NLO for Higgs signals

LOCAL ORGANIZING COMMITTEE Martin Bauer • Oleg Brandt • Monica Dunford • Tilman Plehn • Hans-Christian Schultz-Coulon • Andre Schöning • Ulrich Husemann • Dieter Zeppenfeld

INTERNATIONAL ORGANIZING COMMITTEE Radja Boughezal • Guillelmo Gomez Ceballos Retuerto • Andre David • Yuji Enari • Stefano Forte • Rohini Godbole • Stefan Höche • Shinya Kanemura • Frank Krauss • Ian Low • Chiara Mariotti • Bill Murray • Peter Onyisi • Giamplero Passarino • Marco Pieri • Reisaburo Tanaka

http://www.thphys.uni-heidelberg.de/~higgs

Gudrun Heinrich

Max Planck Institute for Physics, Munich

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

TIMELINE BEYOND RUN2

TIMELINE BEYOND RUN2

m_i [GeV]

status of higher (fixed) order predictions involving H

(see also Kirill's talk)			
	$\sigma_{ m tot}$	$d\sigma$	bonus
$gg \to H$	N^3LO	NNLO	N^3LL threshold resum. NLO EW, mixed QCD/EW
VBF	N^3LO	NNLO	NLO EW
WH / ZH	NNLO	NNLO	NLO EW gg to ZH mt dep. approx.
$t\bar{t}H$	NLO	NLO	NNLL threshold resum. NLO EW
$H + \operatorname{single} \operatorname{top}$	NLO	NLO	
H + jets	1j: NNLO	1j: NNLO	NLO up to 3jets H+1jet NLO: mb dependence
HH	NNLO	NNLO	NNLL resum. NLO NLL resum.
black: m_t	$ ightarrow\infty$ (HEFT) blu	e: m_q dependence	

status of higher (fixed) order predictions involving H

	$\sigma_{ m tot}$	$\mathrm{d}\sigma$	bonus
$gg \to H$	N^3LO I Anastasiou et al '13-'15 De Flori D	NNLO (+NNLL) an, Grazzini, Tommasini ulat, Mistlberger '17	N^3LL threshold resum. Bizon, Monni, Re, Rottoli, Torrielli '17 '11,'12 NLO EW, mixed QCD/EW Degrassi, Maltoni '04; Actis, Passarino,
VBF	N^3LO Bolzoni, Maltoni, Moch, Zaro '10; Dreyer, Karlberg '16	NNLO Cacciari, Dreyer, Karlı Salam, Zanderighi '	Sturm, Uccirati '08; Anastasiou et al '08 NLO EW Ciccolini, Denner, Dittmaier '07
WH/ZH	NNLO	NNLO	NLO EW Denner Dittmajer Kallweit Mück (12
Bre	Brein, Djouadi, Harlander '03; in, Harlander, Wiesemann, Zirke '	Ferrera, Grazzini, 11 Tramontano '11,'14	gg to ZH 1/mt Altenkamp et al '12 NNLL threshold resum. Harlander et al '14
$t\bar{t}H$	NLO Beenakker et al '01; Dawson, R	NLO eina '02; Frederix et al '1	A Frixione et al '14; (on-shell) Denner, Lang, Pellen, Uccirati '16 NNLL threshold resum.
H + single to	p NLO	NLO	Kulesza et al '15
	Demartin, Maltoni, Mav	vatari, Zaro '15	NLO up to 3jets
H + jets	1j: NNLO Boughezal, Caola et al '15; I	1j: NNLO Boughezal et al '15;	H+1jet NLO: mb dependence Lindert, Melnikov, Tancredi, Wever '17
HH	Chen et al '15; Dulat, N NNLO De Florian, Mazzitelli '15;	Aistlberger '17 NNLO	NLO Borowka, Greiner, GH, Jones, Kerner, Schlenk, Schubert, Zirke '16

De Florian et al '16

Steinhauser et al '15

NLL resum. Ferrera, Pires '16

H

status of parton shower matched results

$gg \to H$	NNLO	Hamilton, Nason, Re, Zanderighi '13; Höche, Li, Prestel '14; Alioli et al '13,'15	
VBF	NLO	Nason, Oleari '10; Frixione, Torrielli, Zaro '13; Campanario et al '13; Jäger et al '14	
WH / ZH	VZH NLO (+ 0/1-jet merging) Luisoni, Nason, Oleari, Tramontano '13		
	NNLO	Goncalves, Krauss, Kuttimalai, Maierhöfer '15;	
	NLO Q	CD+EW Granata, Lindert, Oleari, Pozzorini '17	
$t\bar{t}H$	NLO	Frederix et al '11; Garzelli et al '11; Hartanto et al '15; QCD and EW : Denner, Lang, Pellen, Uccirati '16	
$H + \operatorname{single} \operatorname{top}$	NLO	Demartin, Maltoni, Mawatari, Zaro '15	
H + jets NLO up to 2jets			
	Buschmann, Goncalves, Krauss, Kuttimalai, Schönherr, Plehn '14 Frederix, Frixione, Vryonidou, Wiesemann '16		
HH	NLO (GH, Jones, Kerner, Luisoni, Vryonidou '17; Jones, Kuttimalai '17	

Higgs@NLO

some pressing problems to solve at NLO:

- quark mass effects
 "boosted Higgs can resolve loops from heavy BSM particles"
 and heavy SM particles (top)!
- EW corrections, combination QCD/EW
- consistent combination of EFT and SM NLO corrections
- finding "optimal" scales/assessment of scale uncertainties (also shower/resummation scale uncertainties)
- multi-jet merging
- improve logarithmic accuracy of parton showers

Higgs pT

high-energy resummation of Higgs pT in $gg \rightarrow H$ with off-shell gluons Marzani, Ball, del Duca, Forte, Vicini '08; Forte, Muselli '15; Caola, Forte, Marzani, Muselli, Vita '16

for
$$p_{T,h} \to \infty$$

$$d\sigma/dp_{T,h}^2 \to (p_{T,h}^2)^{-1}$$

$$d\sigma/dp_{T,h}^2 \to (p_{T,h}^2)^{-2}$$

Greiner, Höche, Luisoni, Schönherr, Winter '16

cross sections (+Ntuples) for H+1,2,3 jets calculated at

- NLO in HEFT ($m_t \rightarrow \infty$ limit)
- LO with full m_t, m_b dependence

default scale choice:

$$\mu_F = \mu_R \equiv \frac{\hat{H}'_T}{2} = \frac{1}{2} \left(\sqrt{m_H^2 + p_{T,H}^2} + \sum_i |p_{T,i}| \right)$$

ς.

basic cuts:

$$p_{T,\,\rm jet} > 30 \; {
m GeV} \;, \qquad |y_{\rm jet}| < 4.4$$

 $m_t \rightarrow \infty$ limit starts to fail at $p_{T,H} \sim 200 \, {
m GeV}$

- different jet multiplicities show very similar behaviour
- leading jet pT distribution also similar

suggests that resolution of top quark loops is driven by pT,H or largest pT in the event

jet multiplicity seems to play minor role

needs further investigation (backup slide)

Effect of VBF cuts

VBF cuts can enhance the deviations of HEFT to full theory

bottom quark effects

- well below the scale uncertainties even at low pT
- depend on jet multiplicity

 destructive interference between top- and bottom-quark loops for H+1jet

Higgs+0,1,2 jets + parton shower

Frederix, Frixione, Vryonidou, Wiesemann '16

H + n jets:

- exact mass dependence in real radiation
- exact 2-loop virtual for n=0
- rescaled HEFT virtual for n=1,2

see also Buschmann, Goncalves, Krauss, Kuttimalai, Schönherr, Plehn '14

Lindert, Melnikov, Tancredi, Wever '17

$$\mathrm{d}\sigma_{tb}^{\mathrm{virt}} \sim \mathrm{Re}\left[\frac{\alpha_s}{2\pi} (A_t^{\mathrm{NLO}} A_b^{\mathrm{LO}*} + A_t^{\mathrm{LO}} A_b^{\mathrm{NLO}*})\right]$$

Typical two-loop Feynman diagrams are:

Exact mass dependence in two-loop Feynman Integrals currently out of reach [planar diagrams: Bonciani et al '16]

Scale hierarchy: $m_b \ll p_\perp, m_h \ll m_t$

Top: Infinite top mass limit, well known how to be treated, expanded systematically via effective Lagrangian (HEFT)

Bottom: Small bottom mass expansion is different because loop is resolved <u>new methods required</u> Two-loop <u>bottom amplitudes</u> expanded in <u>bottom mass</u> with differential equation method [Mueller & Ozturk '15; Melnikov, Tancredi, CW '16-'17]

Chris Wever, RadCor 2017

Lindert, Melnikov, Tancredi, Wever '17

$$\mathcal{R}_{\text{int}}\left[\mathcal{O}\right] = \frac{\int \mathrm{d}\sigma_{tb} \,\delta(\mathcal{O} - \mathcal{O}(\vec{x}))}{\int \mathrm{d}\sigma_{tt} \,\delta(\mathcal{O} - \mathcal{O}(\vec{x}))}$$

- large relative corrections top-bottom interference to top-top
- large mb renormalisation ambiguities (light bands) reduced at NLO, in particular at low pT

- exact mass dependence in real radiation
- virtual part: $1/m_t$ expansion on amplitude level

NLO*:

$$\mathcal{F}_{j,\mathrm{SI}}^{\mathrm{in}} = 2\mathrm{Re}\left(\left[\mathcal{F}_{j}^{\mathrm{in}}(m_{t}, m_{H}, s, t, u)\right]_{\mathrm{asy}}\mathcal{A}_{j}^{(1)}(m_{t}, m_{H}, s, t, u)^{*}\right)$$

fullasy: expansion on amplitude squared level $\mathcal{F}_{j,\text{RI}}^{\text{in}} = 2 \left[\text{Re} \left(\mathcal{F}_{j}^{\text{in}}(m_{t}, m_{H}, s, t, u) \mathcal{A}_{j}^{(1)}(m_{t}, m_{H}, s, t, u)^{*} \right) \right]_{\text{asy}}$

$$\mathcal{A}_j^{(2)}(m_t, m_H, s, t, u) = \mathcal{I}_1^j(\epsilon, s, t, u) \mathcal{A}_j^{(1)}(m_t, m_H, s, t, u) + \mathcal{F}_j^{in}(m_t, m_H, s, t, u)$$

 method works well for scales up to about 300 GeV

Neumann, Williams '17

towards Higgs + jet at full NLO

Jones, Kerner, Luisoni

Comparison of HJ and HH

	HJ production	HH production
#Form factors	4+2	2
Full reduction	\checkmark	only planar
(quasi-) finite basis	\checkmark	only planar
#Master integrals including crossings	458	327
#Master integrals neglecting crossings	120	215
#Integrals after sector decomposition and expansion in ϵ	22675	11244
Code size coefficients	~340 MB	~80 MB
Code size integrals	~330 MB	~580 MB
Compile time coefficients	~ 2 weeks	few days
Compile time integrals	~4 hours	~1-2 days
Time for linking the program	~3-4 days	few hours

Matthias Kerner — Top quark mass effects in Higgs physics

Radcor 2017 — September 28, 2017 18

Higgs boson pair production

 $\sigma_{ggHH} \sim 10^{-3} \, \sigma_{ggH}$

(Werner-Heisenberg-Institut)

Frederix, Hirschi, Mattelaer, Maltoni, Torrielli, Vryonidou, Zaro '14; Maltoni, Vryonidou, Zaro '14

NNLO in $m_t \rightarrow \infty$ limit: +20%

• total xs NNLO De Florian, Mazzitelli '13

- including all matching coefficients Grigo, Melnikov, Steinhauser '14
- supplemented with $1/m_t$ expansion: Grigo, Hoff, Steinhauser '15
- soft gluon resummation NNLL Shao, Li, Li, Wang '13; De Florian, Mazzitelli '15 +9%
- differential NNLO De Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev '16

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

NNLO in $m_t \rightarrow \infty$ limit: +20%

- total xs NNLO De Florian, Mazzitelli '13
- including all matching coefficients Grigo, Melnikov, Steinhauser '14
- supplemented with $1/m_t$ expansion: Grigo, Hoff, Steinhauser '15
- soft gluon resummation NNLL Shao, Li, Li, Wang '13; De Florian, Mazzitelli '15 +9%
- differential NNLO De Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev '16

NLO calculation with full top mass dependence

Borowka, Greiner, GH, Jones, Kerner, Schlenk, Schubert, Zirke '16

4 independent scales s12, s23, mH, mt all integrals calculated **numerically** with

SecDec

Borowka, GH, Jones, Kerner, Schlenk, Zirke '15 Borowka, GH, Jahn, Jones, Kerner, Schlenk, Zirke '17

 q_T resummation NLL+NLO

Ferrera, Pires '16

numerical evaluation of multi-loop integrals

http://secdec.hepforge.org https://github.com/mppmu/secdec/releases

SecDec is hosted by Hepforge, IPPP Durham

SecDec

Sophia Borowka, Gudrun Heinrich, Stephan Jahn, Stephen Jones, Matthias Kerner, Johannes Schlenk, Tom Zirke

A program to evaluate dimensionally regulated parameter integrals numerically

home download program user manual faq changelog

NEW! The latest version of pySecDec is available on github. The manual is available on readthedocs. Download the version 1.1.2 of pySecDec as pySecDec-1.1.2.tar.gz. The manual is available here. Download version 1.1.1 of pySecDec as pySecDec-1.1.1.tar.gz. The manual is available here. Download version 1.1 of pySecDec as pySecDec-1.1.tar.gz. The manual is available here. The first release version of pySecDec can be downloaded as pySecDec-1.0.tar.gz. The manual is available here. See also the corresponding paper arXiv:1703.09692.

algorithm:	T. Binoth, GH '00
version 1.0:	J. Carter, GH '10
version 2.0:	S.Borowka, J. Carter, GH '12
version 3.0:	S.Borowka, GH, S.Jones, M.Kerner, J.Schlenk, T.Zirke '15
pySecDec:	S.Borowka, GH, S.Jahn, S.Jones, M.Kerner, J.Schlenk, T.Zirke '17

numerical evaluation of multi-loop integrals

http://secdec.hepforge.org https://github.com/mppmu/secdec/releases

SecDec is hosted by Hepforge, IPPP Durham

SecDec

Sophia Borowka, Gudrun Heinrich, Stephan Jahn, Stephen Jones, Matthias Kerner, Johannes Schlenk, Tom Zirke

A program to evaluate dimensionally regulated parameter integrals numerically

home download program user manual faq changelog

NEW! The latest version of pySecDec is available on github. The manual is available on readthedocs. Download the version 1.1.2 of pySecDec as pySecDec-1.1.2.tar.gz. The manual is available here. Download version 1.1.1 of pySecDec as pySecDec-1.1.1.tar.gz. The manual is available here. Download version 1.1 of pySecDec as pySecDec-1.1.tar.gz. The manual is available here. The first release version of pySecDec can be downloaded as pySecDec-1.0.tar.gz. The manual is available here. See also the corresponding paper arXiv:1703.09692.

J. Carter, GH '10
S.Borowka, J. Carter, GH '12
S.Borowka, GH, S.Jones, M.Kerner, New! J.Schlenk, T.Zirke '15 can be used as
S.Borowka, GH, S.Jahn, S.Jones, M.Kerner, J.Schlenk, T.Zirke '17

calculation: building blocks

- amplitude generation with 2 setups (custom made and "GoSam-2loop")
- amplitude reduction with Reduze [C. Studerus, A. v. Manteuffel]
- non-planar integrals computed mostly without reduction
- integrals calculated numerically with SecDec
- total number of integrals:
 - before reduction: ~10000, after reduction ~330, after sector decomposition 11244 (3086 non-planar)
 - used finite basis for planar integrals
- real radiation:
- (a) GoSam-1L + Catani-Seymour dipole subtraction
- (b) GoSam-1L + POWHEG

top mass effects

total cross sections at 14 TeV

$\mu_0 = m_{HH}/2$	
--------------------	--

$\sigma_{\rm LO}[{\rm fb}]$	$\sigma_{\rm NLO}[{\rm fb}]$	$\sigma_{\rm NNLO}[{\rm fb}]$
$17.07^{+30.9\%}_{-22.2\%}$	$31.93^{+17.6\%}_{-15.2\%}$	$37.52^{+5.2\%}_{-7.6\%}$
$19.85^{+27.6\%}_{-20.5\%}$	$38.32^{+18.1\%}_{-14.9\%}$	
$19.85^{+27.6\%}_{-20.5\%}$	$34.26^{+14.7\%}_{-13.2\%}$	
$19.85^{+27.6\%}_{-20.5\%}$	$32.91^{+13.6\%}_{-12.6\%}$	
	$\sigma_{\rm LO}[\rm fb]$ $17.07^{+30.9\%}_{-22.2\%}$ $19.85^{+27.6\%}_{-20.5\%}$ $19.85^{+27.6\%}_{-20.5\%}$ $19.85^{+27.6\%}_{-20.5\%}$	$\sigma_{\rm LO}[{\rm fb}]$ $\sigma_{\rm NLO}[{\rm fb}]$ $17.07^{+30.9\%}_{-22.2\%}$ $31.93^{+17.6\%}_{-15.2\%}$ $19.85^{+27.6\%}_{-20.5\%}$ $38.32^{+18.1\%}_{-14.9\%}$ $19.85^{+27.6\%}_{-20.5\%}$ $34.26^{+14.7\%}_{-13.2\%}$ $19.85^{+27.6\%}_{-20.5\%}$ $32.91^{+13.6\%}_{-12.6\%}$

PDF4LHC15_nlo_30_pdfas $m_H=125 \text{ GeV}, m_t=173 \text{ GeV}$ uncertainties: $\mu_{R,F} \in [\mu_0/2, 2\,\mu_0]$ (7-point variation) MAX-PLANCK-GESELLSCHAFT HXSWG: $\sigma'_{NNLL} = \sigma_{NNLL} + \delta_t \,\sigma_{NLO}^{\text{HEFT}} = 39.64^{+4.4\%}_{-6.0\%}$ $\mu_{L} = 39.64^{+4.4\%}_{-6.0\%}$

top mass effects: energy dependence

	\sqrt{s}	LO [fb]	B-i. NLO HEFT [fb]	NLO FT_{approx} [fb]	NLO [fb]
	14 TeV	$19.85^{+27.6\%}_{-20.5\%}$	$38.32^{+18.1\%}_{-14.9\%}$	$34.26^{+14.7\%}_{-13.2\%}$	$32.91^{+13.6\%}_{-12.6\%}$
	27 TeV	$78.85^{+21.5\%}_{-17.0\%}$	$154.94^{+16.2\%}_{-13.4\%}$	$134.12^{+12.7\%}_{-11.1\%}$	$127.88^{+11.6\%}_{-10.5\%}$
	100 TeV	$731.3^{+20.9\%}_{-15.9\%}$	$1511^{+16.0\%}_{-13.0\%}$	$1220^{+11.9\%}_{-10.7\%}$	$1149^{+10.8\%}_{-10.0\%}$
- Aller and a second	scal	e uncertainties		nreliminary + (0.3 stat. uncertaint

relative difference Born-improved NLO HEFT to full NLO:

- 14 TeV: 16.4%
- 27 TeV: 21.2%
- 100 TeV: 31.5%

Higgs boson pair invariant mass

for large invariant masses:

Born-improved NLO HEFT overestimates by about 50%, FTapprox by about 40% (at 14 TeV, worse at 100 TeV)

top quark loops resolved --> HEFT has wrong scaling behaviour at high energies

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

rapidity of the Higgs boson pair

NLO-improved NNLO HEFT

NNLO HEFT:

MAX-PLANCK-GESELLSCHAFT

De Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev 1606.09519

"NLO-improved NNLO HEFT": [Borowka, Greiner, GH, Jones, Kerner, Schlenk, Zirke 1608.04798]

bin-by-bin rescaling at observable level by NNLO HEFT K-factor

would lead to $\sigma' = 38.56 \, fb$

variation of triple Higgs coupling

$$\lambda = \lambda_{BSM} / \lambda_{SM}$$

MAX-PLANCK-GESELLSCHAFT

cross section has a minimum around $\lambda = 2$ due to destructive interference between diagrams containing λ and box-type diagrams

degeneracy due to quadratic λ dependence

Max-Planck-Institut für Physik

(Werner-Heisenberg-Institut)

variation of triple Higgs coupling

combination with parton showers

GH, S.Jones, M.Kerner, G.Luisoni, E.Vryonidou '17

- avoid evaluation of two-loop amplitude for each phase space point
- two-loop amplitude depends only on $\hat{s}, \hat{t} \quad (m_t, m_H \text{ fixed})$

construct 2-dim grid

variable transformation to achieve more uniform distribution

$$x = f(\beta(\hat{s})), \quad c_{\theta} = |\cos \theta| = \left| \frac{\hat{s} + 2\hat{t} - 2m_{H}^{2}}{\hat{s}\beta(\hat{s})} \right| \quad \beta(\hat{s}) = \sqrt{1 - 4m_{H}^{2}/\hat{s}}$$

combination with POWHEG and MadGraph5_aMC@NLO POWHEG-BOX-V2: User-Process-V2/ggHH

and Sherpa

combination with parton showers

GH, S.Jones, M.Kerner, G.Luisoni, E.Vryonidou '17

- avoid evaluation of two-loop amplitude for each phase space point
- two-loop amplitude depends only on $\hat{s}, \hat{t} \quad (m_t, m_H \text{ fixed})$

construct 2-dim grid

variable transformation to achieve more uniform distribution

$$x = f(\beta(\hat{s})), \quad c_{\theta} = |\cos \theta| = \left|\frac{\hat{s} + 2\hat{t} - 2m_{H}^{2}}{\hat{s}\beta(\hat{s})}\right| \quad \beta(\hat{s}) = \sqrt{1 - 4m_{H}^{2}/\hat{s}}$$

combination with POWHEG and MadGraph5_aMC@NLO POWHEG-BOX-V2: User-Process-V2/ggHH

and Sherp

see Silvan Kuttimalai's talk

grid validation

Use HEFT to study validity of grid

Full SM compare POWHEG (grid) with our original results

dependence on shower parameters

dependence on shower parameters

summary & outlook

- NLO is not "a solved problem"
- finite mass effects are important
 - in particular in tails of distributions, where they need to be distinguished from BSM effects
 - NLO with full top mass dependence for $pp \rightarrow HH, pp \rightarrow H + jet, gg \rightarrow HZ$ means 2-loop integrals with many kinematic scales (too many for an analytic solution currently?)

- HH@NLO done numerically (SecDec)
- combination of QCD corrections with NLO EW and EFT.

talk of Alexander Mück many talks

• increase precision by improvements on parton shower side (matching uncertainties, merging, log. acc.) and resummation

talk of Pier-Francesco Monni

MAX-PLANCK-GESELLSCHAFT

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

compare POWHEG and MG5_aMC@NLO

compare POWHEG and MG5_aMC@NLO

compare Pythia6 and Pythia8

$$R_n(O) = \frac{\frac{\mathrm{d}\sigma}{\mathrm{d}O} (\mathrm{H}+n\,\mathrm{jets})}{\frac{\mathrm{d}\sigma}{\mathrm{d}O} (\mathrm{H}+(n-1)\,\mathrm{jets})}$$

ratio to lower jet multiplicity shows similar behaviour

Applying a veto on the Higgs for H+2j: $p_{T, Higgs} < 100 \text{ GeV}$:

Gionata Luisoni, DIS 2017

Applying a veto on the Higgs for H+3j: $p_{T, Higgs} < 100 \text{ GeV}$:

Gionata Luisoni, DIS 2017

Higgs pT

high-energy resummation of Higgs pT in $gg \rightarrow H$ with off-shell gluons

Caola, Forte, Marzani, Muselli, Vita '16

Neumann, Williams '17