Polarisation of the *Z* boson in $pp \rightarrow ZH$.

Junya Nakamura

Universität Tübingen

Higgs Couplings 2017, 6.11.2017 - 10.11.2017, Universität Heidelberg.

JHEP 08 (2017) 008 (arXiv:1706.01816)

Introduction.

- 1. The process $pp \rightarrow ZH$.
 - It provides direct access to HZZ and $HZ\gamma$ couplings.
 - It receives more attention after Butterworth, Davison, Rubin and Salam (2008).
- 2. Polarisation of the Z boson.
 - ▶ The Z boson is a spin 1 particle, thus can be in a polarised state.
 - Polarisation of the Z boson in a mixed state is uniquely described by a single 3 × 3 Hermitian density matrix ρ, which is constructed of the production amplitudes. D.o.f of ρ is 9 (without tr(ρ) = 1).
 - ▶ DM ρ (i.e. polarisation) can be determined by studying the decay $Z \rightarrow f\bar{f}$:

Introduction.

 $\begin{array}{ll} & \mathsf{DM}\;\rho\;(\mathrm{i.e.\;\,polarisation})\;\mathrm{can\;\,be\;\,determined\;\,by\;\,studying\;\,the\;\,decay}\\ & Z\to f\overline{f}:\\ & Z:\;\;(m_Z,0,0,0)\\ & f:\;\;\frac{m_Z}{2}\big(1,\;\sin\widehat{\theta}\cos\widehat{\phi},\;\sin\widehat{\theta}\sin\widehat{\phi},\;\cos\widehat{\theta}\big)\\ & & \overline{f}:\;\;\frac{m_Z}{2}\big(1,\;\sin\widehat{\theta}\cos\widehat{\phi},\;-\sin\widehat{\theta}\sin\widehat{\phi},\;-\cos\widehat{\theta}\big). \end{array} \end{array}$

The differential cross section has 9 independent angular distributions:

$$\frac{d\sigma(pp \to Z(\to f\bar{f})H)}{d\Omega \ d\cos\hat{\theta} \ d\hat{\phi}} = F_1(1 + \cos^2\hat{\theta}) + F_2(1 - 3\cos^2\hat{\theta}) + F_3\cos\hat{\theta}$$

$$+ F_4\sin\hat{\theta}\cos\hat{\phi} + F_5\sin2\hat{\theta}\cos\hat{\phi} + F_6\sin^2\hat{\theta}\cos2\hat{\phi}$$

$$+ F_7\sin\hat{\theta}\sin\hat{\phi} + F_8\sin2\hat{\theta}\sin\hat{\phi} + F_9\sin^2\hat{\theta}\sin2\hat{\phi}.$$

• "D.o.f of DM ρ " = "the number of the functions F_i " = 9.

- The 9 functions F_i can be written in terms of the elements of DM ρ .
- "Measurement of all the 9 F_i " = "Determination of ρ (i.e. polarisation)"

The purpose of this work is to present one approach to make use of the polarisation information in order to study $HZV(V = Z, \gamma)$ couplings.

Outline

- Introduction.
- Production amplitudes.
- Decay angular distributions of the polarised Z boson.
- Symmetry properties.
- Numerical studies.

Production amplitudes: 2 c.m. frames.

We assume the standard interaction for qqV and non-standard interactions for HZZ and $HZ\gamma$:

- ▶ $q\bar{q}$ c.m. frame (left), where q moves along the positive direction of the z-axis.
- q̄q c.m. frame (right), where q̄ moves along the positive direction of the z-axis:

Production amplitudes: factorisation of the θ dependent part.

Feynman diagram, $q\bar{q}$ c.m. frame (left) and $\bar{q}q$ c.m. frame (right):

Helicity amplitudes in $q\bar{q}$ c.m. frame are

$$\mathcal{M}_{\sigma=\pm}^{\lambda=\pm}(q\bar{q}) = \sigma \frac{1 + \sigma\lambda\cos\theta}{\sqrt{2}} \hat{M}_{\sigma}^{\lambda=\pm}, \qquad \mathcal{M}_{\sigma=\pm}^{\lambda=0}(q\bar{q}) = \sin\theta \hat{M}_{\sigma}^{\lambda=0}.$$

Helicity amplitudes in $\overline{q}q$ c.m. frame are

$$\mathcal{M}_{\sigma=\pm}^{\lambda=\pm}(ar{q}q) = -\sigma rac{1-\sigma\lambda\cos heta}{\sqrt{2}}\hat{M}_{\sigma}^{\lambda=\pm}, \qquad \mathcal{M}_{\sigma=\pm}^{\lambda=0}(ar{q}q) = \sin heta\hat{M}_{\sigma}^{\lambda=0}.$$

- Polar angle θ dependence is completely factorised.
- $\hat{M}^{\lambda}_{\sigma}$ depend on an explicit form of the $HZV(V = Z, \gamma)$ interactions.
- Notice the difference between the amplitudes in $q\bar{q}$ c.m. frame and those in $\bar{q}q$ c.m. frame: the sign in front of σ in the θ dependent part.

Outline

- Introduction.
- Production amplitudes.
- Decay angular distributions of the polarised Z boson.
- Symmetry properties.
- Numerical studies.

Decay angular distributions of polarised Z: the full-amplitude squared.

The full-process is $q(\sigma) + \bar{q}(-\sigma) \rightarrow Z(\lambda) + H$; $Z(\lambda) \rightarrow f(\tau) + \bar{f}(-\tau)$. The full-amplitudes are

$$\mathcal{T}_{\sigma}^{\tau}(q\bar{q}) = P_{Z} \sum_{\lambda=\pm,0} \mathcal{M}_{\sigma}^{\lambda}(q\bar{q}) D_{\lambda}^{\tau}, \quad \mathcal{T}_{\sigma}^{\tau}(\bar{q}q) = P_{Z} \sum_{\lambda=\pm,0} \mathcal{M}_{\sigma}^{\lambda}(\bar{q}q) D_{\lambda}^{\tau},$$

where decay amplitude $D_{\lambda}^{ au}$ is common

$$D_{\lambda}^{\tau} = g_{Zf\bar{f}}^{\tau}m_Z \ d_{\lambda}^{\tau}, \quad P_Z = (Q^2 - m_Z^2 + im_Z\Gamma_Z)^{-1}.$$

The full-amplitude squared is

$$\begin{split} \sum_{\sigma=\pm} |\mathcal{T}_{\sigma}^{\tau}(q\bar{q})|^{2} &= |P_{Z}m_{Z}g_{Zf\bar{t}}^{\tau}|^{2} \sum_{\sigma} \sum_{\lambda',\lambda} (d_{\lambda'}^{\tau})^{*} \{\mathcal{M}_{\sigma}^{\lambda'}(q\bar{q})\}^{*} \mathcal{M}_{\sigma}^{\lambda}(q\bar{q}) \ d_{\lambda}^{\tau} \\ &= |P_{Z}m_{Z}g_{Zf\bar{t}}^{\tau}|^{2} \sum_{\sigma} \sum_{\lambda',\lambda} (d_{\lambda'}^{\tau})^{*} \rho_{\sigma}^{\lambda'\lambda}(q\bar{q}) \ d_{\lambda}^{\tau} \\ &= |P_{Z}m_{Z}g_{Zf\bar{t}}^{\tau}|^{2} \ d^{\tau\dagger} \ \rho(q\bar{q}) \ d^{\tau}, \end{split}$$

where DM $\rho(q\bar{q})$ is defined as

$$\rho^{\lambda'\lambda}(q\bar{q}) \equiv \sum_{\sigma} \rho^{\lambda'\lambda}_{\sigma}(q\bar{q}) \equiv \sum_{\sigma} \{\mathcal{M}^{\lambda'}_{\sigma}(q\bar{q})\}^* \mathcal{M}^{\lambda}_{\sigma}(q\bar{q}) : \text{ DM elements.}$$

We do the same for the other full-amplitude:

$$\sum |\mathcal{T}_{\sigma}^{\tau}(\bar{q}q)|^{2} = |P_{Z}m_{Z}g_{Zf\bar{f}}^{\tau}|^{2}d^{\tau\dagger}\rho(\bar{q}q) \ d^{\tau}, \quad \rho^{\lambda'\lambda}(\bar{q}q) \equiv \sum \{\mathcal{M}_{\sigma}^{\lambda'}(\bar{q}q)\}^{*}\mathcal{M}_{\sigma}^{\lambda}(\bar{q}q)$$

Decay angular distributions of polarised Z: the complete differential cross section.

The complete differential cross section is

 $\frac{d\sigma}{d\hat{s} \ dy \ d\cos\theta \ d\cos\theta \ d\cos\theta \ d\phi} \propto q(x_1)\bar{q}(x_2) \ d^{\tau\dagger}\rho(q\bar{q}) \ d^{\tau} + \bar{q}(x_1)q(x_2) \ d^{\tau\dagger}\rho(\bar{q}q) \ d^{\tau}.$

$$\begin{split} q(x_i) &: \text{PDF of a quark with energy fraction } x_i. \\ \hat{s} &= sx_1x_2 : q\bar{q} \text{ and } \bar{q} q \text{ c.m. energy squared; } (m_Z + m_H)^2 < \hat{s} < s. \\ y &= \frac{1}{2} \ln \frac{x_1}{x_2} : \text{rapidity of the } q\bar{q} \text{ and } \bar{q} q \text{ c.m. frames; } -\ln \sqrt{\frac{s}{\hat{s}}} < y < \ln \sqrt{\frac{s}{\hat{s}}}. \\ x_1 &= \sqrt{\hat{s}/s}e^y, \qquad x_2 &= \sqrt{\hat{s}/s}e^{-y} \\ \theta : \text{polar angle of the Z boson from the } z - \text{axis.} \\ \widehat{\theta}, \widehat{\phi} : Z \text{ decay angles.} \end{split}$$

- Density matrices ρ are given for each phase space point (each value of ŝ, y, cos θ in our case).
- We perform \hat{s} , y and $\cos \theta$ integration.
- ► As a result, we obtain "the integrated DM ρ " \rightarrow good from statistics's point of view.

Decay angular distributions of polarised Z: First, $\cos \theta$ integration.

Let us remind that

- θ dependence is factorised as $\mathcal{M}_{\sigma}^{\lambda=\pm}(q\bar{q}) = \sigma \frac{1+\sigma\lambda\cos\theta}{\sqrt{2}} \hat{M}_{\sigma}^{\lambda=\pm}$ for e.g..
- ► Thus, $\rho_{\sigma}^{+0}(q\bar{q}) = \left\{ \mathcal{M}_{\sigma}^{+}(q\bar{q}) \right\}^{*} \mathcal{M}_{\sigma}^{0}(q\bar{q}) = \sigma \frac{1+\sigma \cos \theta}{\sqrt{2}} \sin \theta \left\{ \hat{M}_{\sigma}^{+} \right\}^{*} \hat{M}_{\sigma}^{0}$

 $\frac{d\sigma}{d\hat{s} \, dy \, d\cos\hat{\theta} \, d\hat{\phi}} \propto \int_{-1}^{1} d\cos\theta \, q(x_1)\bar{q}(x_2) \, d^{\tau\dagger}\rho(q\bar{q}) \, d^{\tau} + \bar{q}(x_1)q(x_2) \, d^{\tau\dagger}\rho(\bar{q}q) \, d^{\tau} \\ = q(x_1)\bar{q}(x_2) \, d^{\tau\dagger}\langle\rho(q\bar{q})\rangle \, d^{\tau} + \bar{q}(x_1)q(x_2) \, d^{\tau\dagger}\langle\rho(\bar{q}q)\rangle \, d^{\tau},$

where

$$\begin{split} \langle \rho(q\bar{q}) \rangle &\equiv \int_{-1}^{1} d\cos\theta \rho(q\bar{q}) = \sum_{\sigma} \begin{pmatrix} \frac{4}{3} |\hat{M}_{\sigma}^{+}|^{2} & \frac{2}{3} (\hat{M}_{\sigma}^{+})^{*} \hat{M}_{\sigma}^{-} & \frac{\sigma\pi}{2\sqrt{2}} (\hat{M}_{\sigma}^{+})^{*} \hat{M}_{\sigma}^{0} \\ \frac{2}{3} \hat{M}_{\sigma}^{+} (\hat{M}_{\sigma}^{-})^{*} & \frac{4}{3} |\hat{M}_{\sigma}^{-}|^{2} & \frac{\sigma\pi}{2\sqrt{2}} (\hat{M}_{\sigma}^{-})^{*} \hat{M}_{\sigma}^{0} \\ \frac{\sigma\pi}{2\sqrt{2}} \hat{M}_{\sigma}^{+} (\hat{M}_{\sigma}^{0})^{*} & \frac{\sigma\pi}{2\sqrt{2}} \hat{M}_{\sigma}^{-} (\hat{M}_{\sigma}^{0})^{*} & \frac{4}{3} |\hat{M}_{\sigma}^{0}|^{2} \end{pmatrix}, \\ \langle \rho(\bar{q}q) \rangle \equiv \int_{-1}^{1} d\cos\theta \rho(\bar{q}q) = \sum_{\sigma} \begin{pmatrix} \frac{4}{3} |\hat{M}_{\sigma}^{+}|^{2} & \frac{2}{3} (\hat{M}_{\sigma}^{+})^{*} \hat{M}_{\sigma}^{-} & -\frac{\sigma\pi}{2\sqrt{2}} (\hat{M}_{\sigma}^{+})^{*} \hat{M}_{\sigma}^{0} \\ \frac{2}{3} \hat{M}_{\sigma}^{+} (\hat{M}_{\sigma}^{-})^{*} & \frac{4}{3} |\hat{M}_{\sigma}^{-}|^{2} & -\frac{\sigma\pi}{2\sqrt{2}} (\hat{M}_{\sigma}^{-})^{*} \hat{M}_{\sigma}^{0} \\ -\frac{\sigma\pi}{2\sqrt{2}} \hat{M}_{\sigma}^{+} (\hat{M}_{\sigma}^{0})^{*} & -\frac{\sigma\pi}{2\sqrt{2}} \hat{M}_{\sigma}^{-} (\hat{M}_{\sigma}^{0})^{*} & \frac{4}{3} |\hat{M}_{\sigma}^{0}|^{2} \end{pmatrix} \end{split}$$

Notice the difference between $\langle \rho(q\bar{q}) \rangle$ and $\langle \rho(\bar{q}q) \rangle$: the sign in front of σ .

• $\langle \rho(q\bar{q}) \rangle + \langle \rho(\bar{q}q) \rangle \rightarrow$ "the σ terms" vanish.

Decay angular distributions of polarised Z: Second, y integration.

$$\begin{split} \frac{d\sigma}{d\hat{s} \ d\cos\hat{\theta} \ d\hat{\phi}} \propto & \int_{-y_{\text{cut}}}^{y_{\text{cut}}} dy \ q(x_1)\bar{q}(x_2) \ d^{\tau\dagger}\langle\rho(q\bar{q})\rangle \ d^{\tau} + \bar{q}(x_1)q(x_2) \ d^{\tau\dagger}\langle\rho(\bar{q}q)\rangle \ d^{\tau} \\ &= \int_{0}^{y_{\text{cut}}} dy \ \underline{q}(x_1)\bar{q}(x_2) \ d^{\tau\dagger}\langle\rho(q\bar{q})\rangle \ d^{\tau} + \underline{\bar{q}}(x_1)q(x_2) \ d^{\tau\dagger}\langle\rho(\bar{q}q)\rangle \ d^{\tau} \\ &+ \int_{-y_{\text{cut}}}^{0} dy \ \underline{q}(x_1)\bar{q}(x_2) \ d^{\tau\dagger}\langle\rho(q\bar{q})\rangle \ d^{\tau} + \underline{\bar{q}}(x_1)q(x_2) \ d^{\tau\dagger}\langle\rho(\bar{q}q)\rangle \ d^{\tau} \\ &= \int_{0}^{y_{\text{cut}}} dy \ \underline{q}(x_1)\bar{q}(x_2) + \bar{q}(x_1)q(x_2)\} \ d^{\tau\dagger}\{\langle\rho(q\bar{q})\rangle + \langle\rho(\bar{q}q)\rangle\} \ d^{\tau} \\ &= \int_{0}^{y_{\text{cut}}} dy \ \{q(x_1)\bar{q}(x_2) + \bar{q}(x_1)q(x_2)\} \ d^{\tau\dagger}\{\langle\rho(q\bar{q})\rangle + \langle\rho(\bar{q}q)\rangle\} \ d^{\tau} \\ &= \int_{0}^{y_{\text{cut}}} dy \ 2\{q(x_1)\bar{q}(x_2) + \bar{q}(x_1)q(x_2)\} \ d^{\tau\dagger}\{\langle\rho(q\bar{q})\rangle + \langle\rho(\bar{q}q)\rangle\} \ d^{\tau} \\ &= \int_{0}^{y_{\text{cut}}} dy \ 2\{q(x_1)\bar{q}(x_2) + \bar{q}(x_1)q(x_2)\} \\ &\times d^{\tau\dagger}\sum_{\sigma} \left(\begin{array}{c} \frac{4}{3}|\hat{M}_{\sigma}^{+}|^2 & \frac{2}{3}(\hat{M}_{\sigma}^{+})^* \hat{M}_{\sigma}^{-} & 0 \\ \frac{2}{3}\hat{M}_{\sigma}^{+}(\hat{M}_{\sigma}^{-})^* & \frac{4}{3}|\hat{M}_{\sigma}^{-}|^2 & 0 \\ 0 & 0 & \frac{4}{3}|\hat{M}_{\sigma}^{0}|^2 \end{array} \right) .d^{\tau} \end{split}$$

• Recall that $y = \frac{1}{2} \ln \frac{x_1}{x_2}$, $y_{cut} = \ln \sqrt{s/\hat{s}}$, $x_1 = \sqrt{\hat{s}/s} e^y$, $x_2 = \sqrt{\hat{s}/s} e^{-y}$.

• the 4 off-diagonal elements of the DM vanish after the $\cos \theta$ and y integration, due to the sign difference in $\langle \rho(q\bar{q}) \rangle$ and $\langle \rho(\bar{q}q) \rangle$.

Decay angular distributions of polarised Z: $\cos \theta$ integration but in a different way. We subtract the contribution of $\cos \theta < 0$ from that of $\cos \theta > 0$:

$$\begin{aligned} \frac{d\sigma}{d\hat{s}dyd\cos\hat{\theta}d\hat{\phi}} &\propto \left(\int_{0}^{1} - \int_{-1}^{0}\right) d\cos\theta \ q(x_{1})\bar{q}(x_{2}) \ d^{\tau\dagger}\rho(q\bar{q}) \ d^{\tau} + \bar{q}(x_{1})q(x_{2}) \ d^{\tau\dagger}\rho(\bar{q}q) \ d^{\tau} \\ &= q(x_{1})\bar{q}(x_{2}) \ d^{\tau\dagger}\overline{\langle\rho(q\bar{q})\rangle} \ d^{\tau} + \bar{q}(x_{1})q(x_{2}) \ d^{\tau\dagger}\overline{\langle\rho(\bar{q}q)\rangle} \ d^{\tau}, \end{aligned}$$

where

$$\begin{split} \overline{\langle \rho(q\bar{q})\rangle} &\equiv \left(\int_{0}^{1} - \int_{-1}^{0}\right) d\cos\theta \ \rho(q\bar{q}) \\ &= \sum_{\sigma} \begin{pmatrix} \sigma |\hat{M}_{\sigma}^{+}|^{2} & 0 & \frac{2}{3\sqrt{2}} (\hat{M}_{\sigma}^{+})^{*} \hat{M}_{\sigma}^{0} \\ 0 & -\sigma |\hat{M}_{\sigma}^{-}|^{2} & -\frac{2}{3\sqrt{2}} (\hat{M}_{\sigma}^{-})^{*} \hat{M}_{\sigma}^{0} \\ \frac{2}{3\sqrt{2}} \hat{M}_{\sigma}^{+} (\hat{M}_{\sigma}^{0})^{*} & -\frac{2}{3\sqrt{2}} \hat{M}_{\sigma}^{-} (\hat{M}_{\sigma}^{0})^{*} & 0 \end{pmatrix}, \\ \overline{\langle \rho(\bar{q}q)\rangle} &\equiv \left(\int_{0}^{1} - \int_{-1}^{0}\right) d\cos\theta \ \rho(\bar{q}q) \\ &= \sum_{\sigma} \begin{pmatrix} -\sigma |\hat{M}_{\sigma}^{+}|^{2} & 0 & \frac{2}{3\sqrt{2}} (\hat{M}_{\sigma}^{-})^{*} \hat{M}_{\sigma}^{0} \\ 0 & \sigma |\hat{M}_{\sigma}^{-}|^{2} & -\frac{2}{3\sqrt{2}} (\hat{M}_{\sigma}^{-})^{*} \hat{M}_{\sigma}^{0} \\ \frac{2}{3\sqrt{2}} \hat{M}_{\sigma}^{+} (\hat{M}_{\sigma}^{0})^{*} & -\frac{2}{3\sqrt{2}} \hat{M}_{\sigma}^{-} (\hat{M}_{\sigma}^{0})^{*} & 0 \end{pmatrix}, \end{split}$$

Now the diagonal elements of DM vanish after the *y* integration.

Decay angular distributions of polarised Z: Second, y integration.

$$\begin{split} \frac{d\sigma}{d\cos\widehat{\theta}\ d\widehat{\phi}}\bigg|_{\mathcal{A}} \propto & \int_{(m_{H}+m_{Z})^{2}}^{s} d\widehat{s} \int_{0}^{y_{\text{cut}}} dy\ 2\big\{q(x_{1})\overline{q}(x_{2}) + \overline{q}(x_{1})q(x_{2})\big\} \\ & \times d^{\tau\dagger} \sum_{\sigma} \begin{pmatrix} \frac{4}{3} |\hat{M}_{\sigma}^{+}|^{2} & \frac{2}{3} (\hat{M}_{\sigma}^{+})^{*} \hat{M}_{\sigma}^{-} & 0 \\ \frac{2}{3} \hat{M}_{\sigma}^{+} (\hat{M}_{\sigma}^{-})^{*} & \frac{4}{3} |\hat{M}_{\sigma}^{-}|^{2} & 0 \\ 0 & 0 & \frac{4}{3} |\hat{M}_{\sigma}^{0}|^{2} \end{pmatrix} d^{\tau}, \end{split}$$

$$\begin{split} \frac{d\sigma}{d\cos\hat{\theta} \ d\hat{\phi}} \bigg|_{\mathcal{C}} \propto \int_{(m_H+m_Z)^2}^{s} d\hat{s} \int_{0}^{y_{\rm cut}} dy \ 2 \big\{ q(x_1)\bar{q}(x_2) + \bar{q}(x_1)q(x_2) \big\} \\ \times \ d^{\tau\dagger} \sum_{\sigma} \begin{pmatrix} 0 & 0 & \frac{2}{3\sqrt{2}} (\hat{M}_{\sigma}^+)^* \hat{M}_{\sigma}^0 \\ 0 & 0 & -\frac{2}{3\sqrt{2}} (\hat{M}_{\sigma}^-)^* \hat{M}_{\sigma}^0 \\ \frac{2}{3\sqrt{2}} \hat{M}_{\sigma}^+ (\hat{M}_{\sigma}^0)^* & -\frac{2}{3\sqrt{2}} \hat{M}_{\sigma}^- (\hat{M}_{\sigma}^0)^* & 0 \end{pmatrix} d^{\tau} \end{split}$$

- $\blacktriangleright \quad \mathcal{A}: \ \int_{-1}^{1} d\cos\theta, \qquad \qquad \mathcal{C}: \ (\ \int_{0}^{1} \int_{-1}^{0}) d\cos\theta$
- ► These 2 results compensate each other (enough and sufficient!) → The DM can be uniquely determined.
- This means that we can use the full information of polarisation (^^).
- The DM can be determined by measuring the Z decay angular distributions (shown below).

Decay angular distributions of polarised Z: 9 non-zero angular coefficients F.

$$\begin{aligned} \frac{d\sigma}{d\cos\widehat{\theta}d\widehat{\phi}}\Big|_{i(=\mathcal{A},\mathcal{C})} &= F_{i1}(1+\cos^{2}\widehat{\theta}) + F_{i2}(1-3\cos^{2}\widehat{\theta}) + F_{i3}\cos\widehat{\theta} + F_{i4}\sin\widehat{\theta}\cos\widehat{\phi} \\ &+ F_{i5}\sin2\widehat{\theta}\cos\widehat{\phi} + F_{i6}\sin^{2}\widehat{\theta}\cos2\widehat{\phi} + F_{i7}\sin\widehat{\theta}\sin\widehat{\phi} + F_{i8}\sin2\widehat{\theta}\sin\widehat{\phi} + F_{i9}\sin^{2}\widehat{\theta}\sin2\widehat{\phi}, \end{aligned}$$

where

$$\mathcal{F}_{\mathcal{A}(\mathcal{C})a} \propto \int_{(m_H+m_Z)^2}^s d\hat{s} \int_0^{\ln\sqrt{s/\hat{s}}} dy \ 2\Big[q(x_1)\bar{q}(x_2) + \bar{q}(x_1)q(x_2)\Big] \sum_{\sigma} \frac{1}{3} f_{\mathcal{A}(\mathcal{C})a},$$

where

$$\begin{split} f_{\mathcal{A}1} &= 2 \left(\left| \hat{M}_{\sigma}^{+} \right|^{2} + \left| \hat{M}_{\sigma}^{-} \right|^{2} + \left| \hat{M}_{\sigma}^{0} \right|^{2} \right), & f_{\mathcal{C}1} = 0, \\ f_{\mathcal{A}2} &= 2 \left| \hat{M}_{\sigma}^{0} \right|^{2}, & f_{\mathcal{C}2} = 0, \\ f_{\mathcal{A}3} &= 4 \left(\left| \hat{M}_{\sigma}^{+} \right|^{2} - \left| \hat{M}_{\sigma}^{-} \right|^{2} \right) \tau, & f_{\mathcal{C}3} = 0, \\ f_{\mathcal{A}4} &= 0, & f_{\mathcal{C}4} = 2 Re \left[\left(\hat{M}_{\sigma}^{+} \right)^{*} \hat{M}_{\sigma}^{0} - \left(\hat{M}_{\sigma}^{0} \right)^{*} \hat{M}_{\sigma}^{-} \right] \tau, \\ f_{\mathcal{A}5} &= 0, & f_{\mathcal{C}5} = Re \left[\left(\hat{M}_{\sigma}^{+} \right)^{*} \hat{M}_{\sigma}^{0} + \left(\hat{M}_{\sigma}^{0} \right)^{*} \hat{M}_{\sigma}^{-} \right], \\ f_{\mathcal{A}6} &= 2 Re \left[\left(\hat{M}_{\sigma}^{+} \right)^{*} \hat{M}_{\sigma}^{-} \right], & f_{\mathcal{C}6} &= 0, \\ f_{\mathcal{A}7} &= 0, & f_{\mathcal{C}7} &= 2 Im \left[\left(\hat{M}_{\sigma}^{+} \right)^{*} \hat{M}_{\sigma}^{0} - \left(\hat{M}_{\sigma}^{0} \right)^{*} \hat{M}_{\sigma}^{-} \right] \tau, \\ f_{\mathcal{A}8} &= 0, & f_{\mathcal{C}8} &= Im \left[\left(\hat{M}_{\sigma}^{+} \right)^{*} \hat{M}_{\sigma}^{0} + \left(\hat{M}_{\sigma}^{0} \right)^{*} \hat{M}_{\sigma}^{-} \right], \\ f_{\mathcal{A}9} &= 2 Im \left[\left(\hat{M}_{\sigma}^{+} \right)^{*} \hat{M}_{\sigma}^{-} \right], & f_{\mathcal{C}9} &= 0. \end{split}$$

Outline

- Introduction.
- Production amplitudes.
- Decay angular distributions of the polarised Z boson.
- Symmetry properties.
- Numerical studies.

Symmetry properties: consequences of CP and ${\rm CP}\widetilde{{\rm T}}$ conservation in the amplitude.

CP transformation and a rotation around the *z*-axis by π :

CP conservation leads to

$$\mathcal{M}^\lambda_\sigma(qar{q})(heta) = \mathcal{M}^{-\lambda}_\sigma(qar{q})(\pi- heta).$$

In terms of $\hat{M}^{\lambda}_{\sigma}$, this relation is simply

$$\hat{M}_{\sigma}^{\lambda} = \hat{M}_{\sigma}^{-\lambda}.$$

In the similar manner, we find \widetilde{CPT} conservation, whose violation indicates the existence of re-scattering effects, leads to

$$\mathcal{M}^{\lambda}_{\sigma}(qar{q})(heta) = \left\{ \mathcal{M}^{-\lambda}_{\sigma}(qar{q})(\pi- heta)
ight\}^{*}, \hspace{1em} ext{or} \hspace{1em} \hat{\mathcal{M}}^{\lambda}_{\sigma} = \left(\hat{\mathcal{M}}^{-\lambda}_{\sigma}
ight)^{*}$$

Symmetry properties: consequences of CP and $\mathrm{CP}\widetilde{\mathrm{T}}$ conservation in the 9 coefficients F.

CP conservation : $\hat{M}_{\sigma}^{\lambda} = \hat{M}_{\sigma}^{-\lambda}$. CPT conservation : $\hat{M}_{\sigma}^{\lambda} = (\hat{M}_{\sigma}^{-\lambda})^{*}$.

 $F_{\mathcal{A}9} \propto Im [(\hat{M}_{\sigma}^{+})^{*} \hat{M}_{\sigma}^{-}]$:

CP conservation : $Im[(\hat{M}_{\sigma}^{+})^{*}\hat{M}_{\sigma}^{-}] = Im[|\hat{M}_{\sigma}^{-}|^{2}] = 0,$ CPT conservation : $Im[(\hat{M}_{\sigma}^{+})^{*}\hat{M}_{\sigma}^{-}] = Im[(\hat{M}_{\sigma}^{-})^{2}] \neq 0,$ $\longrightarrow F_{A9}$ is zero if CP is conserved.

 $F_{\mathcal{C}7} \propto Im[(\hat{M}_{\sigma}^{+})^{*}\hat{M}_{\sigma}^{0} - (\hat{M}_{\sigma}^{0})^{*}\hat{M}_{\sigma}^{-}]:$

 $\begin{aligned} \text{CP conservation} &: \textit{Im}\big[(\hat{M}_{\sigma}^{+})^{*}\hat{M}_{\sigma}^{0} - (\hat{M}_{\sigma}^{0})^{*}\hat{M}_{\sigma}^{-}\big] = \textit{Im}\big\{2i\textit{Im}\big[(\hat{M}_{\sigma}^{+})^{*}\hat{M}_{\sigma}^{0}\big]\big\} \neq 0, \\ \text{CPT conservation} &: \textit{Im}\big[(\hat{M}_{\sigma}^{+})^{*}\hat{M}_{\sigma}^{0} - (\hat{M}_{\sigma}^{0})^{*}\hat{M}_{\sigma}^{-}\big] = \textit{Im}\big[(\hat{M}_{\sigma}^{+})^{*}\hat{M}_{\sigma}^{0} - \hat{M}_{\sigma}^{0}(\hat{M}_{\sigma}^{+})^{*}\big] = 0, \end{aligned}$

 \longrightarrow F_{C7} is zero if re-scattering effects are absent.

Symmetry properties: consequences of CP and $\mathrm{CP\widetilde{T}}$ conservation in the 9 coefficients F.

Combinations of	Symm	netry properties	Observables	f charge
the density matrix elements	СР	$CP\widetilde{T}$		
$ig \hat{M}_{\sigma}^+ ig ^2 + ig \hat{M}_{\sigma}^- ig ^2 + ig \hat{M}_{\sigma}^0 ig ^2$	+	+	F_{A1}	-
$\left \hat{M}_{\sigma}^{0}\right ^{2}$	+	+	F_{A2}	-
$ \hat{M}_{\sigma}^{+} ^{2} - \hat{M}_{\sigma}^{-} ^{2}$	_	_	F _{A3}	0
$Re\left[\left(\hat{M}_{\sigma}^{+}\right)^{*}\hat{M}_{\sigma}^{0}+\left(\hat{M}_{\sigma}^{0}\right)^{*}\hat{M}_{\sigma}^{-}\right]$	+	+	F_{C5}	-
$Re\left[\left(\hat{M}_{\sigma}^{+} ight)^{*}\hat{M}_{\sigma}^{0}-\left(\hat{M}_{\sigma}^{0} ight)^{*}\hat{M}_{\sigma}^{-} ight]$	_	_	F_{C4}	0
$Re[(\hat{M}_{\sigma}^{+})^{*}\hat{M}_{\sigma}^{-}]$	+	+	F_{A6}	-
$Im[(\hat{M}_{\sigma}^{+})^{*}\hat{M}_{\sigma}^{0}+(\hat{M}_{\sigma}^{0})^{*}\hat{M}_{\sigma}^{-}]$	_	+	F_{C8}	-
$Im[(\hat{M}_{\sigma}^{+})^{*}\hat{M}_{\sigma}^{0}-(\hat{M}_{\sigma}^{0})^{*}\hat{M}_{\sigma}^{-}]$	+	_	F_{C7}	0
$Im[(\hat{M}_{\sigma}^{+})^{*}\hat{M}_{\sigma}^{-}]$	-	+	F_{A9}	-

- ► The symbol " " means that the combination is zero if the symmetry (CP or CPT) is conserved.
- e.g. F_{C8} and F_{A9} are zero if CP is conserved. In other words, these can be non-zero if CP is violated.
- ► F_{A1} is directly related to the total cross section. The other 8 observables can provide us the different information on HZV couplings than the total cross section.

Outline

- Introduction.
- Production amplitudes.
- Decay angular distributions of the polarised Z boson.
- Symmetry properties.
- Numerical studies.

Numerical studies: dependence on effective Lagrangian parameters.

We obtain a non-standard HZZ coupling from the effective Lagrangian

- ▶ Define $R_i = F_i/F_{A1}$, e.g. $R_{C5} = F_{C5}/F_{A1}$. Recall that $F_{A1} \propto$ "the total cross section".
- Left: R_{A2}, R_{C5}, R_{A6} are shown as deviation from the SM values caused by adding non-zero CP-even parameters b₇ and c₇.
- Right: R_{C8}, R_{A9} are shown as deviation from the SM values caused by adding non-zero CP-odd parameter b_Z.

Summary.

- Polarisation of the Z boson in pp → ZH is uniquely described by a 3 × 3 Hermitian density matrix ρ, which is constructed of the production amplitudes.
- ▶ DM ρ (i.e. polarisation) can be determined by studying the decay $Z \rightarrow f\bar{f}$.
- ▶ We have presented one approach to make use of the polarisation information in order to study HZV(V = Z, γ) couplings.
- We have obtained the 9 observables as the coefficients of the Z decay angular distributions after integration over cos θ, y and ŝ.
 One of them is directly related to the total cross section.
- These 9 observables are enough and sufficient to determine all the 9 independent combinations of the DM elements. This means, "the use of these 9 observables" = "the use of the full information of polarisation".
- We have numerically shown that our new observables can be useful to determine effective Lagrangian parameters for the HZZ coupling.

Thank you so much for your attention.

Back up.

Spin, polarisation and polarisation density matrices

Spin angular momentum (Spin) induces additional degrees of freedom for a state of a particle. For a given spin s, a state vector is a (2s + 1)-dimensional complex vector:

$$\begin{split} |1\rangle,|2\rangle,\cdots,|2s+1\rangle: \text{eigenfunctions of } \hat{s}_z \text{ for instance.} \\ \sum_{i=1}^{2s+1}|i\rangle\langle i|=1, \end{split}$$

$$|\alpha\rangle = \sum_{i=1}^{2s+1} |i\rangle\langle i|\alpha\rangle = a_1|1\rangle + a_2|2\rangle + \dots + a_{2s+1}|2s+1\rangle = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_{2s+1} \end{pmatrix},$$

where a_i ($i = 1, 2, \dots, 2s + 1$) are complex numbers, which transform under spatial rotations (SU(2)).

d.o.f. of
$$|\alpha\rangle$$
 is $(2s+1) \times 2 - \underbrace{1}_{\langle \alpha | \alpha \rangle = 1} - \underbrace{1}_{\text{overall phase}} = 4s$

 \rightarrow vector $|\alpha\rangle$ has a particular direction characterised by 4s real parameters. = polarisation.

Spin, polarisation and polarisation density matrices

Let us consider a state of a spin 1/2 particle:

$$|lpha
angle={\it a}_1|1
angle+{\it a}_2|2
angle=\left(egin{array}{c} {\it a}_1\ {\it a}_2\end{array}
ight),\ \ \langlelpha|lpha
angle=1,$$

where eigenfunctions of $\hat{s}_z = \sigma_z/2$ are chosen as base vectors:

$$|1
angle = \left(egin{array}{c} 1 \\ 0 \end{array}
ight), |2
angle = \left(egin{array}{c} 0 \\ 1 \end{array}
ight).$$

Expectation values of the spin generators are

$$\begin{split} \langle \alpha | \hat{\mathbf{s}}_{z} | \alpha \rangle &= \frac{1}{2} \begin{pmatrix} \mathbf{a}_{1}^{*} & \mathbf{a}_{2}^{*} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \mathbf{a}_{1} \\ \mathbf{a}_{2} \end{pmatrix} = \frac{1}{2} (|\mathbf{a}_{1}|^{2} - |\mathbf{a}_{2}|^{2}), \\ \langle \alpha | (\hat{\mathbf{s}}_{x}, \hat{\mathbf{s}}_{y}, \hat{\mathbf{s}}_{z}) | \alpha \rangle &= \left(Re[\mathbf{a}_{1}^{*}\mathbf{a}_{2}], Im[\mathbf{a}_{1}^{*}\mathbf{a}_{2}], (|\mathbf{a}_{1}|^{2} - |\mathbf{a}_{2}|^{2})/2 \right). \end{split}$$

The expectation values can be also derived by using a matrix:

$$egin{aligned} &\langle lpha | \hat{\mathbf{s}}_{z} | lpha
angle = \sum_{i=1,2} \langle lpha | i
angle \langle i | \hat{\mathbf{s}}_{z} | lpha
angle = \sum_{i=1,2} \langle i | \hat{\mathbf{s}}_{z} | lpha
angle \langle lpha | i
angle = tr(\hat{\mathbf{s}}_{z}
ho_{lpha}), \ &
ho_{lpha} \equiv | lpha
angle \langle lpha | = \left(egin{aligned} | \mathbf{a}_{1} |^{2} & \mathbf{a}_{1} \mathbf{a}_{2}^{*} \\ \mathbf{a}_{1}^{*} \mathbf{a}_{2} & | \mathbf{a}_{2} |^{2} \end{array}
ight), & tr(
ho_{lpha}) = 1, \
ho_{lpha}^{\dagger} =
ho_{lpha}. \end{aligned}$$

 \rightarrow polarisation density matrix

Spin, polarisation and pol. density matrices

A spin 1/2 particle in a mixed state which consists of

 $|\alpha\rangle$ with probability p_{α} , $|\beta\rangle$ with probability p_{β} ,

$$\vdots,$$

 $p_{\alpha}+p_{\beta}+\cdots=1.$

Expectation value of \hat{s}_z for the particle in this mixed state is

$$\begin{aligned} \langle \hat{\mathbf{s}}_{z} \rangle &= \langle \alpha | \hat{\mathbf{s}}_{z} | \alpha \rangle \times p_{\alpha} + \langle \beta | \hat{\mathbf{s}}_{z} | \beta \rangle \times p_{\beta} + \cdots \\ &= tr(\hat{\mathbf{s}}_{z} \rho_{\alpha}) \times p_{\alpha} + tr(\hat{\mathbf{s}}_{z} \rho_{\beta}) \times p_{\beta} + \cdots \\ &= tr[\hat{\mathbf{s}}_{z} (\rho_{\alpha} p_{\alpha} + \rho_{\beta} p_{\beta} + \cdots)] \\ &\equiv tr(\hat{\mathbf{s}}_{z} \rho). \end{aligned}$$

The density matrix ho satisfies (recall that $tr(
ho_{lpha})=1,\
ho_{lpha}^{\dagger}=
ho_{lpha}$)

$$tr(\rho) = 1, \ \rho^{\dagger} = \rho.$$

- Polarisation of a spin 1/2 particle in a mixed state is uniquely described by a single 2 × 2 density matrix ρ, whose d.o.f is 3.
- In general, for a given spin s, d.o.f of a density matrix ρ is $(2s+1)^2 1$.

Spin, polarisation and polarisation density matrices

A state vector of Z boson as a result of scattering $q\bar{q} \rightarrow ZH$ can be written in terms of scattering amplitudes in helicity basis as

$$\begin{split} |Z_{\alpha}\rangle &= \frac{1}{n_{\alpha}} \sum_{\lambda=\pm,0} \mathcal{M}_{\alpha}^{\lambda} |\lambda\rangle, \quad \langle Z_{\alpha} | Z_{\alpha} \rangle = 1. \\ |\lambda\rangle &: \text{helicity eigenvectors of the } Z \text{ boson; } \sum_{\lambda=\pm,0} |\lambda\rangle \langle \lambda| = 1. \\ n_{\alpha}^{2} &= |\mathcal{M}_{\alpha}^{+}|^{2} + |\mathcal{M}_{\alpha}^{-}|^{2} + |\mathcal{M}_{\alpha}^{0}|^{2} : \text{normalisation factor.} \\ \alpha &: \text{specifying a helicity state of } q\bar{q}. \end{split}$$

To confirm this, notice

$$\langle \lambda = + |Z_{\alpha} \rangle = rac{1}{n_{\alpha}} \mathcal{M}_{\alpha}^{+}, \ |\langle \lambda = + |Z_{\alpha} \rangle|^{2} = rac{1}{n_{\alpha}^{2}} |\mathcal{M}_{\alpha}^{+}|^{2}, \ \sum_{\lambda = \pm, 0} |\langle \lambda | Z_{\alpha} \rangle|^{2} = 1.$$

Density matrix ρ_{α} of the produced Z boson in helicity basis is

$$\rho_{\alpha} = |Z_{\alpha}\rangle\langle Z_{\alpha}| = \frac{1}{n_{\alpha}^2} \begin{pmatrix} |\mathcal{M}_{\alpha}^+|^2 & \mathcal{M}_{\alpha}^+\mathcal{M}_{\alpha}^{-*} & \mathcal{M}_{\alpha}^+\mathcal{M}_{\alpha}^{0*} \\ \mathcal{M}_{\alpha}^-\mathcal{M}_{\alpha}^{+*} & |\mathcal{M}_{\alpha}^-|^2 & \mathcal{M}_{\alpha}^-\mathcal{M}_{\alpha}^{0*} \\ \mathcal{M}_{\alpha}^0\mathcal{M}_{\alpha}^{+*} & \mathcal{M}_{\alpha}^0\mathcal{M}_{\alpha}^{-*} & |\mathcal{M}_{\alpha}^0|^2 \end{pmatrix}.$$

Spin, polarisation and polarisation density matrices

If another helicity state of $q\bar{q}$ is allowed, the Z boson is in a mixed state with respect to polarisation. Density matrix of the Z boson in such a state is

$$\begin{split} \rho &= |Z_{\alpha}\rangle \langle Z_{\alpha}| \times p_{\alpha} + |Z_{\beta}\rangle \langle Z_{\beta}| \times p_{\beta} \qquad (p_{\alpha} + p_{\beta} = 1) \\ &= \frac{1}{n} \Bigg[\begin{pmatrix} |\mathcal{M}_{\alpha}^{+}|^{2} & \mathcal{M}_{\alpha}^{+}\mathcal{M}_{\alpha}^{-*} & \mathcal{M}_{\alpha}^{+}\mathcal{M}_{\alpha}^{0*} \\ \mathcal{M}_{\alpha}^{-}\mathcal{M}_{\alpha}^{+*} & |\mathcal{M}_{\alpha}^{-}|^{2} & \mathcal{M}_{\alpha}^{-}\mathcal{M}_{\alpha}^{0*} \\ \mathcal{M}_{\alpha}^{0}\mathcal{M}_{\alpha}^{+*} & \mathcal{M}_{\alpha}^{0}\mathcal{M}_{\alpha}^{-*} & |\mathcal{M}_{\alpha}^{0}|^{2} \end{pmatrix} + \\ & \left(\begin{array}{c} |\mathcal{M}_{\beta}^{+}|^{2} & \mathcal{M}_{\beta}^{+}\mathcal{M}_{\beta}^{-*} & \mathcal{M}_{\beta}^{+}\mathcal{M}_{\beta}^{0*} \\ \mathcal{M}_{\beta}^{-}\mathcal{M}_{\beta}^{+*} & |\mathcal{M}_{\beta}^{-}|^{2} & \mathcal{M}_{\beta}^{-}\mathcal{M}_{\beta}^{0*} \\ \mathcal{M}_{\beta}^{0}\mathcal{M}_{\beta}^{+*} & \mathcal{M}_{\beta}^{0}\mathcal{M}_{\beta}^{-*} & |\mathcal{M}_{\beta}^{0}|^{2} \end{array} \right) \Bigg], \end{split}$$

where we set n = 1 so that

$$tr(\rho) = |\mathcal{M}_{\alpha}^{+}|^{2} + |\mathcal{M}_{\alpha}^{-}|^{2} + |\mathcal{M}_{\alpha}^{0}|^{2} + |\mathcal{M}_{\beta}^{+}|^{2} + |\mathcal{M}_{\beta}^{-}|^{2} + |\mathcal{M}_{\beta}^{0}|^{2}.$$

- $tr(\rho)$ gives just the $q\bar{q} \rightarrow ZH$ cross section. D.o.f of our DM ρ is 8+1=9.
- DM ρ contains more information than the $q\bar{q} \rightarrow ZH$ cross section (8 additional information).
- "We use the full information of polarisation." = "We relate all the elements of ρ with measurable observables."

Helicity amplitudes and constraints from symmetries

S-matrix:
$$S = 1 + iT$$

$$S^{\dagger}S = 1 \text{ (unitarity)},$$

$$-i(T - T^{\dagger}) = T^{\dagger}T,$$

$$-i(\langle f|T|i\rangle - \langle f|T^{\dagger}|i\rangle) = \sum_{n} \langle f|T^{\dagger}|n\rangle \langle n|T|i\rangle,$$

$$-i(T_{fi} - T_{if}^{*}) = \sum_{n} T_{nf}^{*}T_{ni},$$

$$-i(\mathcal{M}_{fi} - \mathcal{M}_{if}^{*}) = (2\pi)^{4} \sum_{n} \delta^{4}(P_{i} - P_{n})\mathcal{M}_{nf}^{*}\mathcal{M}_{ni}.$$

CPT invariance leads to

$$\mathcal{M}_{fi} = \mathcal{M}_{\hat{i}\hat{f}},$$

where $\hat{i}(\hat{f})$ denotes the *CPT* conjugate state of i(f). The above unitarity condition becomes

$$-i(\mathcal{M}_{fi}-\mathcal{M}^*_{f\hat{i}})=(2\pi)^4\sum_n\delta^4(P_i-P_n)\mathcal{M}^*_{nf}\mathcal{M}_{ni}.$$

Unitarity and CPT invariance tell us that $\mathcal{M}_{fi} \neq \mathcal{M}^*_{fi}$ indicates the existence of rescattering effects (Hagiwara et al 1987).

Decay angular distributions of polarised Z

Perform a translation
$$\widehat{\theta} \to \pi - \widehat{\theta}$$
 and $\widehat{\phi} \to \widehat{\phi} + \pi$:

$$\frac{d\sigma}{d\hat{s} \ d\cos\hat{\theta} \ d\hat{\phi}} \bigg|_{i(=\mathcal{A},\mathcal{B})} \propto F_{i1} (1 + \cos^2\hat{\theta}) + F_{i2} (1 - 3\cos^2\hat{\theta}) - F_{i3}\cos\hat{\theta} - F_{i4}\sin\hat{\theta}\cos\hat{\phi} + F_{i5}\sin 2\hat{\theta}\cos\hat{\phi} + F_{i6}\sin^2\hat{\theta}\cos 2\hat{\phi} - F_{i7}\sin\hat{\theta}\sin\hat{\phi} + F_{i8}\sin 2\hat{\theta}\sin\hat{\phi} + F_{i9}\sin^2\hat{\theta}\sin 2\hat{\phi},$$

where we observe the change of the sign in front of the F_{i3} , F_{i4} and F_{i7} terms.

This means

- ▶ The F_{i3} , F_{i4} and F_{i7} terms are statistically zero, if we do not distinguish the fermion f from the antifermion \overline{f} .
- ▶ The events with $Z \rightarrow jj$ cannot be used to measure the coefficients F_{A3} , F_{B4} and F_{B7} , in view of difficulty of flavor identification of the jets. (- -)

Decay angular distributions of polarised ZSecond, y integration in a different way:

$$\begin{split} \frac{d\sigma}{d\hat{s}d\cos\hat{\theta}d\hat{\phi}}\Big|_{B} &\propto \left(\int_{0}^{y_{\text{cut}}} - \int_{-y_{\text{cut}}}^{0}\right) dyq(x_{1})\bar{q}(x_{2}) d^{\tau\dagger} \langle \rho(q\bar{q}) \rangle d^{\tau} + \bar{q}(x_{1})q(x_{2}) d^{\tau\dagger} \langle \rho(\bar{q}q) \rangle d^{\tau} \\ &= \int_{0}^{y_{\text{cut}}} dy \ \underline{q(x_{1})\bar{q}(x_{2})}_{A} \ d^{\tau\dagger} \langle \rho(q\bar{q}) \rangle d^{\tau} + \underline{\bar{q}(x_{1})q(x_{2})}_{B} \ d^{\tau\dagger} \langle \rho(\bar{q}q) \rangle d^{\tau} \\ &- \int_{-y_{\text{cut}}}^{0} dy \ \underline{q(x_{1})\bar{q}(x_{2})}_{B} \ d^{\tau\dagger} \langle \rho(q\bar{q}) \rangle d^{\tau} + \underline{\bar{q}(x_{1})q(x_{2})}_{A} \ d^{\tau\dagger} \langle \rho(\bar{q}q) \rangle d^{\tau} \\ &= \int_{0}^{y_{\text{cut}}} dy \ \underline{q(x_{1})\bar{q}(x_{2})}_{B} \ d^{\tau\dagger} \langle \rho(q\bar{q}) \rangle d^{\tau} + \underline{\bar{q}(x_{1})q(x_{2})}_{A} \ d^{\tau\dagger} \langle \rho(\bar{q}q) \rangle d^{\tau} \\ &= \int_{0}^{y_{\text{cut}}} dy \ \{q(x_{1})\bar{q}(x_{2}) - \bar{q}(x_{1})q(x_{2})\} \ d^{\tau\dagger} \{\langle \rho(q\bar{q}) \rangle - \langle \rho(\bar{q}q) \rangle\} d^{\tau} \\ &= \int_{0}^{y_{\text{cut}}} dy \ 2\{q(x_{1})\bar{q}(x_{2}) - \bar{q}(x_{1})q(x_{2})\} \\ &\times d^{\tau\dagger} \sum_{\sigma} \left(\begin{array}{cc} 0 & 0 & c_{3}\sigma(\hat{M}_{\sigma}^{+})^{*} \hat{M}_{\sigma}^{0} \\ 0 & 0 & c_{3}\sigma(\hat{M}_{\sigma}^{-})^{*} \hat{M}_{\sigma}^{0} \\ c_{3}\sigma\hat{M}_{\sigma}^{+}(\hat{M}_{\sigma}^{0})^{*} \ c_{3}\sigma\hat{M}_{\sigma}^{-}(\hat{M}_{\sigma}^{0})^{*} \ 0 \end{array} \right) d^{\tau}. \end{split}$$

▶ The vanished elements of the DM in the previous approach are revived (^^)

Decay angular distributions of polarised Z

Second, y integration in the 2 different ways as before:

$$\begin{split} \frac{d\sigma}{d\hat{s}d\cos\hat{\theta}d\hat{\phi}}\bigg|_{\mathcal{C}} \propto & \int_{-\ln\sqrt{\frac{q}{2}}}^{\ln\sqrt{\frac{q}{2}}} dy \ q(\mathbf{x}_1)\bar{q}(\mathbf{x}_2) \ d^{\tau\dagger}\overline{\langle\rho(q\bar{q})\rangle} \ d^{\tau} + \bar{q}(\mathbf{x}_1)q(\mathbf{x}_2) \ d^{\tau\dagger}\overline{\langle\rho(\bar{q}q)\rangle} \ d^{\tau} \\ &= \int_{0}^{\ln\sqrt{\frac{q}{2}}} dy \ 2\big\{q(\mathbf{x}_1)\bar{q}(\mathbf{x}_2) + \bar{q}(\mathbf{x}_1)q(\mathbf{x}_2)\big\} \\ & \times d^{\tau\dagger}\sum_{\sigma} \begin{pmatrix} 0 & 0 & c_4(\hat{M}_{\sigma}^+)^*\hat{M}_{\sigma}^0 \\ 0 & 0 & -c_4(\hat{M}_{\sigma}^-)^*\hat{M}_{\sigma}^0 \\ c_4\hat{M}_{\sigma}^+(\hat{M}_{\sigma}^0)^* & -c_4\hat{M}_{\sigma}^-(\hat{M}_{\sigma}^0)^* & 0 \end{pmatrix} d^{\tau}, \end{split}$$

Combinations of	Symmetry properties		Observables	f charge
the density matrix elements	СР	CPĨ	-	
$\overline{c_1 \hat{M}_{\sigma}^+ ^2 + c_1 \hat{M}_{\sigma}^- ^2 + c_2 \hat{M}_{\sigma}^0 ^2}$	+	+	F _{A1}	-
$ \hat{M}^0_\sigma ^2$	+	+	F _{A2}	-
$\left \hat{M}_{\sigma}^{+}\right ^{2}+\left \hat{M}_{\sigma}^{-}\right ^{2}$	+	+	F_{D3}	0
$ \hat{M}_{\sigma}^+ ^2 - \hat{M}_{\sigma}^- ^2$	_	_	F_{A3}	0
			F_{D1}	-
${\it Re}ig[(\hat{M}_{\sigma}^{+})^{*}\hat{M}_{\sigma}^{0}+(\hat{M}_{\sigma}^{0})^{*}\hat{M}_{\sigma}^{-}ig]$	+	+	F_{B4}	0
			F_{C5}	-
$Reig[(ilde{M}^+_\sigma)^* ilde{M}^0_\sigma-(ilde{M}^0_\sigma)^* ilde{M}^\sigmaig]$	_	_	F_{B5}	-
			F_{C4}	0
$Re[(M_{\sigma}^{+})^{*}M_{\sigma}^{-}]$	+	+	$F_{\mathcal{A}6}$	-
$\mathit{Im}ig[(\hat{M}_{\sigma}^{+})^{*}\hat{M}_{\sigma}^{0}+(\hat{M}_{\sigma}^{0})^{*}\hat{M}_{\sigma}^{-}ig]$	_	+	F_{B7}	0
			F_{C8}	-
$\mathit{Im}ig[(\hat{M}_{\sigma}^{+})^{*}\hat{M}_{\sigma}^{0}-(\hat{M}_{\sigma}^{0})^{*}\hat{M}_{\sigma}^{-}ig]$	+	_	F_{B8}	-
			F _{C7}	0
$Im[(\tilde{M}_{\sigma}^{+})^{*}\tilde{M}_{\sigma}^{-}]$	_	+	$F_{\mathcal{A}9}$	-

Decay angular distributions of polarised Z

- Among the 36 (= 4×9) coefficients, only the 15 coefficients can be non-zero.
- Observation of the 9 coefficients does not require the charge identification of f.
- These 9 coefficients are enough and sufficient to determine all the 9 independent combinations of the DM elements.

With appropriate integration over $\cos \Theta$ and ϕ , it is possible to isolate the angular distributions:

$$\int_{-1}^{1} d\cos\Theta \frac{d\sigma}{d\cos\Theta d\phi} = \frac{8}{3}C_1 + \frac{\pi}{2}C_4\cos\phi + \frac{4}{3}C_6\cos2\phi + \frac{\pi}{2}C_7\sin\phi + \frac{4}{3}C_9\sin2\phi, \quad (1a)$$

$$\left(\int_{0}^{1} - \int_{-1}^{0}\right) d\cos\Theta \frac{d\sigma}{d\cos\Theta d\phi} = \mathcal{C}_{3} + \frac{4}{3}\mathcal{C}_{5}\cos\phi + \frac{4}{3}\mathcal{C}_{8}\sin\phi, \tag{1b}$$

and

$$\frac{1}{2\pi} \int_{0}^{2\pi} d\phi \frac{d\sigma}{d\cos\Theta d\phi} = C_{1} (1 + \cos^{2}\Theta) + C_{2} (1 - 3\cos^{2}\Theta) + C_{3}\cos\Theta, \qquad (2a)$$

$$\frac{1}{4} \left(\int_{0}^{\pi/2} - \int_{\pi/2}^{\pi} - \int_{\pi}^{3\pi/2} + \int_{3\pi/2}^{2\pi} \right) d\phi \frac{d\sigma}{d\cos\Theta d\phi} = C_{4}\sin\Theta + C_{5}\sin2\Theta, \qquad (2b)$$

$$\frac{1}{4} \left(\int_{0}^{\pi/4} - \int_{\pi/4}^{\pi/2} - \int_{\pi/2}^{3\pi/4} + \int_{3\pi/4}^{\pi} + \int_{\pi}^{5\pi/4} - \int_{5\pi/4}^{3\pi/2} - \int_{3\pi/2}^{7\pi/4} + \int_{7\pi/4}^{2\pi} \right) d\phi \frac{d\sigma}{d\cos\Theta d\phi} = C_{6}\sin^{2}\Theta, \qquad (2c)$$

$$\frac{1}{4} \left(\int_{0}^{\pi} - \int_{\pi}^{2\pi} \right) d\phi \frac{d\sigma}{d\cos\Theta d\phi} = \mathcal{C}_{7} \sin\Theta + \mathcal{C}_{8} \sin 2\Theta, \tag{2d}$$

$$\frac{1}{4} \left(\int_0^{\pi/2} - \int_{\pi/2}^{\pi} + \int_{\pi}^{3\pi/2} - \int_{3\pi/2}^{2\pi} \right) d\phi \frac{d\sigma}{d\cos\Theta d\phi} = C_9 \sin^2 \Theta.$$
(2e)

By combining the 2 approaches in eq. (1) and the 5 approaches in eq. (2), we obtain the 10 (= 2 × 5) combinations. The 2 of them simply give zero (i.e. eqs. (1b) and (2c), and eqs. (1b) and (2e)). Each of the remaining 8 combinations gives one of C_i (i = 1, 3, 4, 5, 6, 7, 8, 9). For example, eqs. (1b) and (2b) gives C_5 . Only C_2 is not determined in this method.