Identifying a new particle with jet substructures

Lim, Sung Hak

Theory Center, KEK, Japan

Higgs Coupling 2017

Nov. 2017

C. Han, D. Kim, M. Kim, K. Kong, **S. H. Lim** and M. Park, J. High Energ. Phys. (2017) 2017: 27, [arXiv:1609.06205 [hep-ph]].

1 / 16

BSM and H	eavy Scalar		
00000	000	00000	0
Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Conclusion

- Many theories beyond the Standard model (SUSY, composite Higgs...) could have extended Higgs sector with particles having masses more than $\mathcal{O}(1)~{\rm TeV}$ to make model compatible with the current observation about the Higgs boson.
 - Example: heavy Higgs boson in MSSM
- mass eigenstates: h^0 , H^0 , H^{\pm} and A^0

$$m_{H^{\pm}}^{2} = m_{A^{0}}^{2} + m_{W}^{2}$$
(1)

$$m_{h^0,H^0}^2 = \frac{1}{2} \left(m_{A^0}^2 + m_Z^2 \mp \sqrt{(m_{A^0}^2 - m_Z^2)^2 + 4m_Z^2 m_{A^0}^2 \sin^2 2\beta} \right)$$
(2)

• In a limit $m_{A^0} \gg m_Z$ (decoupling limit),

$$m_Z \sim m_{h^0} \ll m_{H^0} \sim m_{H^\pm} \sim m_{A^0} \tag{3}$$

- *h*⁰ behaves like the Higgs boson in the Standard model, while other heavy scaler lives in higher energy scale.
- One interesting channel for identifying heavy Higgs bosons is ZZ channel.

Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet
00000	000	00000

Characteristics of $X \rightarrow ZZ$ channel

Character	istics of $X \rightarrow ZZ$ channel		
00000	000	00000	0
Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Conclusion

• Good: this channel is fully capable of determining spin and CP nature of X.

Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Conclusion
00000	000	00000	
			_

Characteristics of $X \rightarrow ZZ$ channel

- Good: this channel is fully capable of determining spin and CP nature of X.
 - $\gamma\gamma$: polarization-blind, we cannot fully determine spin and CP of X.
 - ZZ: we can get additional polarization information of Z boson from differential distribution of Fermions.

Character	istics of $X \rightarrow 77$ channel		
00000	000	00000	0
Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Conclusion

- Good: this channel is fully capable of determining spin and CP nature of X.
- Problem: (For heavy X, $m_X \gg m_Z$) Z boson is boosted, and two Fermions (especially quarks) are often too close and identified as a single large cluster.

Characteri	stics of $X \rightarrow 77$ channel		
00000	000	00000	0
Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Conclusion

- Good: this channel is fully capable of determining spin and CP nature of X.
- Problem: (For heavy X, $m_X \gg m_Z$) Z boson is boosted, and two Fermions (especially quarks) are often too close and identified as a single large cluster.
 - In order to use full potential of ZZ channel, We should resolve the cluster.
 - We will see that the jet substructure technique can be used for resolving the cluster and effectively and selecting effective region for discriminating spin and CP of X.

Character	istics of $X \rightarrow 77$ channel		
00000	000	00000	0
Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Conclusion

aracteristics of $X \rightarrow ZZ$ channel

- Good: this channel is fully capable of determining spin and CP nature of X.
- Problem: (For heavy X, $m_X \gg m_Z$) Z boson is boosted, and two Fermions (especially quarks) are often too close and identified as a single large cluster.
 - In order to use full potential of ZZ channel, We should resolve the cluster.
 - We will see that the jet substructure technique can be used for resolving the cluster and effectively and selecting effective region for discriminating spin and CP of X.
- One simple example: mass-drop tagger
 - (J. M. Butterworth, A. R. Davison, M. Rubin and G. P. Salam, arXiv:0802.2470)

Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Conclusion
00000	000	00000	

Identifying boosted Z ightarrow q ar q with merged jet

• We can identify momenta of two prong subjets by the mass-drop tagger.

- Merged jet identification: Cambridge-Aachen algorithm with large radius
- Jet substructure for identifying $q\bar{q}$
 - Rewind Cambridge-Aachen jet clustering to access clustering sequence in angular order
 - mass-drop and filtering: look for clustering point with mass drop

$$m_{j_1} < \mu m_j \tag{4}$$

and splitting, i.e. symmetric p_T condition

$$\frac{\min(p_{T,j_1}^2, p_{T,j_2}^2)}{m_j^2} (\Delta R_{j_1 j_2})^2 > y_{\text{cut}}$$
(5)

- Output: corresponding clustering distance, which is angular scale, can be used for identifying subjet which can resemble $q\bar{q}$.
- This subjet momenta can be used for identifying CP state of S!

4 / 16

Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Conclusion
000000	000	00000	
boosted Z b	oson to leptons vs quarks		

advantages

disadvantages

La contra da T	7		
000000	000	00000	0
Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Conclusion

advantages

disadvantages

more events!

$$\begin{array}{rcl} BR(Z \to e^+e^-) &=& 3.363\%\\ BR(Z \to \mu^+\mu^-) &=& 3.366\%\\ BR(Z \to {\rm invisible}) &=& 20.00\%\\ BR(Z \to {\rm hadrons}) &=& 69.91\% \end{array}$$

000000	000	00000	0
Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Conclusion

- advantages
 - more events!
 - $\begin{array}{rcl} BR(Z \rightarrow e^+e^-) &=& 3.363\%\\ BR(Z \rightarrow \mu^+\mu^-) &=& 3.366\%\\ BR(Z \rightarrow \mathrm{invisible}) &=& 20.00\%\\ BR(Z \rightarrow \mathrm{hadrons}) &=& 69.91\% \end{array}$

- disadvantages
 - hard to resolve two close quarks.

Introduction		terference and angular c	Phase space reduction and m	nerged jet	Conclusion
000000	000		00000		0

- advantages
 - more events!

$$BR(Z \rightarrow e^+e^-) = 3.363\%$$

$$BR(Z \rightarrow \mu^+\mu^-) = 3.366\%$$

$$BR(Z \rightarrow \text{invisible}) = 20.00\%$$

$$BR(Z \rightarrow \text{hadrons}) = 69.91\%$$

- disadvantages
 - hard to resolve two close quarks.

- contamination from nearby QCD activity
 - underlying events
 - final state radiations
 - pile-ups

Introduction		terference and angular o	Phase space reduction and merged jet	Conclusion
000000	000		00000	0

- advantages
 - more events!

$$\begin{array}{rcl} BR(Z \rightarrow e^+e^-) &=& 3.363\%\\ BR(Z \rightarrow \mu^+\mu^-) &=& 3.366\%\\ BR(Z \rightarrow \mathrm{invisible}) &=& 20.00\%\\ BR(Z \rightarrow \mathrm{hadrons}) &=& 69.91\% \end{array}$$

- disadvantages
 - hard to resolve two close quarks.

- contamination from nearby QCD activity
 - underlying events
 - final state radiations
 - pile-ups
 - Many background events..

Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Conclusion
000000	000	00000	0

Summing up advantages and disadvantages

- $ZZ \rightarrow 2\ell 2q$ having same sensitivity level to the $ZZ \rightarrow 4\ell$ in high mass resonance searches. [CMS-CR-2015-045]
- We can play similarly to 4/ channel to identifying quantum state of heavy scalar!

Benchmark p	point		
000000	000	00000	0
Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Conclusion

Benchmark	point		
000000	000	00000	0
Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Conclusion

$$\mathcal{L}_{0^{++}} = \frac{c_{gg}}{\Lambda} SG_{\mu\nu}G^{\mu\nu} + \frac{c_{ZZ}}{\Lambda} SZ_{\mu\nu}Z^{\mu\nu}$$

Benchmark (point		
000000	000	00000	0
Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Conclusion

$$\mathcal{L}_{0^{++}} = \frac{c_{gg}}{\Lambda} SG_{\mu\nu} G^{\mu\nu} + \frac{c_{ZZ}}{\Lambda} SZ_{\mu\nu} Z^{\mu\nu}$$
$$\mathcal{L}_{0^{-+}} = \frac{c_{gg}}{\Lambda} SG_{\mu\nu} \tilde{G}^{\mu\nu} + \frac{c_{ZZ}}{\Lambda} SZ_{\mu\nu} \tilde{Z}^{\mu\nu}$$

Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Conclusion
00000	000	00000	0
Benchmark p	ooint		

$$\mathcal{L}_{0^{++}} = \frac{c_{gg}}{\Lambda} SG_{\mu\nu} G^{\mu\nu} + \frac{c_{ZZ}}{\Lambda} SZ_{\mu\nu} Z^{\mu\nu}$$
$$\mathcal{L}_{0^{-+}} = \frac{c_{gg}}{\Lambda} SG_{\mu\nu} \tilde{G}^{\mu\nu} + \frac{c_{ZZ}}{\Lambda} SZ_{\mu\nu} \tilde{Z}^{\mu\nu}$$

	· .		
00000	000	00000	0
Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	

Benchmark point

benchmark points
$$r_M$$
 $\Delta R \gtrsim$ $m_S = 750 \, \text{GeV}$ 4.10.5

M. Gouzevitch, et al., arXiv:1303.6636

000000			
Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Conclusion

Benchmark point

benchmark points	r _M	$\Delta R \gtrsim$
$m_S=750{\rm GeV}$	4.1	0.5
$m_S=1500{ m GeV}$	8.2	0.25

M. Gouzevitch, et al., arXiv:1303.6636

Benchmark	point		
000000	000	00000	0
Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Conclusion

$$\mathcal{L}_{0^{++}} = \frac{c_{gg}}{\Lambda} SG_{\mu\nu} G^{\mu\nu} + \frac{c_{ZZ}}{\Lambda} SZ_{\mu\nu} Z^{\mu\nu}$$

$$\mathcal{L}_{0^{-+}} = \frac{c_{gg}}{\Lambda} SG_{\mu\nu} \tilde{G}^{\mu\nu} + \frac{c_{ZZ}}{\Lambda} SZ_{\mu\nu} \tilde{Z}^{\mu\nu}$$

We performed statistical analysis with Monte Carlo simulated event together with detector simulations.

	Quantum interference and angular correlations	Phase space reduction and merged jet	Conclusion
000000	● 00	00000	0
Quantum	interference and angular correl	lations	

• In order to identify spin and CP of *S*, angular correlation between resonances are the key signatures.

- In order to identify spin and CP of *S*, angular correlation between resonances are the key signatures.
- In particular, angular correlation between two Z boson system is especially useful for identifying CP of S, because L_{0±+} produce two Z boson in entangled helicity eigenstate (ε_±).

$$S = \sum_{Z_{1}} \sum_{Z_{2}} \left\{ \begin{array}{c} \epsilon_{+}^{*\mu}(Z_{1})\epsilon_{+}^{*\nu}(Z_{2}) + \epsilon_{-}^{*\mu}(Z_{1})\epsilon_{-}^{*\nu}(Z_{2}) & S \text{ in } \mathcal{L}_{0^{++}} \\ \epsilon_{+}^{*\mu}(Z_{1})\epsilon_{+}^{*\nu}(Z_{2}) - \epsilon_{-}^{*\mu}(Z_{1})\epsilon_{-}^{*\nu}(Z_{2}) & S \text{ in } \mathcal{L}_{0^{-+}} \end{array} \right\}$$

 $(m_X \gg m_Z \text{ is assumed})$

- In order to identify spin and CP of *S*, angular correlation between resonances are the key signatures.
- In particular, angular correlation between two Z boson system is especially useful for identifying CP of S, because L_{0±+} produce two Z boson in entangled helicity eigenstate (ε_±).

$$S = \sum_{Z_1} \int_{Z_2} \left\{ \begin{array}{l} \epsilon_+^{*\mu}(Z_1) \epsilon_+^{*\nu}(Z_2) + \epsilon_-^{*\mu}(Z_1) \epsilon_-^{*\nu}(Z_2) & S \text{ in } \mathcal{L}_{0^{++}} \\ \epsilon_+^{*\mu}(Z_1) \epsilon_+^{*\nu}(Z_2) - \epsilon_-^{*\mu}(Z_1) \epsilon_-^{*\nu}(Z_2) & S \text{ in } \mathcal{L}_{0^{-+}} \end{array} \right\}$$

• Angular correlation arise from interference between helicity eigenstates.

	Quantum interference and angular correlations	Phase space reduction and merged jet	Conclusio
000000	000	00000	0
Quantum int	erference and angular correlati	ons	

 Interference term leaves an azimuthal phase factor so it can be captured by angular correlations.

Interference term is maximized when *f̄* are emitted to transverse direction. This is consequence of the Stern-Gerlach experiment, [*S_z*, *S_x*] ≠ 0.

Phase space reduction and merged jet

Quantum interference and angular correlations

• As a result $\phi = \phi_1 - \phi_2$, which is the angle between two Z boson decay plane, can discriminate CP of S.

Phase space reduction and merged jet

Quantum interference and angular correlations

• As a result $\phi = \phi_1 - \phi_2$, which is the angle between two Z boson decay plane, can discriminate CP of S.

 $(1 + \cos^2 \theta_1)(1 + \cos^2 \theta_2)$ $\pm \sin^2 \theta_1 \sin^2 \theta_2 \cos 2\phi$ for S in $\mathcal{L}_{0^{\pm +}}$, $m_S \gg m_Z$.

Phase space reduction and merged jet

Quantum interference and angular correlations

• As a result $\phi = \phi_1 - \phi_2$, which is the angle between two Z boson decay plane, can discriminate CP of S.

• This ME is prportional to likelihoods of 0^{±+} hypotheses. Therefore, how we select two Fermions from Z is also important to gain maximum sensitivity for signal disambiguation.

10 / 16

Deletivitatio	Alexandrian and an automas	mation of f	
000000	000	00000	0
Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Conclusion

Relativistic Aberration and angular separation of f f

When we try to capture two $q\bar{q}$ by a single merged jet, Fermions emitted transverse direction from the boost direction of Z boson will be captured more than the longitudinal direction.

Relativistic Aberration and angular separation of $f\bar{f}$

When we try to capture two $q\bar{q}$ by a single merged jet, Fermions emitted transverse direction from the boost direction of Z boson will be captured more than the longitudinal direction.

• For boosted object, phase space is beamed forward in a lab frame.

Relativistic Aberration and angular separation of $f\bar{f}$

When we try to capture two $q\bar{q}$ by a single merged jet, Fermions emitted transverse direction from the boost direction of Z boson will be captured more than the longitudinal direction.

- For boosted object, phase space is beamed forward in a lab frame.
- For $Z \to f\bar{f}$, transverse direction is more collimated than the longitudinal direction.

Relativistic Aberration and angular separation of ff

When we try to capture two $q\bar{q}$ by a single merged jet, Fermions emitted transverse direction from the boost direction of Z boson will be captured more than the longitudinal direction.

- For boosted object, phase space is beamed forward in a lab frame.
- For $Z \to f\bar{f}$, transverse direction is more collimated than the longitudinal direction.
- ME interference term is also maximized in transverse direction, and hence, we expect that we are not lose signal sensitivity much. Using merged jet is still effective for analysing CP property of *S*.

11 / 16

Distribution of ϕ					
000000	000	0000	0		
Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Conclusion		

• The key signature for identifying CP state of S is angle ϕ between decay plane of Z bosons.

• We can reliably observe interference pattern in ϕ distribution using subjet information!

	Quantum interference and angular correlations	Phase space reduction and merged jet	Conclusio
000000	000	00000	0

Distribution of ϕ

- Observation: interference pattern is enhanced comparing from parton information to reconstruced events
- caution: above distribution is a <u>normalized</u> distribution. Overall amplitude of interference pattern is reduced in reconstruction level due to selection efficiency.

Phase space restriction from jet substructure observable

• The symmetric p_T selection also gives a strong $\Delta R_{q\bar{q}}$ selection.

$$\frac{\min(p_{T,j_1}^2, p_{T,j_2}^2)}{m_j^2} (\Delta R_{j_1 j_2})^2 > y_{\rm cut}$$
(6)

• Recall our jet definition: Cambridge-Aachen algorithm with large radius R=1.2 for $m_S=750~{
m GeV}$ and R=0.8 for $m_S=1500~{
m GeV}$
Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Conclusion
000000	000	00000	

Phase space restriction from jet substructure observable

• The symmetric p_T selection also gives a strong $\Delta R_{q\bar{q}}$ selection.

$$\Delta R_{j_{\rm L}j_2} < \frac{1 + y_{\rm cut}}{\sqrt{y_{\rm cut}}} \frac{m_j}{p_{T,j}} \tag{6}$$

• Recall our jet definition: Cambridge-Aachen algorithm with large radius R = 1.2 for $m_S = 750 \text{ GeV}$ and R = 0.8 for $m_S = 1500 \text{ GeV}$

Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Conclusion
Analysis with	background		

In order to quantify the difference between CP even and CP odd scalar, we performed statistical analysis (matrix element method).

• QCD :

$$Z(\rightarrow \ell^- \ell^+) + \text{jets}(\text{fake } Z)$$

• EW :
 $Z(\rightarrow \ell^- \ell^+) + V (\rightarrow q\bar{q})$

Analysis with	background		
000000	000	00000	0
Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Conclusion

In order to quantify the difference between CP even and CP odd scalar, we performed statistical analysis (matrix element method).

- QCD : $Z(\rightarrow \ell^- \ell^+) + \text{jets}(\text{fake } Z)$
- EW : $Z(\rightarrow \ell^- \ell^+) + V (\rightarrow q\bar{q})$
- Z+jets is dominant background because of large cross section.

Introduction	Quantum interference and angular correlations	Phase space reduction and merged jet	Conclusion
000000	000	00000	0
A I			

Analysis with background

In order to quantify the difference between CP even and CP odd scalar, we performed statistical analysis (matrix element method).

Jet substructure analysis is effective for distingushing CP even and CP odd hypothesis!

15 / 16

	Quantum interference and angular correlations	Phase space reduction and merged jet	Conclusion
000000	000	00000	•
Conclusion			

- Boosted object analysis is necessary in order to understand spin and CP nature of heavy intermediate resonance S in $S \rightarrow ZZ \rightarrow IIqq$ channel.
- Merged jet analysis with jet substructure effectively select most sensitive region for identifying CP property of *S*.
- In kinematic phase space selection, jet substructure relying on angular information is competing with radius in jet definition. Hence the parameter should be chosen cautiously.

Backups 00000000000

Backups

Cut flow	Cut flow selection		$1500~{ m GeV}$
parton level		100.0 %	100.0 %
object tagging	one merged jet, two ℓ	61.0 %	63.4 %
lepton P_T	$P_T > 25~{ m GeV}$	52.0 %	58.8 %
$m_{(\ell^+, \ell^-)}$	[83,99] GeV	47.4 %	53.5 %
m _{MJ}	[75, 105] GeV	20.6 %	25.5 %
Уzz	$ y_{ZZ} < 0.15$	16.3 %	21.3 %
$P_{T(MJ)}$	$P_{T({ m MJ})} > 0.4 m_{({ m MJ},\ell^+,\ell^-)}$	11.5 %	14.7 %
	within $M_{\mathcal{S}}\pm50~{ m GeV}$	10.4 %	-
(MJ, ℓ^+, ℓ^-)	within $M_{\mathcal{S}}\pm 100~{ m GeV}$	-	13.4 %

	BP1 ($M_S = 750 \text{ GeV}$)			
cut flow	selection criterion	σ_{Z+jets}	σ_{ZZ}	σ_{ZW}
parton level	P_T of leading jet ≥ 150 GeV	8.65 pb	8.19 fb	8.96 fb
object tagging	One merged jet, two ℓ	44.11%	55.30%	55.83%
lepton P _T	$P_T > 25 \text{ GeV}$	33.47%	44.88%	47.24%
$m_{(\ell^+, \ell^-)}$	[83, 99] GeV	30.54%	40.91%	42.92%
m _{MJ}	[75, 105] GeV	1.60%	12.10%	10.72%
Уzz	$ y_{ZZ} < 0.15$	0.72%	11.06%	9.83%
$P_{T(MJ)}$	$P_{T(MJ)} > 0.4 m_{(MJ, \ell^+, \ell^-)}$	0.48%	7.22%	5.29%
$m_{(MJ, \ell^+, \ell^-)}$	within $M_S \pm 50$ GeV	0.037%	0.82%	0.68%
Cross section (σ)	-	3.16 fb	0.0671 fb	0.0609 fb

Matrix element methods

- We deployed a matrix element method in order to maximize discrimination power.
- Neyman-Pearson lemma says: likelihood ratio test is the most powerful test.
- At the parton level, we can find out the analytic form of probability from the theory as well as the likelihood functions for the hypothesis test. At the leading order, the probability density function is

$$f(\{p\}|0^{\pm}) = \frac{1}{N_{0^{\pm}}} \int dx_1 \int dx_2 f_g(x_1) f_g(x_2) |\mathcal{M}_{gg \to S \to q\bar{q}\ell^-\ell^+}(\{p\}|0^{\pm +})|^2$$

• Since S is a scalar, we can factorize the matrix element in a narrow width limit.

$$f(\{p\}|0^{\pm}) = \frac{1}{N'_{0^{\pm}}} \int dx_1 \int dx_2 f_g(x_1) f_g(x_2) \\ |\mathcal{M}_{gg \to S}(\{p\}|0^{\pm +})|^2 \cdot |\mathcal{M}_{S \to q\bar{q}\ell^-\ell^+}(\{p\}|0^{\pm +})|^2$$

• The likelihood ratio can be simplified if we assume

$$\frac{1}{N'_{0^{\pm +}}} \int dx_1 \int dx_2 f_g(x_1) f_g(x_2) |\mathcal{M}_{gg \to S}(\{p\}|0^{\pm +})|^2$$
(7)

are identical for 0^{++} and 0^{-+} . The likelihood ratio can be written in terms of matrix element of the decay only.

$$\frac{f(\{p\}|0^{++})}{f(\{p\}|0^{-+})} = \frac{|\mathcal{M}_{S \to q\bar{q}\ell^-\ell^+}(\{p\}|0^{++})|^2}{|\mathcal{M}_{S \to q\bar{q}\ell^-\ell^+}(\{p\}|0^{-+})|^2}$$
(8)

 We further symmetrize momenta of quarks since q and q
 indistingushable at LHC. Then, we define a loglikelihood ratio

$$q_{\mathcal{M}} = \sum_{i}^{N} \ln \frac{|\mathcal{M}(\{p\}_{i}|0^{++})|^{2}_{sym}}{|\mathcal{M}(\{p\}_{i}|0^{-+})|^{2}_{sym}}$$
(9)

Backups

Cambridge/Aachen Algorithm

Cambridge/Aachen Algorithm: a sequential clustering algorithm with a distance measure $(\Delta R)^2=(\Delta \eta)^2+(\Delta \phi)^2$

Ocheck distances between objects.

Backups

Cambridge/Aachen Algorithm

Cambridge/Aachen Algorithm: a sequential clustering algorithm with a distance measure $(\Delta R)^2=(\Delta \eta)^2+(\Delta \phi)^2$

Ocheck distances between objects.

2 Choose a pair of object having smallest ΔR .

- Ocheck distances between objects.
- **2** Choose a pair of object having smallest ΔR .
- If the two object are separated by ΔR smaller than the threshold distance R, then merge the two objects in a shortest distance by summing their momenta.

$$\overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow} \overset{\circ}{\to} \overset{\circ$$

- Ocheck distances between objects.
- **2** Choose a pair of object having smallest ΔR .
- If the two object are separated by ΔR smaller than the threshold distance R, then merge the two objects in a shortest distance by summing their momenta.
- Iterate above steps until every objects are separated by the threshold distance *R*.

- Ocheck distances between objects.
- **2** Choose a pair of object having smallest ΔR .
- If the two object are separated by ΔR smaller than the threshold distance R, then merge the two objects in a shortest distance by summing their momenta.
- Iterate above steps until every objects are separated by the threshold distance R.
- Promote remaining isolated clusters as jets.

Cambridge/Aachen Algorithm: a sequential clustering algorithm with a distance measure $(\Delta R)^2=(\Delta \eta)^2+(\Delta \phi)^2$

- Ocheck distances between objects.
- **2** Choose a pair of object having smallest ΔR .
- If the two object are separated by ΔR smaller than the threshold distance R, then merge the two objects in a shortest distance by summing their momenta.
- Iterate above steps until every objects are separated by the threshold distance R.
- Promote remaining isolated clusters as jets.

$$\overset{\circ}{\Delta R} \overset{\circ}{\leftarrow} \overset{\circ}{\rightarrow} \overset{\circ}{\Delta R} \overset{\circ}{\leftarrow} \overset{\circ}{\rightarrow} \overset{\circ}{\rightarrow} \overset{\circ}{\Delta R} \overset{\circ}{\rightarrow} \overset{\circ}{\rightarrow} \overset{\circ}{\rightarrow} \overset{\circ}{\rightarrow} \overset{\circ}{\leftarrow} \overset{\circ}{\rightarrow} \overset{\circ}{\leftarrow} \overset{\circ}{\rightarrow} \overset{\circ}{\leftarrow} \overset{\circ}{\rightarrow} \overset{\circ}{\leftarrow} \overset{\circ}{\rightarrow} \overset{\circ}{\leftarrow} \overset{\circ}{\rightarrow} \overset{\circ}{$$

CA algorithm clusters objects in an order of increasing angle ΔR . This clustering sequence can be understood as an imitation of parton branching, and hence it has an application to a jet substructure study.

16 / 16

Mass drop tagger utilize clustering sequence of CA algorithm

Mass drop tagger utilize clustering sequence of CA algorithm

Mass drop tagger utilize clustering sequence of CA algorithm

• Rewind clustering of a jet j. Label two subjets as j_1 and j_2 with $m_{j_1} > m_{j_2}$.

Mass drop tagger utilize clustering sequence of CA algorithm

- Rewind clustering of a jet j. Label two subjets as j_1 and j_2 with $m_{j_1} > m_{j_2}$.
- Mass drop can happen if rewinding clustering divides j into subjets originated from light quarks.

$$m_{j_1} < \mu m_j \tag{10}$$

Mass drop tagger utilize clustering sequence of CA algorithm

- Rewind clustering of a jet j. Label two subjets as j_1 and j_2 with $m_{j_1} > m_{j_2}$.
- Mass drop can happen if rewinding clustering divides j into subjets originated from light quarks.

$$m_{j_1} < \mu m_j \tag{10}$$

3
$$p_T$$
 of jets are not too asymmetric

$$\frac{\min(p_{T,j_1}^2, p_{T,j_2}^2)}{m_j^2} (\Delta R_{j_1 j_2})^2 > y_{\text{cut}}$$
(11)

Mass drop tagger utilize clustering sequence of CA algorithm

- Rewind clustering of a jet j. Label two subjets as j_1 and j_2 with $m_{j_1} > m_{j_2}$.
- Mass drop can happen if rewinding clustering divides j into subjets originated from light quarks.

$$m_{j_1} < \mu m_j \tag{10}$$

• p_T of jets are not too asymmetric

$$\frac{\min(p_{T,j_1}^2, p_{T,j_2}^2)}{m_j^2} (\Delta R_{j_1 j_2})^2 > y_{\text{cut}}$$
(11)

• If mass drop and p_T asymmetry is not satisfied, repeat above procedure again for j_1 .

Mass drop tagger utilize clustering sequence of CA algorithm

- Rewind clustering of a jet j. Label two subjets as j_1 and j_2 with $m_{j_1} > m_{j_2}$.
- Mass drop can happen if rewinding clustering divides j into subjets originated from light quarks.

$$m_{j_1} < \mu m_j \tag{10}$$

• p_T of jets are not too asymmetric

$$\frac{\min(p_{T,j_1}^2, p_{T,j_2}^2)}{m_j^2} (\Delta R_{j_1 j_2})^2 > y_{\text{cut}}$$
(11)

If mass drop and p_T asymmetry is not satisfied, repeat above procedure again for j₁.

Mass drop tagger utilize clustering sequence of CA algorithm

- Rewind clustering of a jet j. Label two subjets as j_1 and j_2 with $m_{j_1} > m_{j_2}$.
- Mass drop can happen if rewinding clustering divides j into subjets originated from light quarks.

$$m_{j_1} < \mu m_j \tag{10}$$

• p_T of jets are not too asymmetric

$$\frac{\min(p_{T,j_1}^2, p_{T,j_2}^2)}{m_j^2} (\Delta R_{j_1 j_2})^2 > y_{\text{cut}}$$
(11)

If mass drop and p_T asymmetry is not satisfied, repeat above procedure again for j₁.

By finding mass-dropped clusters, we can find a relevant angular scale $R_{q\bar{q}}$ to resolve $Z \rightarrow q\bar{q}$.

 $\mathsf{Problem}:$ Jets clustered with large angular scale is easily degraded by other QCD radiations.

$$m_q^2 = E_q^2 - |\vec{p}_q|^2 \ll E_q^2, |\vec{p}_q|^2$$
: fine-tuned (12)

Problem: Jets clustered with large angular scale is easily degraded by other QCD radiations.

$$m_q^2 = E_q^2 - |\vec{p}_q|^2 \ll E_q^2, |\vec{p}_q|^2$$
: fine-tuned (12)

Filtering:

Problem: Jets clustered with large angular scale is easily degraded by other QCD radiations.

$$m_q^2 = E_q^2 - |\vec{p}_q|^2 \ll E_q^2, |\vec{p}_q|^2$$
: fine-tuned (12)

Filtering:

 Recluster jet constituent by more finer angular scale R_{filt}

$$R_{\rm filt} = \min\left(0.3, \frac{R_{q\bar{q}}}{2}\right) \tag{13}$$

Problem: Jets clustered with large angular scale is easily degraded by other QCD radiations.

$$m_q^2 = E_q^2 - |\vec{p}_q|^2 \ll E_q^2, |\vec{p}_q|^2$$
: fine-tuned (12)

Filtering:

 Recluster jet constituent by more finer angular scale R_{filt}

$$R_{\rm filt} = \min\left(0.3, \frac{R_{q\bar{q}}}{2}\right)$$
 (13)

2 Take n_{filt} hardest subjets and discard others.

Problem: Jets clustered with large angular scale is easily degraded by other QCD radiations.

$$m_q^2 = E_q^2 - |\vec{p}_q|^2 \ll E_q^2, |\vec{p}_q|^2$$
: fine-tuned (12)

Filtering:

 Recluster jet constituent by more finer angular scale R_{filt}

$$R_{\rm filt} = \min\left(0.3, rac{R_{qar{q}}}{2}
ight)$$
 (13)

- **2** Take n_{filt} hardest subjets and discard others.
- n_{filt} = 3 is often chosen to catch an O(α_S) radiation.

Problem: Jets clustered with large angular scale is easily degraded by other QCD radiations.

$$m_q^2 = E_q^2 - |\vec{p}_q|^2 \ll E_q^2, |\vec{p}_q|^2$$
: fine-tuned (12)

Filtering:

 Recluster jet constituent by more finer angular scale R_{filt}

$$R_{\rm filt} = \min\left(0.3, \frac{R_{qar{q}}}{2}
ight)$$
 (13)

- **2** Take n_{filt} hardest subjets and discard others.
- n_{filt} = 3 is often chosen to catch an O(α_S) radiation.

After then, we merged most soft filtered subjet into its nearest subjet in ΔR .

16 / 16

• As the mass gap between S and Z becomes larger, the angular separation of Fermions are getting smaller.

- As the mass gap between S and Z becomes larger, the angular separation of Fermions are getting smaller.
- For $m_S = 750 \text{ GeV}$, intermediate region between resolved and collimated

$$\Delta R_{f\bar{f}} \gtrsim 0.5$$
 (14)

$$(\Delta R_{f\bar{t}})^2 = (\Delta \eta)^2 + (\Delta \phi)^2 \gtrsim \left(\frac{2m_Z}{\rho_{\tau,Z}}\right)^2 \tag{15}$$

- As the mass gap between S and Z becomes larger, the angular separation of Fermions are getting smaller.
- For $m_S = 1500 \text{ GeV}$, collimated

$$\Delta R_{f\bar{f}} \gtrsim 0.3$$
 (14)

$$(\Delta R_{f\bar{f}})^2 = (\Delta \eta)^2 + (\Delta \phi)^2 \gtrsim \left(\frac{2m_Z}{p_{\tau,Z}}\right)^2 \tag{15}$$

16 / 16

- As the mass gap between S and Z becomes larger, the angular separation of Fermions are getting smaller.
- Q: Is boosted object analysis effective for studying properties (such as spin and CP) of the resonance *S*?
Collimated Fermions from boosted Z boson decay

- As the mass gap between S and Z becomes larger, the angular separation of Fermions are getting smaller.
- Q: Is boosted object analysis effective for studying properties (such as spin and CP) of the resonance S?
- We will see that boosted object analysis is necessary in order to maximize the discrimination power for determining spin and CP of *S*.

Backups

Angular separation of particles from Z boson decay

Lorentz invariant angular separtion under a boost along the beam direction

$$\left(\Delta R\right)^2 = \left(\Delta \eta\right)^2 + \left(\Delta \phi\right)^2 \approx \frac{m_Z^2}{\rho_{T,f} \rho_{T,\bar{f}}} \tag{14}$$

Backups

Angular separation of particles from Z boson decay

Lorentz invariant angular separtion under a boost along the beam direction

$$\left(\Delta R\right)^2 = \left(\Delta \eta\right)^2 + \left(\Delta \phi\right)^2 \approx \frac{m_Z^2}{\rho_{T,f}\rho_{T,\bar{f}}} \tag{14}$$

 ΔR is from inner product between p_f^{μ} and $p_{\bar{f}}^{\nu}$. For massless f,

$$\eta_{\mu\nu} p_f^{\mu} p_{\bar{f}}^{\nu} = p_{T,f} p_{T,\bar{f}} (\cosh \Delta \eta - \cos \Delta \phi)$$
(15)

$$\cosh \Delta \eta - \cos \Delta \phi = \frac{\eta_{\mu\nu} p_f^{\mu} p_{\bar{f}}^{\nu}}{p_{T,f} p_{T,\bar{f}}} = \frac{m_Z^2}{2p_{T,f} p_{T,\bar{f}}}$$
(16)

Backups

Angular separation of particles from Z boson decay

Lorentz invariant angular separtion under a boost along the beam direction

$$\left(\Delta R\right)^2 = \left(\Delta \eta\right)^2 + \left(\Delta \phi\right)^2 \approx \frac{m_Z^2}{\rho_{T,f}\rho_{T,\tilde{f}}} \tag{14}$$

 ΔR is from inner product between p_f^{μ} and $p_{\bar{f}}^{\nu}$. For massless f,

$$\eta_{\mu\nu} p_f^{\mu} p_{\bar{f}}^{\nu} = p_{T,f} p_{T,\bar{f}} (\cosh \Delta \eta - \cos \Delta \phi)$$
(15)

$$\cosh \Delta \eta - \cos \Delta \phi = \frac{\eta_{\mu\nu} p_f^{\mu} p_{\bar{t}}^{\nu}}{\rho_{T,f} \rho_{T,\bar{t}}} = \frac{m_Z^2}{2 \rho_{T,f} \rho_{T,\bar{f}}}$$
(16)

In terms of $p_{T,Z}$ we can rewrite ΔR by

$$(\Delta R)^2 = (\Delta \eta)^2 + (\Delta \phi)^2 \approx \frac{1}{z(1-z)} \frac{m_Z^2}{p_{T,Z}^2}, \quad z(1-z) = \frac{p_{T,f} \rho_{T,\bar{f}}}{p_{T,Z}^2}$$
(17)

16 / 16

$$\left(\Delta R\right)^2 \approx \frac{1}{z(1-z)} \frac{m_Z^2}{p_{T,Z}^2} \ge \left(\frac{2m_Z}{p_{T,Z}}\right)^2 \tag{18}$$

For $m_S = 750 \text{ GeV}$ resonance, $\Delta R \gtrsim 0.5$. For electron (jet) isolation in reconstruction level, we often set an isolation angular scale 0.3 (0.4).