Higgs Production in Electroweak Processes from the ATLAS Experiment

Lianliang MA Shandong University, China on behalf of the ATLAS Collaboration

> Higgs Couplings 2017 Heidelberg University November 6th, 2017

Outline

This talk is aimed for "update of VH and VBF production channels including decays to bb, $\tau\tau$ or what is available".

Only one analysis has been updated since HC2016. Two talks at HC2016:
<u>ATLAS SM H→bb:</u> VH, VBF, VBF+γ (12.6 fb⁻¹ 13 TeV)
<u>ATLAS SM H→ττ</u>: ggF boosted, VBF, VH from Run I

This talk only covers VH, $H \rightarrow$ bb with 36.1 fb⁻¹ (<u>arXiv:1708.03299v2</u>):

- Introduction
- Analysis strategy
- Systematics estimation (mainly theoretical ones)
- Results
- Summary

Introduction: EW Processes

Introduction: ATLAS+CMS Run I

- \diamond Production channels observed: ggF and VBF (5.4 σ)
- \diamond Higgs decay modes observed: γγ, ZZ, WW, ττ (5.5σ)
- \diamond The ATLAS + CMS combined result: VH with 3.5 σ , H \rightarrow bb with 2.6 σ
- \diamond VH, H \rightarrow bb is very important for studying

both Higgs VH production, and $H \rightarrow$ bb decay.

Production process	Measured significance (σ)	Expected significance (σ)
VBF	5.4	4.6
WH	2.4	2.7
ZH	2.3	2.9
VH	3.5	4.2
ttH	4.4	2.0
Decay channel		
$H \to \tau \tau$	5.5	5.0
$H \rightarrow bb$	2.6	3.7

JHEP08 (2016) 045

WH/ZH, H→bb

arXiv:1708.03299

Run II Analysis of WH/ZH, H→bb

- Categorized into 0-lepton, 1-lepton, and 2lepton final states (e, μ)
- Single-lepton triggers for 1/2-lepton channels,
 MET trigger for 0/1-lepton (W→µv)
- Exactly 2 or 3 jets for 0/1-lepton channels, 2 or
 >=3 jets for 2-lepton
- Exactly 2 b-jets (p_T >20 GeV) at 70% b-tagging efficiency; the leading b-jet with p_T >45 GeV

Background Composition

- Main backgrounds: Z+jets, W+jets, ttbar, and single-top
- Dedicated control regions (CR) for background normalizations: W+HF, ttbar
- \succ Resonant diboson VZ, Z \rightarrow bb background, with lower mbb than VH signal
- Multi-jet background negligible in 0- and 2-lepton, <5% in 1-lepton (data-driven)</p>

Multivariate Analysis (BDT)

Variable	0-lepton	1-lepton	2-lepton		
p_{T}^{V}	$\equiv E_{\rm T}^{\rm miss}$	×	×		
$E_{\mathrm{T}}^{\mathrm{miss}}$	×	×	×		
$p_{\mathrm{T}}^{b_1}$	×	×	×		
$p_{\mathrm{T}}^{b_2}$	×	×	×		
m _{bb}	×	×	×		
$\Delta R(\boldsymbol{b}_1, \boldsymbol{b}_2)$	×	×	×		
$ \Delta \eta(\boldsymbol{b}_1, \boldsymbol{b}_2) $	×				
$\Delta \phi(V, bb)$	×	×	×		
$ \Delta \eta(\boldsymbol{V}, \boldsymbol{b}\boldsymbol{b}) $			×		
$m_{\rm eff}$	×				
$\min[\Delta \phi(\boldsymbol{\ell}, \boldsymbol{b})]$		×			
$m_{ m T}^W$		×			
$m_{\ell\ell}$			×		
m _{top}		×			
$ \Delta Y(\boldsymbol{V}, \boldsymbol{b}\boldsymbol{b}) $		×			
	Only in 3-jet events				
$p_{\mathrm{T}}^{\mathrm{jet}_3}$	×	×	×		
m_{bbj}	×	×	×		

Boosted Decision Trees trained and classified for each signal region separately

Lianliang Ma Shandong U.

2017-11-06

2-Jet SR

3-Jet (>=3J) SR

9

Control Regions: W+HF

- > Heavy flavor (HF): 2 jets from bb, bc, cc, or bl quark pairs
- > Two additional selections after nominal cuts: $m_{bb} < 75$ GeV, $m_{top} > 225$ GeV
- Predicted purity: 75-78%

Control Regions: Ttbar

Events / 300 Ge/

35

30

25

20 15

10

vs = 13 TeV, 36.1 fb

 $p_{\tau}^{V} \ge 150 \text{ GeV}$ eu CR

2 leptons, 2 jets, 2 b-tags

- ➢ Four ttbar CR's for the 2-lepton analysis, with eµ final state only
- More than 99% from single top and ttbar, 88-97% ttbar only

Lianliang Ma Shandong U.

- Data

tt Single top

VH \rightarrow Vbb (µ=1.30

Pre-fit background

2], >150 GeV

Uncertainty

Systematic Uncertainties

Experimental uncertainties

- Dominant uncertainties: flavour-tagging efficiency correction factors, jet energy scale and the modeling of the jet energy resolution
- Uncertainties from lepton's reconstruction, identification, isolation and trigger efficiencies with a small impact on the result
- MET trigger and MET uncertainty from track's uncertainties
- Luminosity: 2.1% for 2015 data, 3.4% for 2016
- Theoretical uncertainties
 - Samples and methods used
 - Backgrounds
 - Signal
- Impact of uncertainties on the final result

Theoretical Uncertainties: Samples

Nominal samples are generated with PowHeg-Box for signals and top backgrounds, and with Sherpa for V+jets and diboson.

Process	ME generator			ME PDF		PS and		UE model	Cross-section
						Hadronisation		tune	order
Signal					_				
$qq \rightarrow WH$	Powheg-Box v2	2 [37] +		NNPDF3.0NLO ^(*) [38]	1	Рутніа8.212 [3	81]	AZNLO [39]	NNLO(QCD)+
$\rightarrow \ell \nu b \bar{b}$	GoSam [40] + N	MiNLO 4	41, 42]		- 1				NLO(EW) [43-49]
$qq \rightarrow ZH$	Powheg-Box v2	2+		NNPDF3.0NLO ^(*)	- 1	Рутніа8.212		AZNLO	NNLO(QCD) ^(†) +
$\rightarrow \nu \nu b \bar{b} / \ell \ell b \bar{b}$	GoSam + MiNL	0			- 1				NLO(EW)
$gg \rightarrow ZH$	Powheg-Box v2	2		NNPDF3.0NLO ^(*)	- 1	Рутніа8.212		AZNLO	NLO+
$\rightarrow \nu \nu b \bar{b} / \ell \ell b \bar{b}$									NLL [50–54]
Top quark									
tī	Powheg-Box v2	2 [55]		NNPDF3.0NLO		Рутніа8.212		A14 [56]	NNLO+NNLL [57]
s-channel	Powheg-Box v1	[58]		CT10 [59]	- 1	Рутнія6.428 [6	50]	P2012 [61]	NLO [62]
t-channel	Powheg-Box v1	[58]		CT10f4	- 1	Рутніа6.428		P2012	NLO [63]
Wt	Powheg-Box v1	. [64]		CT10		Рутніа6.428		P2012	NLO [65]
Vector boson + jets					ī				
$W \to \ell \nu$	Sherpa 2.2.1 34	4, 66, 67]		NNPDF3.0NNLO		SHERPA 2.2.1	58, <u>69]</u>	Default	NNLO [70]
$Z/\gamma^* o \ell\ell$	Sherpa 2.2.1			NNPDF3.0NNLO	- 1	Sherpa 2.2.1		Default	NNLO
$Z \rightarrow \nu \nu$	Sherpa 2.2.1			NNPDF3.0NNLO		Sherpa 2.2.1		Default	NNLO
Diboson									
WW	Sherpa 2.1.1			CT10		Sherpa 2.1.1		Default	NLO
WZ	Sherpa 2.2.1			NNPDF3.0NNLO		Sherpa 2.2.1		Default	NLO
ZZ	Sherpa 2.2.1			NNPDF3.0NNLO		Sherpa 2.2.1		Default	NLO

Fixed: mH = 125 GeV, Br($H \rightarrow$ bb) = 58%, mtop = 172. 5 GeV

Theoretical Uncertainties Estimation

- Variations for Powheg + Pythia samples
 - Alternative parton shower Powheg + Herwig++
 - Different matrix element Madgraph_aMC@NLO + Pythia
 - Increase or decrease amount of radiation (corresponding to scale variations)
- Variations for Sherpa samples
 - Scale of renormalization, factorization, or Parton shower/resummation: half or twice of the nominal scale
 - CKKW merging scale from 30 to 15 GeV
 - PDF + α_s variations
 - Comparison to another ME generator/merging approach (e.g. for W+jets to Madgraph5_aMC@NLO)

Theoretical Uncertainties: Top

Process	Normalisation factor
$t\overline{t}$ 0- and 1-lepton	0.90 ± 0.08
$t\bar{t}$ 2-lepton 2-jet	0.97 ± 0.09
$t\bar{t}$ 2-lepton 3-jet	1.04 ± 0.06

- between 0/1 leptons,
- between 2/3-jet regions
- ★ between W+HF CR/SR

Theoretical Uncertainties: W/Z+jets

	Z + jets	=	V+II/cl: <1%	6 contribution	
Z + ll normalisation	18%				
Z + cl normalisation	23%				
Z + bb normalisation	Floating (2-jet, 3-jet)	Pro	cess	Normalisation factor	
Z + bc-to- $Z + bb$ ratio	30-40%	W -	⊢HF 2-jet	1.22 ± 0.14	
Z + cc-to- $Z + bb$ ratio	13 – 15%	W -	⊢HF 3-iet	1.27 ± 0.14	
Z + bl-to- $Z + bb$ ratio	20-25%	Z +	HF 2-iet	1.30 ± 0.10	
0-to-2 lepton ratio		Z +	HF 3-jet	1.00 ± 0.10 1.22 ± 0.09	
$m_{bb}, p_{\mathrm{T}}^{V}$	S		III 0 -jet	1.22 ± 0.00	
	W + jets				
W + ll normalisation	32%				
W + cl normalisation	37%	U	ncertaintv i	in extrapolation	
W + bb normalisation	Floating (2-jet, 3-jet)		to O lonton final state		
W + bl-to- $W + bb$ ratio	26% (0-lepton) and 23% (1-lepton	i) to			
W + bc-to- $W + bb$ ratio	15% (0-lepton) and 30% (1-lepton	ı)			
W + cc-to- $W + bb$ ratio	10% (0-lepton) and 30% (1-lepton	1)			
0-to-1 lepton ratio	5%				
W + HF CR to SR ratio	V + HF CR to SR ratio 10% (1-lepton)		ncertainty i	n extrapolation	
$m_{bb}, p_{\mathrm{T}}^{V}$	S	_ fr	om CR to SF	२	

Theoretical Uncertainty: Diboson

Normalisation	20%				
0-to-2 lepton ratio	6%				
Acceptance from scale variations (var.)	10 – 18% (Stewart–Tackmann jet binning method)				
Acceptance from PS/UE var. for 2 or more jets	5.6% (0-lepton), 5.8% (2-lepton)				
Acceptance from PS/UE var. for 3 jets	7.3% (0-lepton), 3.1% (2-lepton)				
$m_{bb}, p_{\rm T}^V$, from scale var.	S (correlated with WZ uncertainties)				
$m_{bb}, p_{\rm T}^{\tilde{V}}$, from PS/UE var.	S (correlated with WZ uncertainties)				
m_{bb} , from matrix-element var.	S (correlated with WZ uncertainties)				
WZ					
Normalisation	26%				
0-to-1 lepton ratio	11%				
Acceptance from scale var.	13 – 21% (Stewart–Tackmann jet binning method)				
Acceptance from PS/UE var. for 2 or more jets	3.9%				
Acceptance from PS/UE var. for 3 jets	11%				
$m_{bb}, p_{\rm T}^V$, from scale var.	S (correlated with ZZ uncertainties)				
$m_{bb}, p_{\rm T}^{\bar{V}}$, from PS/UE var.	S (correlated with ZZ uncertainties)				
m_{bb} , from matrix-element var.	S (correlated with ZZ uncertainties)				
	WW				
Normalisation	25%				

Theoretical Uncertainties: Signal

- Overall uncertainties estimated according to LHC Higgs Cross Section WG
- Acceptance uncertainties estimated by Stewart-Tackman jet binning method
- Uncertainty from PS/UE has the dominant effect, mainly due to the difference between Pythia8 and Herwig7 parton showers

	Sional
Cross-section (scale)	0.7% (qq), 27% (qg)
Cross-section (PDF)	1.9% $(qq \rightarrow WH)$, 1.6% $(qq \rightarrow ZH)$, 5% (gg)
Branching ratio	1.7 %
Acceptance from scale variations (var.)	2.5 – 8.8% (Stewart-Tackmann jet binning method)
Acceptance from PS/UE var. for 2 or more jets	10 - 14% (depending on lepton channel)
Acceptance from PS/UE var. for 3 jets	13%
Acceptance from PDF+ $\alpha_{\rm S}$ var.	0.5 - 1.3%
m_{bb} , $p_{\rm T}^V$, from scale var.	S
$m_{bb}, p_{\rm T}^{\hat{V}}$, from PS/UE var.	S
$m_{bb}, p_{\rm T}^{V}$, from PDF+ $\alpha_{\rm S}$ var.	S
$p_{\rm T}^V$ from NLO EW correction	S

Impact of Systematics Uncertainties

Source of un	ncertainty	σ_{μ}
Total		0.39
Statistical	0.24	
Systematic		0.31
Experiment	al uncertaintie	s
Jets		0.03
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.03
Leptons		0.01
b-tagging	<i>b</i> -jets <i>c</i> -jets light jets extrapolatic	$\begin{array}{c} 0.09 \\ 0.04 \\ 0.04 \\ 0.01 \end{array}$
Pile-up		0.01
Luminosity	1 1 11.	0.04
Theoretical	and modelling	uncertainties
Signal		0.17
Floating nor Z + jets W + jets $t\bar{t}$ Single top q Diboson Multijet	rmalisations Juark	$\begin{array}{c} 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.08 \\ 0.02 \\ 0.02 \end{array}$
MC statistic	0.13	

Signal strength: $\mu = \frac{\sigma \times BR}{(\sigma \times BR)_{SM}}$

- A simultaneous fit to all SR's and CR's can be used to estimate impacts of uncertainties, when all experimental and theoretical sys. considered.
- The analysis is limited by systematical uncertainties: 0.31 (syst.) vs. 0.24 (stat)
- The main sources of uncertainties are: signal modeling, background modeling, MC statistics, b-tagging.

Statistical Analysis Strategy

A simultaneous likelihood fit is performed on 8 signal regions and 6 control regions: 6 SRs (page 9); 4 top CR (page 11); 2 SRs + 2 CRs here

Results with 13 TeV Data (1)

Results with 13 TeV Data (2)

Final-discriminant bins in all regions are combined into bins of log(S/B), with the fitted signal being S and the fitted background B

2017-11-06

Results from Run I + Run II

Run I

ATLAS

ΖH

WH

tot.

stat.

Combination $0.51^{+0.40}_{-0.37} \quad \left(\begin{smallmatrix} +0.31 & +0.25 \\ -0.30 & -0.22 \end{smallmatrix} \right)$ -1 3 4 5 6 7 0 1 2 best fit $\mu = \sigma / \sigma_{_{SM}}$ for m_H=125 GeV Significance with Run I + Run II: **3.6** σ observed (4.0 σ expected) Compatible with SM within 0.4σ .

√s=7 TeV, ∫Ldt=4.7 fb⁻¹; √s=8 TeV, ∫Ldt=20.3 fb⁻¹

tot (stat syst)

 $0.05^{+0.52}_{-0.49} \quad \left(\begin{array}{c} +0.44 & +0.27 \\ -0.42 & -0.25 \end{array} \right)$

 $\begin{array}{ccc} \textbf{1.11} + \textbf{0.65} \\ - \textbf{0.61} \end{array} \begin{array}{c} \left(\begin{array}{c} + \ 0.50 \end{array} \right. + \textbf{0.42} \\ - \ 0.48 \end{array} \right)$

Cross-check: Dijet Mass Analysis (1)

		Channel				
\diamond Additional selections on top of the MVA analysis				0-lepton	1-lepton	2-lepton
	•	m_{T}^W	-	$< 120 { m ~GeV}$	-	
\diamond 18 analysis regions with an additional p-V slice				-	-	$< 3.5 \sqrt{\text{GeV}}$
(>200 GeV)			$p_{\rm T}^V$ regions			
(* 200 001)			p_{T}^{V}	(75, 150] GeV	(150, 200] GeV	$(200, \infty) \text{ GeV}$
				(2-lepton only)		
	Dijet mess		$\Delta R(ec{b}_1,ec{b}_2)$	<3.0	<1.8	<1.2
ממידיח, חי	Dijet mass	nominai (БОТ)				
u	$\mu = 1.30^{+0.28}_{-0.27}$ (stat.) $^{+0.37}_{-0.29}$ (syst.)	$\mu = 1.20^{+0.24}_{-0.23}(\text{stat.})^{+0.34}_{-0.28}(\text{syst.})$				

3.5σ obs. (3.0σ exp.)

- Data

Diboson

Single top

W+(bb,bc,cc,bl)

Z+(bb,bc,cc,bl)

Uncertainty Pre-fit background

SM VH \rightarrow Vbb \times 1

180 200

m_{bb} [GeV]

Multijet

W+cl

140 160

VH \rightarrow Vbb (μ =1.30)

Events / 10 GeV 100 ATLAS Events / 10 GeV 📥 Data ATLAS VH \rightarrow Vbb (µ=1.30) √s = 13 TeV . 36.1 fb⁻¹ √s = 13 TeV , 36.1 fb⁻¹ Diboson 100 1 lepton, 2 jets, 2 b-tags 0 lepton, 2 jets, 2 b-tags Ħ Single top W+(bb,bc,cc,bl) 80 p_ ≥ 200 GeV $p_{\tau}^{V} \geq 200 \ GeV$ Z+(bb,bc,cc,bl) 80 Uncertainty ····· Pre-fit background 60 SM VH \rightarrow Vbb \times 1 60 40 40 20 20 1.5 Data/Pred. 5.0 2.0 Data/Pred 0.5 60 80 100 120 40 60 80 100 120 140 160 180 200 40 m_{bb} [GeV]

3.5σ obs. (2.8σ exp.)

2017-11-06

Significance

Cross-check: Dijet Mass Analysis (2)

For the mbb distr. in 14 signal regions:

- Merged all SR regions, weighted by their respective value of the ratio of fitted Higgs boson signal and background yields (S/B)
- 2 Subtracted all backgrounds except for the (W/Z)Z diboson processes

Cross-check: VZ, Z→bb

- Similar analysis as H→bb, except VZ as signal and the VH as one background channel
- BDT training separately for each region with VZ as the signal

VZ, Z→bb	BDT
μ	$\mu_{VZ} = 1.11^{+0.12}_{-0.11} (\text{stat.})^{+0.22}_{-0.19} (\text{syst.})$
Significance	5.8σ obs. (5.3σ exp.)

The result agrees with the SM prediction

Summary

- The ATLAS experiment obtained its first evidence of VH, $H \rightarrow$ bb with 3.6 σ (4.0 σ expected) with Run II (36 fb⁻¹) + Run I data.
- ➤ The results agrees with the SM prediction, with an uncertainty of ~30%.
- With the additional data being and to be collected in Run II, observation and more precise measurements are in sight.

Thanks!

Event Selection

Selection	0-lepton	1-lepton		2-lepton		
		e sub-channel	μ sub-channel			
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton		
Leptons	0 loose leptons	1 tight electron	1 medium muon	2 loose leptons with $p_{\rm T} > 7 {\rm ~GeV}$		
	with $p_{\rm T} > 7 {\rm ~GeV}$	$p_{\rm T} > 27 { m ~GeV}$	$p_{\rm T} > 25 {\rm ~GeV}$	≥ 1 lepton with $p_{\rm T} > 27 { m GeV}$		
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 150 { m ~GeV}$	$> 30 { m GeV}$	_	-		
$m_{\ell\ell}$	_		_	$81 \text{ GeV} < m_{\ell\ell} < 101 \text{ GeV}$		
Jets	Exactly	2 or 3 jets		Exactly 2 or ≥ 3 jets		
Jet $p_{\rm T}$		$> 20 { m ~GeV}$				
b-jets	Exactly 2 b -tagged jets					
Leading <i>b</i> -tagged jet $p_{\rm T}$	$> 45 { m GeV}$					
H_{T}	> 120 (2 jets), > 150 GeV (3 jets)	-		_		
$\min[\Delta \phi(ec{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jets})]$	$> 20^{\circ} (2 \text{ jets}), > 30^{\circ} (3 \text{ jets})$	-		-		
$\Delta \phi (ec{E}_{\mathrm{T}}^{\mathrm{miss}}, ec{bb})$	$> 120^{\circ}$	-		-		
$\Delta \phi(ec{b}_1,ec{b}_2)$	< 140°	-		_		
$\Delta \phi(ec{E}_{\mathrm{T}}^{\mathrm{miss}},ec{E}_{\mathrm{T,trk}}^{\mathrm{miss}})$	< 90°	_		-		
$p_{\rm T}^V$ regions	> 150 GeV			(75, 150] GeV, > 150 GeV		
Signal regions	\checkmark	$m_{bb} \ge 75 \text{ GeV or } m_{top} \le 225 \text{ GeV}$		Same-flavour leptons		
			-	Opposite-sign charge ($\mu\mu$ sub-channel)		
Control regions	_	$m_{bb} < 75 \text{ GeV}$ and	nd $m_{\rm top} > 225 { m ~GeV}$	Different-flavour leptons		

MJ Estimation in 1-lepton Channel

Dedicated isolation WPs to further reduce MJ background

- Topoetcone20 <3.5GeV for electron channel;
- Ptcone20<1.25GeV for muon channel
- Use isolation-inverted region in 1 tag regions to estimate MJ shape
- Fit to mTW in 2-tag signal regions to extract MJ normalization
 - The template for the EW contribution in the signal region is obtained directly from MC predictions
- Main assumption: shape in isolation-inverted regions are the same as that in SRs. Systematics assigned to cover the difference.
- Estimated separately in the electron and muon sub-channels, and in the 2- and 3-jet categories, using similar procedures

	MJ contamination (2-jet)	MJ contamination (3-jet)
e-channel	4.8%	0.3%
mu-channel	4.6%	0.5%

Signal Cross Section and Acceptance

$m_H = 125 \text{ GeV}$ at $\sqrt{s} = 13 \text{ TeV}$				
Process	Cross-section × B [fb]	Acceptance [%]		
		0-lepton	1-lepton	2-lepton
$qq \rightarrow ZH \rightarrow \ell \ell b \bar{b}$	29.9	< 0.1	< 0.1	7.0
$gg \rightarrow ZH \rightarrow \ell \ell b \bar{b}$	4.8	< 0.1	< 0.1	15.7
$qq \rightarrow WH \rightarrow \ell \nu b \bar{b}$	269.0	0.2	1.0	_
$qq \rightarrow ZH \rightarrow \nu \nu b\bar{b}$	89.1	1.9	_	_
$gg \rightarrow ZH \rightarrow \nu \nu b\bar{b}$	14.3	3.5	_	—