Global EFT constraints at future lepton colliders

Gauthier Durieux (DESY)

1704.02333 with C.Grojean, J.Gu, K.Wang

1711.xxx with S.Di Vita, C.Grojean, J.Gu, Z.Liu, G.Panico, M.Riembau, T.Vantalon

Higgs Couplings 2017 Heidelberg, 6-10 Nov

Future lepton colliders

SM effective field theory

Parametrizes systematically

the theory space in direct vicinity of the SM

through a proper QFT.

- $\cdot\,$ employ the Higgs basis of dim-6 operators
- $\cdot\,$ focus on Higgs-related processes:

 $e^+e^-
ightarrow hZ, W^+W^-$ (incl. angular distributions) h
uar
u, htar t

$$h
ightarrow ZZ^*$$
, WW*, $\gamma\gamma$, γZ , gg, $bar{b}$, $car{c}$, $au^+ au^-$, $\mu^+\mu^-$

- $\cdot\,$ only relax flavour universality to distinguish Yukawa's
- $\cdot\,$ assume CPV, EW parameters, dipole operators are well constrained

 \rightarrow 13 parameters:

 $\Gamma_{XY}/\Gamma_{XY}^{\text{SM}} \sim 1 + 2\bar{c}_{XY} + \dots$

$$\begin{array}{cccc} \delta c_{Z} \;, \; c_{ZZ} \;, \; c_{Z\Box} \;, \\ \overline{c}_{\gamma\gamma} \;, \; \overline{c}_{Z\gamma} \;, \; \overline{c}_{gg} \;, \\ \delta y_{t} \;, \; \delta y_{c} \;, \; \delta y_{b} \;, \; \delta y_{\tau} \;, \; \delta y_{\mu} \;, \\ \lambda_{Z} \;, \delta \kappa_{\lambda} \end{array}$$

Global determinant parameter

In a *n*-dimensional Gaussian fit, with covariance matrix V, GDP $\equiv \sqrt[2n]{\det V}$ provides a geometric average of the constraints strengths.

Interestingly, GDP ratios are operator-basis independent!

- · as the volume scales linearly with coefficient normalization
- $\cdot \,$ as the volume is invariant under rotations

 \implies convenient to assess constraints strengthening.

Global constraints (without Higgs self-coupling)

- importance of complementary measurements (different c.o.m. energies, polarizations, distributions)
- importance of diboson measurement precision (not studied much by exp. collaborations)
- order of magnitude improvement wrt LHC on δc_Z , δc_{ZZ} , $\delta c_{Z\Box}$, δy_b , δy_{τ} , λ_Z
- LHC helps for $\bar{c}_{\gamma\gamma}$, δy_{μ} , and δy_t (below 500 GeV!)

Higgs self-coupling: low energies

- · NLO sensitivity (finite and gauge-invariant NLO EW subset)
- $\cdot\,$ dominated by $e^+e^- \to h Z$ at threshold

200

 $\Sigma_{\rm NLO} / \Sigma_{\rm NLO}^{\rm SM} \simeq 1 + (C_1 - 0.0031) \delta \kappa_{\lambda} + \dots$ $e^+e^- \rightarrow hZ$ 20 F $\begin{array}{c} e^+e^- \rightarrow h\nu\bar{\nu} \\ e^+e^- \rightarrow he^+e^- \end{array}$ 15 $C_1\times 10^3$ $e^+e^- \rightarrow ht\bar{t}$ 10 $\mathbf{5}$ $\times 0.1$ 0

1000

 $\sqrt{s} \, [\text{GeV}]$

3000

500

[McCullough '13]

· individual 1σ limit (14%) much tighter than global ones (460, 110, 50%)

- $\cdot\,$ second LHC minimum already resolved by a 240 GeV run
- \cdot constraints dominated by lepton colliders for 1.5 ab $^{-1}$ at 350 GeV (\sim 40%)

Higgs self-coupling: high energies

- \cdot two production modes: double Higgsstrahlung and $WW\mbox{-}fusion$
- · sensitivity to $\delta \kappa_{\lambda}$ decreases with \sqrt{s}

 $e^+e^- \rightarrow Zhh$

ILC

- $\cdot\,$ perfect complementarity between 500 GeV and 1 TeV runs
- $\cdot\,$ both individual and global 1σ limits $\sim 20\%$
- $\cdot\,$ though, single Higgs measurements could have an impact

CLIC

- \cdot missing low-energy $e^+e^-
 ightarrow Zhh$ to constrain positive $\delta\kappa_\lambda$
- · exploiting m_{hh} invariant mass, instead

[Contino et al '13]

 $\cdot\,$ both individual and global 1σ limits $\sim-20,+30\%$

Higgs self-coupling: summary

 $\cdot\,$ robust indirect constraints at low energy require a global analysis

 $\rightarrow \sigma_{\delta\kappa_{\lambda}} \sim 75\%$ with 0.2 ab⁻¹ at 350 GeV, $\sim 40\%$ with 1.5 ab⁻¹ \cdot single-Higgs measurements could affect direct high-energy determinations $\rightarrow \sigma_{\delta\kappa_{\lambda}} \sim 20\%$ with 500 GeV run

Open questions

Could indirect constraints on the top Yukawa compete with LHC ones?

Would one need a new Z pole run to continue factorizing out EW paramters?

[Barklow et al.'17]

[Shen,Zhu'15]

What is the best lepton collider? *The one actually built!* M.Peskin