Boosted Higgs in ATLAS

Yun-Ju Lu

National Tsing Hua University

On behalf of ATLAS collaboration

9th Nov 2017

Higgs Coupling Heidelberg

Introduction

- Focus on boosted Higgs->bb
- LHC 13 TeV with increased integrated luminosity
 - boosted Higgs->bb topology
 - H->bb 57% branching fraction
 - Collimated bbbar pair
 - Identify (tag) boosted Higgs-jets

Analysis that may benefit

- Di-boson resonance
 - X->VH-> vvbb, lvbb, 2l2b (36.1/fb)
 - X->VH-> qqbb (36.1/fb)
 - X->HH-> 4b (13.3/fb), 2b2γ(3.2/fb),
 2b2τ (20.3/fb, 8 TeV)
- Heavy resonance (associated new particle production)
 - o Y->XH->qqbb (36.1/fb)
- > Dark Matter
 - Mono-Higgs->bb (36.1 /fb, in Ben's talk)
- Standard model Higgs

Nov 9, 2017 • VH->bb (36.1/fb)

Resolved region

Identification of Higgs jets

ATLAS

B hadron identification

- Single anti-KT large R 1.0 trimmed calo jet
- > 0.2 track jet ghost associated to large R jet (subjet)
- > Subjet btag : jet p_T dependent cone size for track to jet association

Higgs mass window

- Combined mass
- Jet substructure

Large-R jet mass

Mcombine (combined mass)

$$m_J \equiv w_{\text{calo}} \times m_J^{\text{calo}} + w_{\text{track}} \times \left(m_J^{\text{track}} \frac{p_{\text{T}}^{\text{calo}}}{p_{\text{T}}^{\text{track}}} \right)$$

- Improved Higgs jet $p_{T} > 1000 \text{GeV}$
- Muon correction
- Large-R jet mass window
 - 93-134 GeV (68% Higgs-jet efficiency)
 - 76-146 GeV (90% Higgs-jet efficiency) \succ

--1-

ATLAS-CONF-2016-039

ATLAS Simulation Preliminary

MV2c10 b-tagging at 77% WP

600

MV2c10 b-tagging at 77% V

ATLAS Simulation Preliminary

800

Higgs-jet efficiency

1.2

0 0.6 0.4 0.2

10

 10^{6}

10⁵

10⁴

 10^{3}

Multi-jet rejection

1 b-tag, Loose m^{calo} window

2 b-tags. No m^{calo} selection p-tags. Loose m⁶

° windov

p-tags, Tight m^{calo} window, D_a sel

1200

-tags. Tight m^{calo} window. D. se

1400 p₋ [GeV

1000

Track jet b tagging

Application of Hbb tagging in Analysis

Search for high-mass diboson resonances

X->VH->vvbb, lvbb, 2l2b

- 0,1 lepton. 1,2 btag region (W'); 0,2 lepton. 1,2 btag(Z' and A boson)
- At least one large-R jet with at least 1 ghost associated 0.2 track jet, leading jet $p_T > 250 \text{ GeV}$; ~ 90% Higgs-jet efficiency mass window cut
- Different background fraction in each signal region
 - Background estimation with shapes from simulation, normalization from data except mutijet background in 1 lepton channel
 - > Mutijet background template in 1 lepton channel is extract from non-isolated leptons
 - Hadron cone base truth labeling template for W/Z + bb,bc,cc,bl,cl,ll

Heavy Vector Triplet (HVT)

W'->W+-h and Z'->Zh

- Model A: comparable BRs to fermions and gauge bosons
- Model B: suppressed couplings to fermions

A->ZH->vvbb, 2l2b

- A->ZH : CP odd scalar boson A in Two Higgs-Doublet models
- Two Higgs-Doublet models
 - > mA=mH=mH⁺⁻, mh=125 GeV
- Merged signal region

ATLAS-CONF-2017-055/

- > 1,2 b-tag and (additional btag 0.4 track jet) combined 1, 2 btag for the 2 lepton channel
- Mild excess at $m_A = 440$ GeV: Local (global) significance: 3.6 σ (2.4 σ)

X->VH->qq^(')bb

- Search for heavy resonances decaying to VH in all hadronic channel
 - \sim M_{VH} > 1 TeV ; V and H are highly boosted
 - Veto lepton to ensure the orthogonality to non-fully hadronic state
- 2 large R jet p_T > 450 GeV, 250 GeV (larger M_I: H, smaller M_I: V)
 - At least 1 ghost associated 0.2 track jet
 - 90% Higgs-jet efficiency mass window cut
 - One or two btag(77%) trackjet
- Main Background from Mutijet(~ 90%)
 - Use 0-tag sample(99% mutijet) to model kinematics of Mutijet in 1 and 2 tag
 - ➢ High mass sideband of H-jet for normalizing 0 tag sample to 1 and 2 tag sample

EXOT-2016-12/

10

X->VH->qq(ʻ)bb

EXOT-2017-04/

Main background from Mutijet($\sim 96\%$)

Y-> XH -> qqbb

X->HH->4b

> At least 2 large-R jets with $p_T > 250$ GeV

- Leading jet pT > 450 GeV
- At least 1 0.2 track jets ghost associated
- Each large-R jet 1 btag, 3 btag, 4 btag (77%)
- m_j > 50 GeV, 2-d Higgs-jet mass window
- Not yet sensitive to SM prediction
- Resonant Higgs-boson pair production
 - Boosted analyses better sensitivity mass > 1000 GeV

Main Background from Mutijet (83%-87%)

Identification of Higgs jets

Variable-R Track Jets

ATL-PHYS-PUB-2017-010/

Nov 9, 2017

15

Exclusive-k_T Subjets

- Recluster large R jet constituents with Exclusive- k_{T} algorithm
 - > Select different inputs based on best truth subjet double b-labeling efficiency
 - Trimmed large R calo jet constituents
- Large -R jet is divided into two components

Center of Mass

- Boost to center of mass large R calo jet
 - > Subjets are reconstructed with calorimeter cell clusters (constituents of Large R jet)
 - Fixed cone size in CoM frame
- Track to jet association
 - > Associated tracks to large R jet with 1.0 cone in lab frame
 - Boost to CoM to associate track to 2 subjets with fix cone
- Adapted variable cone size in lab frame
 - Cone size depends on jet momentum and Higgs decay topology

Performance

- Improved truth subjet double b-labeling efficiency
- Better QCD and Top jet rejection
- Big improvement for Higgs jet > 1000 GeV

Higgs Jet ∈=0.5

double b-tagging

2000

2500

R=0.2 Track Jet

VR Track Jet

ExKt Subjet

CoM Subjet

ATLAS Simulation

1000

1500

Preliminary

1000

1200

1400

Top Jet p₁ [GeV]

800

QCD Jet Rejection

200

180

160

140

120

100

80

60

40

20

0^t

500

QCD Jet p₋ [GeV] Yun- Ju Lu

3000

30

20

10Ē

0

400

600

Summary of boosted Higgs (bb) in ATLAS

Di-boson resonance

- X->V(vv,lv,ll)H(bb) (included boosted!)
- X->V(qq)H(bb) (boosted region!)
- X->HH-> 4b (included boosted!)
- ➤ X->HH-> 2b2т
- ➤ X->HH-> 2b2γ
- Heavy resonance decay to Higgs with associated new particle production
 - Y->XH->qqbb (boosted region!)
- > Dark Matter
 - Mono-Higgs->bb (included boosted!)
- Standard model Higgs
 - ➤ VH->bb
 - \circ $\:$ No boost Higgs included yet. Evidence !
- Exciting moment for boost Higgs analyses
 - Many analyses have sensitivity in boosted Higgs region and applied baseline techniques in ATLAS
 - > New subjet reconstruction methods have shown significant improvements
 - Studies of the application of CoM, VR, ExKt in analyses are underway

Yun- Ju Lu

Thank you !

Back up

X->VH->vvbb, lvbb, 2l2b

- Different background fraction in each signal region (Background estimation with shape from simulation, normalization from data except mutjet background which use data-driven template)
- Hadron cone base truth labeling template for W/Z + jets

A->ZH->vvbb, 2l2b

- 1,2 b-tag and additional btag 0.4 track jet
 - Combined 1, 2 btag for the 2 lepton channel
- Combined 1, 2 btag for the 2 lepton channel and additional btag 0.4 track jet

X->VH->qq(ʻ)bb

Main Background from Mutijet(~ 90%) events is estimated using 0-tag sample and sideband of Higgs mass and vector boson mass

Yun- Ju Lu

Y-> XH -> qqbb

- Main Background from Mutijet(~ 96%)
- Mutijet background estimated with Higgs jet mass sideband

X->HH->4b

Data zero tag samples for mutijet (99% purity)

$$N_{\rm bckgrd}^{n-{\rm tag}} = \mu_{\rm multijet}^{n-{\rm tag}} N_{\rm multijet}^{0-{\rm tag}} + \alpha_{t\bar{t}}^{n-{\rm tag}} N_{t\bar{t}}^{n-{\rm tag}}$$
Bined likelihood in sideband

Use data sideband region to get normalization factor

36 GeV <
$$\sqrt{(m_J^{\text{lead}} - 124 \text{ GeV})^2 + (m_J^{\text{subl}} - 115 \text{ GeV})^2} < 63 \text{ GeV}$$

