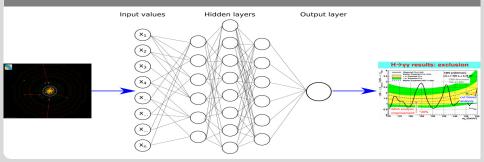


Machine learning in Higgs analyses

Higgs Couplings 2017

Marco A. Harrendorf on behalf of the CMS collaboration | October 9th, 2017

INSTITUT FÜR EXPERIMENTELLE TEILCHENPHYSIK (ETP)



From AlphaGo to AlphaGo Zero¹

The game Go

Go being complexer than chess: $10^{10^{48-170}}$ vs. 10^{43-50} possible positions \Rightarrow Excellent playing field for machine learning

Difference between AlphaGo and AlphaZero

- AlphaGo: Supervised learning from human expert moves and reinforcement learning from self-play
- AlphaGo Zero: Solely based on reinforcement learning and knowledge of game rules

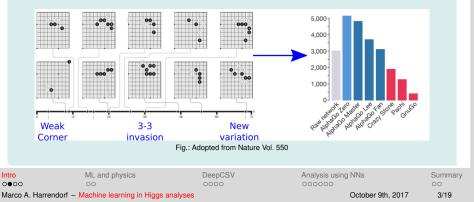
¹Nature 550 (2017) 354, published on 19th of October

Intro	ML and physics	DeepCSV	Analysis using NNs	Summary
0000	00	0000	000000	00
Marco A. Harre	ndorf - Machine learning in Higgs a	nalyses	October 9th, 2017	2/19

AlphaGo Zero: Learning and playing superhuman moves

Discovery of new corner sequences (joseki) by neural network

- Corner sequences (joseki): Important move sequences in the opening phase of Go
- AlphaGo Zero: Learned the already known corner sequences, but later discovered and played a new variation.



Further examples for late-breaking applications of neural networks

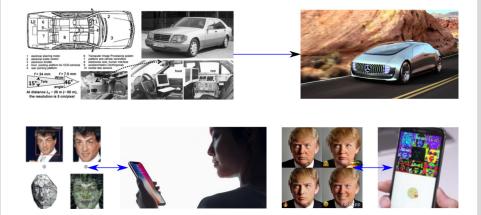


Fig.: Created using pictures from Heise, Mercedes Benz, Wikipedia

Intro ML and physics 0000 00 Marco A. Harrendorf – Machine learning in Higgs analyses DeepCSV 0000 Analysis using NNs

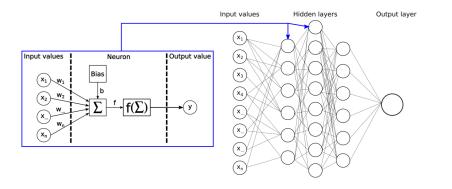
Summary 00

October 9th, 2017 4/19

Neural networks in a nutshell

Artificial neuron

- Input values x_i: Multiplied by weights w obtained from a training algorithm
- ② Summing up all inputs and adding / subtracting additional bias b
- 3 Total sum Σ is modified by transfer function f to derive output value y



Intro	ML and physics	DeepCSV	Analysis using NNs	Summary
0000	00	0000	000000	00
Marco A. Harreno	dorf – Machine learning in Higgs a	nalyses	October 9th, 2017	5/19

Foreword I: Arrival of neural networks

Machine learning applied in particle physics for a long time

- For example: Boosted decision trees and similar methods are and were used for many LHC Run I and Run II Higgs analyses ^a
- Also, neural networks were already tried in the 1990s^b

^ae.g. CMS ttH(bb) analysis, EPJC 75 (2015) 251 ^be.g. JetNet package, Comp. Phys. Com. 81

Neural networks gaining traction by recent events

- Due to availability of GPU computing and large RAM ressources: Usage of elaborated neural networks becomes feasible
- Major step forward: Release of Tensorflow by Google in Nov. 2015
- Since this year: Tensorflow part of CMS software framework
 Many upcoming analysis with NN-methods in the next months, but only few published analyses so far.

So far: Human mind developing algorithms

Physics principles and mathematical laws together with physicists understanding of system considered: Basis for algorithm development \Rightarrow Algorithm as mapped thought process of physicist using known (and hopefully understood) observables

From now on: Machines developing algorithms

- Machines can derive algorithms on their own based on simple rules and principles but without the prior knowledge / bias of a physicist
- Machine algorithms exploit data deeper than physicist's algorithms
- Algorithms derived by machine can be a black box
- \Rightarrow Fundamental change: Superhuman insights require human's trust in algorithms obtained through machine learning
- \Rightarrow Establish new coping strategies and reliability measures

DeepCSV: Example of heavy flavour tagging

(Heavy) jet flavour tagging

- Trying to identify jets stemming from heavy flavour quarks (b, c) vs. jets from light quarks and gluons (u, d, s, g)
 ⇒ Multiclassification problem
- Important for H→ bb signal and various SM and BSM analyses with tt
 backgrounds (branching ratio (t→
 Wb)≈ 100%)
 ⇒ Many Higgs searches / analyses

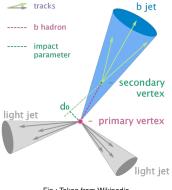


Fig.: Taken from Wikipedia

 Intro
 ML and physics
 DeepCSV
 Analysis using NNs
 Summary

 0000
 00
 0000
 0000
 00

 Marco A. Harrendorf - Machine learning in Higgs analyses
 October 9th, 2017
 8/19

DeepCSV: Comparison with CSVv2 tagger

CMS default b-tagging algorithm: CSVv2 (CMS DP-2017/012)

- Combination of secondary vertex and track-based lifetime information
- Updated version of Run I algorithm: Now combining the two sets of information with shallow neural networks instead of likelihood ratio
- Uses higher level features like masses of vertices and relatively raw information like significance of impact parameter per track.

New CMS algorithm: DeepCSV (CMS DP-2017/005)

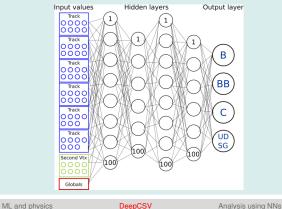
- Based on same set of variables as CSVv2 tagger, but using more charged particle tracks
- Based on "deep"^a neural network with 4 hidden layers containing 100 neurons each (see next slide)

^aNB: The concept of deep neural networks is not well-defined

DeepCSV: NN representation

66 inputs for neural network

- 6 strongly preselected charged particle tracks with 8 (7) properties
- 1 selected secondary vertex with 8 properties
- 12 global per-jet variables



0000

Summary 00

Marco A. Harrendorf – Machine learning in Higgs analyses

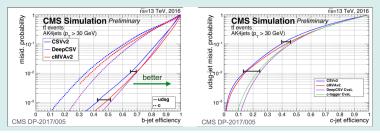
October 9th, 2017

10/19

DeepCSV: Performance

DeepCSV outperforming other taggers

- In particular for high-purity selection (low misidentification probability)
- Also well-performing in terms of c-tagging
- \Rightarrow DeepCSV first deep-learned default tagger in CMS



Glimpse into the future: DeepFlavour tagger

Using jet constituents / particle flow candidates as input for a convolutional neural network

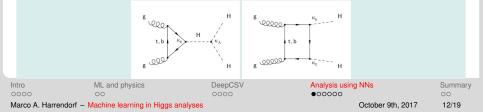
Intro	ML and physics	DeepCSV	Analysis using NNs	Summary
0000	00	0000	000000	00
Marco A. Harre	ndorf – Machine learning in Higgs a	nalyses	October 9th, 2017	11/19

Search for Higgs boson pair production in the $b\bar{b}l\nu l\nu$ final state

Analysis CMS-HIG-17-006

Search for resonant and nonresonant Higgs boson pair production in the $b\bar{b}l\nu l\nu$ final state in proton-proton collisions at $\sqrt{s} = 13$ TeV arXiv:1708.04188 and submitted to J. High Energy Phys. More details in Sebastien Wertz's talk on Tuesday

- Using the 35.9 fb⁻¹ data of the 2016 LHC run
- One Higgs decaying into bb and the other in W(Iν)(Iν) (or either in off-shell Z(II)Z(νν))
- Invariant mass distribution of b-jet pairs in combination with neural network based on kinematic information as a discriminator



Background processes

- Major bkgs: tī, DY, and single top (decreasing order)
- tt as irreducible background
- Further bkgs: Diboson, triboson, ttV, and SM Higgs production

Event selection (Rough summary)

- Events collected with dileptonic triggers
- Identification of jets originating from b-quarks (b-tagged jets) with combined multivariate algorithm. Algorithm applies boosted decision tree on inputs like CSVv2 tagger among other taggers / inputs.
- Final object selection:
 - 2 opposite sign leptons
 - 2 b-tagged jets

Intro	ML and physics	DeepCSV	Analysis using NNs	Summary
0000	00	0000	00000	00
Marco A. Harrendorf – Machine learning in Higgs analyses			October 9th, 2017	13/19

Improvement of signal-to-background-separation with deep neural network

- (D)NN^a based on Keras framework^b
- Due to irreducible tt background: NN relies on kinematic information
- NN input variables: Exploitation of kinematics of the dilepton and dijet systems
 - Mass of the two lepton system
 - Transverse momentum of the two lepton or the two jet system
 - Minimal ΔR between one lepton and one jet
 - ΔR between the two leptons or two jets
 - $\Delta \Phi$ between lepton and dijet system
 - Overall transverse mass
- Furthermore, NN utilizes parameterized machine learning technique

^aSince "deep" is not well-defined, I refrain from using DNN as a term ^bsee keras.io, High-level API running on top of Tensorflow and other NN providers

Intro	ML and physics	DeepCSV	Analysis using NNs	Summary
0000	00	0000	00000	00
Marco A. Harrer	ndorf – Machine learning in Higgs a	nalyses	October 9th, 2017	14/19

Digression: Parameterized machine learning¹

- Usual approach: Inputs to neural networks containing only measured / reconstructed features
- Parameterized ML: Expand inputs also with physics parameters

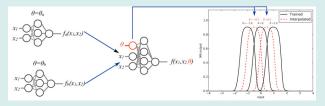


Fig.: Graphics adopted from arXiv:1601.07913

 \Rightarrow Resulting parameterized NN classifier can smoothly interpolate between physics parameters

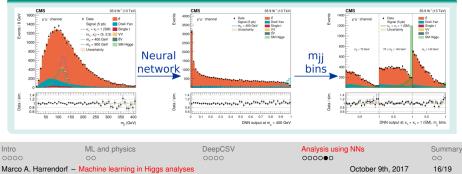
 \Rightarrow Performance of single parameterized neural network similar to multiple individual networks

Intro 0000	ML and physics	DeepCSV	Analysis using NNs	Summary 00
	- Machine learning in Higgs a		October 9th, 2017	15/19

Parameterized machine learning in this analysis

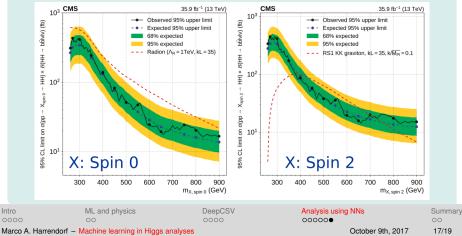
- Resonant search: Adding the mass of the resonance m_X
- Nonresonant search: Adding the coupling modifiers κ_{λ} and κ_{t}
- Both cases: Adding the dilepton flavour channel (e⁺e⁻, $\mu^+\mu^-$, e[±] μ^\mp)

Analysis workflow for resonant search



Result of resonant search

- Best fit signal cross sections obtained using maximum-likelihood fit
- No significant excess for X particle mass hypothesis observed between 260 and 900 GeV.



Summary

Neural networks and machine learning tools

- In many cases providing more insight in data than established tools
- Increasing spread not only in particle physics, but also in many other fields and industrial applications

My prediction for 2018 and beyond

- In 2018: Publication of several analyses showing the benefits of neural networks
 - \Rightarrow Stay tuned and look out for new results
- Run II and beyond: Neural networks becoming important tools to deal with large amount of data and increasing demand for precision measurements
 - \Rightarrow Better become acquainted with them now

Intro	ML and physics	DeepCSV	Analysis using NNs	Summary •O
Marco A. Harrendorf -	Machine learning in Higgs analyses		October 9th, 2017	18/19

Best type of neural network for your specific analysis / problem?

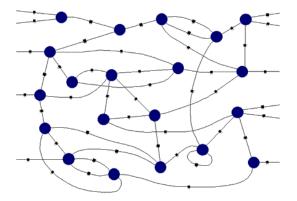


Fig.: Taken from http://www.alanturing.net/turing_archive/graphics/bigb.gif

 Intro
 ML and physics
 DeepCSV
 Analysis using NNs
 Summary

 0000
 00
 0000
 0000
 00

 Marco A. Harrendorf – Machine learning in Higgs analyses
 October 9th, 2017
 19/19