Signal and backgrounds events are compared to data and fitted simultaneously in the SR and CRs in three p_T^{miss} bins for both resolved and boosted regimes.

mono-H(bb+ $\gamma\gamma$) + DM

- CMS EXO-16-012 [accepted by JHEP, arXiv 1703.05236] uses 2.3/fb (2015 data).
- <u>H(yy)</u>:
 - It has a small branching fraction (~0.2%), but with high precision in reconstructed m_{yy} (resolution 1-2%).
 - The search seeks excess of events over SM prediction in spectrum $m_{\gamma\gamma}$, large MET.
 - Backgrounds:
 - main source arises from jets with high-EM energy content;
 - VH is an irreducible background;
 - resonant backgrounds arise from decays of the SM Higgs boson to two photons;
 - there are several non-resonant backgrounds: dijet and multijet; EWK (t)t,
 (Z)Z, or W+(γ)γ; γγ and γ+jets; and DY+jets.

- Signal and resonant backgrounds are estimated through counting approach in SR, using $p_T^{\gamma\gamma}$, $m_{\gamma\gamma}$ and MET as discriminating variables.
- Control samples in data are used to estimate reducible background.

mono-H(bb+ $\gamma\gamma$) + DM

- The results have been interpreted using a benchmark "simplified model" [7]: Z'-two-Higgs-doublet-model [8].
- The results are interpreted in terms of an upper limit on the production cross section of DM candidates in association with a Higgs boson via Z'(AH).

• For m_A =300 GeV, the observed data exclude 600 < $m_{Z'}$ < 1860 GeV using $g_{Z'}$ =0.8, and 770 < $m_{Z'}$ < 2040 GeV using the constrained value of $g_{Z'}$.

mono-H($\gamma\gamma$) + DM

- CMS PAS EXO-16-054 uses 35.9/fb (2016 data).
- A new result for H(γγ) using an additional interpretation (Baryonic Z' model).

- Z'-2HDM: for $m_A = 300$ GeV, the observed data exclude $m_{Z'} < 900$ GeV using $g_{Z'}=0.8$
- Z_{B}' : for $m_{\chi} = 1$ GeV, the observed data exclude $m_{Z'} < 800$ GeV using $g_{q} = 0.25$.

Conclusions

• Direct searches for Higgs boson decays to invisible final states have been carried out in the three main production channels.

Channel	Observed (Expected) Upper Limit @ 95% CL on ${\mathcal B}({\sf H}({\sf inv.}))$		
ZH (MVA-BDT)	0.40 (0.42)		
mono-jet + mono-V	0.53 (0.40)		
VBF (Run1 + Run2-2015)	0.44 (0.31)		
Combination	0.24 (0.23)		

- Using Z'-two-Higgs-doublet-model, a combination of mono-H searches excludes:
 - $600 < m_{Z'} < 1860 \text{ GeV}$ using $g_{Z'}=0.8$;
 - 770 < $m_{Z'}$ < 2040 GeV using the constrained value of $g_{Z'}$.
- Using Z_B' model, mono-H($\gamma\gamma$) excludes $m_{Z'}$ < 800 GeV.

Backup Slides

References

[1] G. Hinshaw et al., "Nine-year Wilkinson Microwave Anisotropy Probe
(WMAP) Observations: Cosmological Parameter Results", Astrophys. J. Suppl. 208
(2013) 19, doi:10.1088/0067-0049/208/2/19, arXiv:1212.5226.

[2] T. Junk, "Confidence level computation for combining searches with small statistics", *Nucl. Instrum. Meth. A* **434** (1999) 435, doi:10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006.

[3] A. L. Read, "Presentation of search results: the *CLs* technique", *J. Phys. G* **28** (2002) 2693, doi:10.1088/0954-3899/28/10/313.

[4] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, "Asymptotic formulae for likelihood-based tests of new physics", *Eur. Phys. J. C* **71** (2011) 1554,

doi:10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727. [Erratum:

doi:10.1140/epjc/s10052-013-2501-z].

[5] ATLAS and CMS Collaborations, LHC Higgs Combination Group, "Procedure for the LHC Higgs boson search combination in Summer 2011", Technical Report ATL-PHYS-PUB-2011-11, CMS NOTE 2011/005, 2011.

[6] CMS Collaboration, "Search for new physics with jets and missing transverse momentum in pp collisions at Vs = 7 TeV", JHEP **08** (2011) 155, doi:10.1007/JHEP08(2011)155, arXiv:1106.4503.

References

[7] D. Abercrombie et al., "Dark matter benchmark models for early LHC Run-2 searches: report of the ATLAS/CMS dark matter forum", (2015) arXiv:1507.00966.
[8] A. Berlin, T. Lin, and L.-T. Wang, "Mono-Higgs detection of dark matter at the LHC", JHEP 06 (2014) 078, doi:10.1007/JHEP06(2014)078, arXiv:1402.7074.
[9] A. Djouadi et al., "Implications of LHC searches for Higgs--portal dark matter", *Phys. Lett. B* 709 (2012) 65-69, arXiv:1112.3299

Dark Matter

- The dark matter is supposed to be a thermal relic of the early Universe.
- The comparison between direct and indirect detection is model dependent.
- A theoretical guidance is needed (LHC DM forum).

arXiv:1603.04156

CL_S method

- The limit is computed using the modified frequentist approach CL_s (confidence level) [2,3] based on asymptotic formulas [4,5], exploiting a simultaneous maximum likelihood fit to the signal region as well as the control regions, in which the systematic uncertainties are incorporated as nuisance parameters.
- Perform a single bin counting experiment assuming $B(H \rightarrow inv.) = 100\%$.
- CL_s statistic is used, which is the number of times more likely the signal hypothesis is than the background hypothesis.

$$CL_s = rac{P(q_\mu \geqslant q_\mu^{obs} | \mu \cdot s + b)}{P(q_\mu \geqslant q_\mu^{obs} | b)} \qquad \qquad q_\mu = -2 \ln rac{\mathcal{L}(obs | \mu \cdot s + b, \hat{ heta}_\mu)}{\mathcal{L}(obs | \hat{\mu} \cdot s + b, \hat{ heta})}$$

• Excluding signal models which are less than 5% likely to give data means to exclude everything with $CL_{S+B} < 5\%$.

- The final state is characterised by:
 - pair of same-flavour, oppositely charged, isolated electrons or muons;

 - no additional leptons;
 - no high-p_T jets or b-tagged jets;
 - large MET.
- The event selection is optimised using three main variables (to mainly face DY and Top quark), and leading to the criteria:
 - MET > 100 GeV;
 - Δφ(ℓℓ,MET) > 2.6 (2.8, CMS PAS EXO-16-038) rad;
 - $|MET-p_T^{\ell}|/p_T^{\ell} < 0.4.$
- minΔφ(jet,MET) > 0.5 rad is used to further reduce background due to jet mismeasurement.

• The kinematic selection requirements for the MET-based analysis are:

Variable	Selection	Reject
N_ℓ	= 2	WZ, VVV
al	>25/20 GeV (electrons)	QCD
p_{T}	>20 GeV (muons)	QCD
Z boson mass requirement	$ m_{\ell\ell}-m_Z < 15{ m GeV}$	WW, top quark
Jet counting	≤ 1 jet with $p_{ m T}^{ m J} > 30{ m GeV}$	$Z/\gamma^* ightarrow \ell\ell$, top quark, VVV
$p_{\mathrm{T}}^{\ell\ell}$	$> 60 \mathrm{GeV}$	$Z/\gamma^* o \ell\ell$
b tagging veto	CSVv2 < 0.8484	Top quark, VVV
au lepton veto	$0 \tau_{\rm h}$ candidates with $p_{ m T}^{ au} > 18 { m GeV}$	WZ
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 100 GeV	$Z/\gamma^* o \ell \ell$, WW, top quark
$\Delta \phi (ec{p_{\mathrm{T}}}^{\ell\ell},ec{p_{\mathrm{T}}}^{\mathrm{miss}})$	> 2.6	$Z/\gamma^* o \ell \ell$
$ E_{\mathrm{T}}^{\mathrm{miss}}-p_{\mathrm{T}}^{\ell\ell} /p_{\mathrm{T}}^{\ell\ell}$	< 0.4	$Z/\gamma^* o \ell \ell$
$\Delta \phi(\vec{p_{\rm T}}^j, \vec{p_{\rm T}}^{\rm miss})$	> 0.5 rad	$Z/\gamma^* o \ell \ell$, WZ
$\Delta R_{\ell\ell}$	< 1.8	WW, top quark

Source of up cortainty	Effect (%)				Impact on the	
		ZZ	WZ	Nonresonant	DY	expected limit
* VV electroweak corrections	-	10	-4	-	-	14 %
* Renorm./fact. scales, VV backgrounds	-	9	4	-	-	
* Renorm./fact. scales, Higgs boson signal	3.5	-	-	-	-	
* Renorm./fact. scales, dark matter signal	5	-	-	-	-	
* PDF, WZ background	-	-	1.5	-	-) 0/
* PDF, ZZ background	-	1.5	-	-	-	Ζ /0
* PDF, Higgs boson signal	1.5	-	-	-	-	
* PDF, dark matter signal	1-2	-	-	-	-	
* MC sample size, nonresonant	-	-	-	5	-	
* MC sample size, DY	-	-	-	-	30	
* MC sample size, ZZ	-	0.1	-	-	-	1 0/_
* MC sample size, WZ	-	-	2	-	-	1 /0
* MC sample size, Higgs boson signal	1	-	-	-	-	
* MC sample size, dark matter signals	3	-	-	-	-	
NRB extrapolation to the signal region	-	-	-	20	-	< 1 %
DY extrapolation to the signal region	-	-	-	-	100	< 1 %
Nonprompt WZ lepton (signal region)	-	-	3	-	-	< 1 %
Nonprompt backgrounds (WZ control region)	-	-	-	-	30	< 1 %
Integrated luminosity			2	.5		< 1 %
* Electron efficiency			1	.5		
* Muon efficiency				1		
* Electron energy scale	1-2					
* Muon energy scale	1-2					
* Jet energy scale	1-3 (typically anticorrelated with yield)					1 %
* Jet energy resolution	1 (typically anticorrelated)					
* Unclustered energy scale ($E_{\rm T}^{\rm miss}$)	1-4 (typically anticorrelated), strong in DY					
* Pileup		1 (typ	ically a	nticorrelated)		
* b mistag rate			0	.1		

30

* shape uncertainty

$$\begin{split} & \textbf{ggH(inv.)/V(jj)H(inv.)} \\ \mathcal{L}_{k}(\mu^{Z(\nu\bar{\nu})},\mu,\theta) = \prod_{i} \operatorname{Poisson} \left(d_{i}^{\gamma}|B_{i}^{\gamma}(\theta) + \frac{\mu_{i}^{Z(\nu\bar{\nu})}}{R_{i}^{\gamma}(\theta)} \right) \\ & \quad \times \prod_{i} \operatorname{Poisson} \left(d_{i}^{\mu\mu}|B_{i}^{\mu\mu}(\theta) + \frac{\mu_{i}^{Z(\nu\bar{\nu})}}{R_{i}^{\mu\mu}(\theta)} \right) \\ & \quad \times \prod_{i} \operatorname{Poisson} \left(d_{i}^{ee}|B_{i}^{ee}(\theta) + \frac{\mu_{i}^{Z(\nu\bar{\nu})}}{R_{i}^{ee}(\theta)} \right) \\ & \quad \times \prod_{i} \operatorname{Poisson} \left(d_{i}^{\mu}|B_{i}^{\mu}(\theta) + \frac{f_{i}(\theta)\mu_{i}^{Z(\nu\bar{\nu})}}{R_{i}^{\mu}(\theta)} \right) \\ & \quad \times \prod_{i} \operatorname{Poisson} \left(d_{i}^{e}|B_{i}^{e}(\theta) + \frac{f_{i}(\theta)\mu_{i}^{Z(\nu\bar{\nu})}}{R_{i}^{e}(\theta)} \right) \\ & \quad \times \prod_{i} \operatorname{Poisson} \left(d_{i}^{e}|B_{i}^{e}(\theta) + (1+f_{i}(\theta))\mu_{i}^{Z(\nu\bar{\nu})} + \mu S_{i}(\theta) \right) \end{split}$$

- Poisson(x|y) = $y^x e^{-y}/x!$
- d_i = observed number of events
- f_i = transfer factor/constrain between V+jets backgrounds
- R_i = transfer factor from the CR
- B_i = contributions from other backgrounds
- $\mu_i^{Z(vv)}$ = yield of Z(vv)+jets in each bin i of MET in SR this parameter is left floating in the fit
- S_i = nominal signal prediction
- $\mu_i^{Z(vv)}$ = signal strength parameter
- The systematic uncertainties are modeled as nuisance parameters (θ)

VBF H(inv.)

- Dedicated VBF trigger selects events with two jets with high rapidity gap and large dijet mass.
- Event selections for the VBF H(inv.) search at 8 and 13 TeV:

VBF H(inv.)

• Dominant sources of systematic uncertainties and their impact on the fitted value of $\mathcal{B}(H(inv.))$ in the VBF analysis at 13 TeV are:

Systematic uncertainty	Impact
Common	
W to Z ratio in QCD produced V+jets	13%
W to Z ratio in EW produced V+jets	6.3%
Jet energy scale and resolution	6.0%
QCD multijet normalisation	4.3%
Pileup mismodelling	4.2%
Lepton efficiencies	2.5%
Integrated luminosity	2.2%
Signal specific	
ggH acceptance	3.8%
Renorm. and fact. scales and PDF (qqH)	1.8%
Renorm. and fact. scales and PDF (ggH)	<0.2%
Total systematic	$^{+15}_{-19}\%$
Total statistical only	$^{+28}_{-27}$ %
Total uncertainty	+32 -33

Feynman diagrams for the combination of H(inv.) searches

- The 95% confidence level upper limit on $\mathcal{B}(H(inv.))$ is expressed as for different assumptions on production (non-SM).
- It shows the result of varying coupling modifiers of Higgs boson to SM fermions (κ_F) and vector bosons (κ_V) .

 The 95% confidence level upper limit on B(H(inv.)) varies between 20-30% within LHC couplings constraints.

mono-H($\gamma\gamma$) + DM

mono-H($\gamma\gamma$) + DM

Variable	Low- $p_{\rm T}^{\rm miss}$ Category	High- $p_{\rm T}^{\rm miss}$ Category
$p_{T1}/m_{\gamma\gamma}$	> 0.45	> 0.5
$p_{T2}/m_{\gamma\gamma}$	> 0.25	> 0.25
$p_{T\gamma\gamma}$	> 75 GeV	> 90 GeV
$p_{\mathrm{T}}^{\mathrm{miss}}$	[50,130] GeV	> 130 GeV

Higgs to invisible decays constraints

- LHC indirect limits on *B*(H(inv.)) (HIG-15-002): 0.34 (exp. 0.35) @ 95% CL
- VBF, VH and ggH production modes combined in Run-1
 CMS HIG-15-012: 0.36 (exp. 0.30) @ 95% CL
- ATLAS JHEP 1511 (2015) 206:

0.25 (exp. 0.27) @ 95% CL