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Higgs boson signals

Higgs bosons at the LHC can be produced in gluon fusion, weak boson
fusion and in association with vector bosons or top quarks. Higgs can
decay to photons, electroweak gauge bosons, b-quarks and tau-leptons. All
production and decay channels are important for elucidating Higgs
properties.
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Higgs boson signals: current and future
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The framework

To describe Higgs production at the LHC, we employ the standard
framework of perturbative QCD where production cross sections are
computed by convoluting parton distribution functions and partonic cross

sections.
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Not just the Higgs production

This pQCD framework is standard; it was used at the LHC and the
Tevatron to successfully describe large number of hard scattering

processes in the SM.

Standard Model Production Cross Section Measurements status: August 2016
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Advances in understanding the Higgs boson production

The level of sophistication that has been reached in describing Higgs
signals at the LHC is without a precedent in particle physics.

1) all but one major Higgs production channels are currently known
through NNLO QCD (gluon fusion and inclusive WBF are known
through N3LO) and through NLO electroweak.

2) processes where Higgs boson is produced in association with several
jets are known through NLO QCD.

3) Matching and merging of NLO and NNLO QCD results with parton
showers is available thanks to major automated programs (MC@NLO,
Powheg, Sherpa etc.)

4) All important Higgs decay channels are known through (at least)
NNLO QCD and NLO electroweak.
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Parton distribution functions

Higgs production: gluon fusion
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Knowledge of parton distribution
functions affects all production
channels. The current situation
appears to be quite satisfactory;
convergence of different PDF sets --
compared to what we have seen in
the previous years -- is reassuring.
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Theory behind the NNLO computations

1) We require computation of complicated two (and higher) loop
diagrams / amplitudes.

2) We need to understand how to combine processes with different parton
multiplicities to enable theoretical predictions for infra-red safe observables.

For example, an IR/ collinear finite result for H+j @ NNLO arises if e.g. gg -
> H+g (2-loops) , gg -> H+gg (1-loop), gg -> H+ggg (0-loops) are combined
(and additional collinear subtractions / pdf renormalizations are
undertaken).
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Higgs boson production in gluon fusion

Higgs production in gluon fusion is affected by large O(100%) QCD
corrections. These corrections are currently known to three loop order

(N3LO) in the infinite top mass limit.

t o/pb 2 TeV 7 TeV 8 TeV 13 TeV 14 TeV
A CCH o [0SOV 151 10T 4317 40870
‘ = o004 LABATISE 18900 43,1472 48.5THIS

The perturbative series for gg -> H cross section appear to
converge. This is no small feat as the corrections start at
O(100%) at NLO, are still O(20%) at NNLO, but decrease to
just O(4%) at N3LO.The residual scale dependence uncertainty
is just about 3%.

Anastasiou, Duhr, Dulat, Furlan, Herzog, Gehrmann,
Mitzlberger etc.

Scale uncertainty of the gluon fusion cross section
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Large QCD effects and many small corrections

Current estimates of the gluon fusion cross section include large number
of subtle effects and require careful evaluation of the residual uncertainty.
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H+jet @ NNLO : fiducial results

H-+et production is known through NNLO in pQCD, including decays of
the Higgs boson into electroweak final states. The current comparison of
theory predictions with ATLAS and CMS data is not very impressive but it
provides a good starting point for refined studies at 13 TeV.
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Jet-binned cross sections

The results of N3LO computation for inclusive Higgs production, NNLO for the
H+jet, as well as advances with re-summations of jet-radius logarithms allow one

to improve on existing predictions for H+ 0-jet and H+ 1-jet cross sections.

For the 13 TeV LHC, using NNPDF2.3, anti-kt, R=0.5, po=mm/2, Qres = mu/2 and
accounting for top and bottom mass effects, one finds the following results:

LHC 13 TeV | ¢N°LO+NNLL+LLg ZON_jteGO+NNLL+LLR pb] EON_?;O EON_i%O+NNLL
O-jet bin piveto =25GeV | 0.53979:917 24,7108 243105 24,6128
Pt,veto = 30 GeV 0.60870 007 27.979-7 27510 27.779%
LHC 13 Tev | xS0 FNNEEALLR [ph) 1 5ANLO )
>1-jet bin Pe,min = 25 GeV 21.2194 21.6190
Pt.min = 30 GeV 18.019-3 18.470-3

e No breakdown of fixed order perturbation theory for pr ~ 25- 30 GeV ;

e Reliable error estimate from lower orders ; residual errors O(3-5) percent for the
two jet bins; proper correlation of errors.

e Re-summed results change fixed-order results within the error bars of the
former/latter. There seems to be little difference between re-summed and fixed
order cross sections once we arrive at sufficiently high orders in both cases.

A. Banfi, F. Caola, F. Dreyer, P. Monni, G.Salam, G. Zanderighi, F. Dulat

Wednesday, November 8, 17



The Higgs boson transverse momentum distribution

A transverse momentum distribution of a color-neutral particle can be
computed following well-established procedures at low (resummation)
and high (perturbation theory) transverse momentum. There was an

important progress on that recently (N3LL re-summation matched to
NNLO fixed order).
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Quark masses and Higgs p: distribution

The Higgs boson is a special case since the Hgg vertex is not point-like.
At small pt, b-quark loops lead to Sudakov-like double logarithmic
corrections, related to the helicity flip on the “soft” fermion line;
resummation of these logarithms is not well-understood.
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g amplitudes can be computed (L.

Tancredi, C. Wever, K.M).

Planar master-integrals with full mass dependence
were recently computed by R. Bonciani et al.
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Quark masses and Higgs p: distribution

The two-loop amplitudes were combined with the OpenLoops (Pozzorini et
al.) to calculate mass-suppressed contributions to Higgs + jet production at
NLO QCD. The corrections to the mass-suppressed interference terms are
large but they appear similar to large corrections to a point-like top-loop

contribution. | @)
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Quark masses and Higgs p: distribution

Another interesting region is that of the high ( > 400 GeV) p: of the Higgs
boson. Higher-order QCD corrections can be computed expanding in the
mass of the top quark relative to all kinematic variables. Wonderful

convergence. Exact K-factor is O(10) percent larger than the K-factor
computed in m; — oo approximation.
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CMS preliminary

Off-shell measurements
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Off-shell measurements

Quark-antiquark annihilation to ZZ is known through NNLO QCD and
the gluon fusion -- to NLO QCD (two loops), including interference with
the signal. Integrals with top quark loops are known approximately. Close
prox1m1ty of K-factors for the signal and the background.
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Higgs boson production in weak boson fusion

In the large - N approximation, upper and lower quark lines do not talk
to each other and QCD corrections to weak boson fusion can be read off
from the QCD corrections in deep inelastic scattering. Especially simple
are corrections to inclusive cross section since they are given by QCD
corrected DIS structure functions.

The QCD corrections to inclusive WBF cross section in this approach are
small (O(5%) NLO, O(3%) NNLO, O(0.1%) at N3LO) ; it then seemed
natural to assume that this size of QCD corrections is indicative for
fiducial cross sections.

Bolzoni, Maltoni, Moch, Zaro;Dreyer, Kalberg
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Higgs boson production in weak boson fusion

However, this assumption turns out to be incorrect and, in fact, one can
get larger O(6-10%) corrections for fiducial (WBF cuts) cross sections and
kinematic distributions. Often, the shape of those corrections seems
rather different from both the NLO and/or parton shower predictions.
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Higgs boson production in weak boson fusion

Fiducial WBF cross section at NLO and
at NNLO show strong dependence on
the jet clustering radius. Broader jets at

NNLO relative to NLO.
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Associated production: VH(bb)

The associated production was studied extensively using NNLO
approximation for the production and NLO approximation for
decay. Some observables exhibit relatively large corrections due
to radiation in decays due to fiducial volume cuts.
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Associated production: VH(bb)

Extension of these results to include NNLO QCD corrections in

the decay, for massless b-quarks. Relatively large effects on
kinematic distributions (some are explained by being NLO
corrections to ““radiative” Higgs decay). NNLO effects in the
decay cause additional O(-5%) corrections to the fiducial cross
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Conclusion

Precision predictions for Higgs boson production in the Standard
Model is a crucial element of the research program aimed at detailed
studies of Higgs boson properties at the LHC.

We have seen an impressive progress in this field in the past years
(inclusive Higgs through NS3LO, H+jet at NNLO, Higgs in WBF at
NNLO, mass effects and the resummation in Higgs pt spectrum, NLO
for off-shell and HH). In addition, there are significant improvements

with the general understanding of strong dynamics in hadron collisions
(NLO QCD computations for complex processes, improved parton
showers, matching and merging).

This progress gets translated into an overall confidence that reliable

and precise exploration of Higgs boson properties will be possible at
the LHC.
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