

Evidence for ttH production at ATLAS

Rohin T Narayan on behalf of the ATLAS collaboration

Nov-6-2017, Higgs couplings Heidelberg

Motivation

- Fermion masses are generated through Yukawa interaction
- Heaviest SM particle (top) expected to have largest Yukawa coupling to the Higgs field.
- No direct observation yet.

- Indirect constraints on top Yukawa coupling possible through ggH and H->γγ loop processes.
- ATLAS+CMS Run-1 combination of ratio of measured coupling to SM expectation (κ_t)

 $\kappa_t = 0.87 \pm 0.15$

- Direct measurement of top-Yukawa coupling needed to disentangle any new physics effects.
- ttH production cross-section measurement is one direct way to measure top-Yukawa coupling.

Experimental strategy & challenges

 Production cross section: ~507 fb: About 1% of total Higgs cross-section.

- Object identification and reconstruction among multiple proton collisions
- Many types of objects in the signal signature: γ , e, μ , τ -hadronic, jets, b-jets
 - Combined Identification efficiency decreases
 - High combinatorial background [mainly in ttH(bb)]
 - Identification of prompt and non-prompt leptons [mainly in ttHML]
- Large irreducible background from $t\overline{t}$ +HF and $t\overline{t}V$

Data taking

- Data from 2015 and 2016 runs used for this analysis
- After quality requirements 36.1 fb⁻¹

•

- Peak Luminosity of 1.4 x 10³⁴ cm⁻²s⁻¹
- Pile up almost doubled for 2016 runs
- Many efforts to mitigate pileup effects
- ATLAS data acquisition efficiency: 92.1%(2015) 92.4% (2016)
- Only a few non operational channels in sub detectors: %-3.5%

Signal and Background modeling

ATLAS-CONF-2017-076 ATL-COM-PHYS-2015-1510

ttH

- Nominal: aMC@NLO + Pythia8
- Alternative sample: aMC@NLO + Herwig++
- Parton shower, QCD scales and PDF uncertainties are also considered
- Alternative samples used as additional systematics in the fit

ttV

aMC+Pv8 LC

G5 aMC+Pv8 NLO

Jet multiplicity

- Nominal aMC@NLO+ Pythia8
- Alternative: Sherpa

ttbar +HF

- Nominal: Powheg+Pythia8
 - Normalized to NNLO + NNLL cross section predictions
 - tt+ ≥1b reweighed to state of the art Sherpa OpenLoops (4F scheme)
- Alternative: Sherpa5F (ME+PS@NLO), Powheg+Herwig7

ttH(bb)

ttH(bb): Categorization

- Categorized into sub channels to increase sensitivity
- Categorized according to number of leptons, number of jets and b-tag discriminant
- All b-tagging working points used in region definitions

b85

b85

 $P_T > 250 \text{ GeV}$

b85

 $P_T > 200 \text{ GeV}$

b85

• Rejection : c-jets : $3 \rightarrow 35$; light jets: $30 \rightarrow 1500$

	none	loose	medium	tight	very-tight
Efficiency	-	85%	77%	70%	60%
Discriminant value	1	2	3	4	5

Sub channels

2*l*

- Exactly two opposite sign leptons, Veto Z-candidates, No hadronic τ
- Require ≥3 jets and ≥2 medium b-tagged jets

11

- Exactly 1 lepton.
- Boosted Category:
 - Presence of two R=1.0 reclustered jets (for Higgs and top candidate)
 - Remove jets which have pT < 50GeV and pT>1500 GeV
- Resolved Category: Failing boosted selection
 - Require ≥5 jets and ≥2 very-tight or ≥3 medium b-tagged jets

ttH(bb): 2lepton Regions

- Regions constructed for 3 and \geq 4 jets.
 - SR's constructed with high b-tag discriminant
 - Three SR's: purity ranging from 1.8% to 5.4%
 - Highest signal purity in region with 3 very tight and 1 tight b-tag
- CR's for tt+b, tt+c and tt+light to constrain uncertainties, backgrounds,

ttH(bb): 1lepton Regions

Multivariate analysis

In signal regions, MVA techniques used to further separate signal and background

Reconstruction BDT (2I and 1I resolved SRs)

Reconstruct ttH(bb) system from jets

Matrix Element method (SR>=6jonly)

 Signal (ttH) background (ttbb) likelihood estimation based on Matrix Element method

Putting it all together: Classification BDT

- Including kinematic variables
- Trained to separate signal from background

Likelihood discriminator (11 resolved SRs only)

• Probability of signal or background based on PDF's for signal and background.

ttH(bb) Fit

- Simultaneous profile likelihood fit to all SR's and CR's
- $tt+\geq 1b/c$ normalization freely floating in the fit
- SR's are binned in BDT discriminant output. Event yields in CR's [except t⁻t+≥1c 1I-CRs (binned in HT) **Post fit** <u>ATLAS-CONF-2017-076</u>

Pre fit

ttH(bb): Systematic Uncertainties

- Largest impact from tt+bb generator modeling
- Fit reduces the uncertainty on several systematics
- Systematics which are shifted from their nominal values are checked

ATLAS-CONF-2017-076

ttH(bb):Results

- Measured $\mu = 0.84^{+0.64}_{-0.61}$ with **1.4** σ (expected 1.6 σ)
- Excluded µ > 2.0 at 95% CL

ttH multilepton

ttHML: Sub channels

- Main background is $t\overline{t}$ (with 1 fake lepton)
- High lepton multiplicity reduces backgrounds
- Analysis divided into 7 orthogonal sub categories according to the multiplicity of hadronic tau and light leptons

- Common jet selection: $N_{\text{jets}} \ge 2$ and $N_{\text{bjets}} \ge 1$
- Categorization based on loose lepton definition
- Optimized lepton selection in each category
 - Eg: Nonprompt lepton BDT to suppress fakes from Bhadron decays

- $H \rightarrow WW^*$ mode dominant in light lepton channels.
- $H \rightarrow \tau \overline{\tau}$ dominant in hadronic τ channels

ttHML: Sub channels

- Except for 3I+1τ_{had} all sub channels use MVA techniques to further separate signal from background
 - 2ISS0τ: 2 BDT's: against ttV and ttbar
 - 3l0τ: 5 dimensional multinomial BDT to build categories enriched in ttH, ttW, ttZ, ttbar, diboson
 - 2lss+1τ: 1 BDT against ttbar
 - Cut and count cross check analysis in high sensitivity sub-channels.
- Different background composition in different sub channels
 - ttW ttZ VV NonPrompt
- Non prompt backgrounds estimated from a low jet multiplicity region using data driven as well as semi-data driven methods.
- Dedicated control regions for constraining irreducible backgrounds ______

ATLAS-CONF-2017-077

ttHML: Fit

	2ℓSS	3ℓ	4ℓ	1ℓ + $2\tau_{had}$	$2\ell SS+1\tau_{had}$	$2\ell OS+1\tau_{had}$	3ℓ + $1\tau_{had}$
BDT trained against	Fakes and $t\bar{t}V$	$t\bar{t}, t\bar{t}W, t\bar{t}Z, VV$	$t\bar{t}Z$ / -	tī	all	$t\bar{t}$	-
Discriminant	2×1D BDT	5D BDT	Event count	BDT	BDT	BDT	Event count
Number of bins	6	5	1/1	2	2	10	1
Control regions	-	4	-	-	-1	-1	-
 Simultaneous regions (CR+\$ Single bin use as well as low 3l+1τ 4l (z-enrich depeleted) BDT shape infused in 5 SR's 	fit in 12 SR) ed in 3I CR's stat SR's hed,z-) ormation	$ \begin{array}{c} Ind \\ $	AS Preliminary 13 TeV, 36.1 fb ⁻¹ Fit $s^{3e} S_R ^{3e} t t W_c^{2}$	$\frac{1}{2} \frac{1}{2} \frac{1}$	$ \begin{array}{c} \bullet \text{Data} \\ \bullet t\overline{t}W \\ \bullet \text{Diboson} \\ \bullet q \text{ mis-id} \\ \bullet \text{Fake } \tau_{\text{had}} \\ \bullet \text{Pre-Fit Bkg} \\ \end{array} $	gd. $t\bar{t}H$ $t\bar{t}Z$ Non-p Other y// Unce	prompt rtainty $\frac{1c_{+2}z_{h_{a_d}}}{2c_{0}S_{+1}z_{h_{a_d}}}$

ttHML: Systematics Uncertainties

- Highest impact ttH Modeling: Scale uncertainties
- Jet energy scale and resolution
- Non prompt lepton estimation (poor statistics in control regions)
- ttV modeling scale uncertainties

C¹</sup>

ttHML: Results

				Channel	Significance			
	ATLAS	Preliminary	√s=13 T	eV, 36.1 fb ⁻¹			Observed	Expected
	—Tot.	···· Stat.	Tot.	(Stat. , Syst.)		$2\ell OS + 1\tau_{had}$	0.9σ	0.5σ
$2\ell OS + 1\tau_{had}$	H ++++	••••••	1.7 ^{+2.1} -1.9	$\left(\begin{smallmatrix} +1.6 \\ -1.5 \end{smallmatrix} , \begin{smallmatrix} +1.4 \\ -1.1 \end{smallmatrix} \right)$		1ℓ + $2\tau_{had}$	-	0.6σ
$1\ell + 2\tau_{had}$		4	-0.6 ^{+1.6} -1.5	$\begin{pmatrix} +1.1 \\ -0.8 \end{pmatrix}$, $\begin{pmatrix} +1.1 \\ -1.3 \end{pmatrix}$		4ℓ	-	0.8σ
4 <i>t</i>	ŀ·• ···I		-0.5 ^{+1.3} _{-0.9}	$\begin{pmatrix} +1.3 & +0.2 \\ -0.8 & -0.3 \end{pmatrix}$		$3\ell + 1\tau_{had}$	1.3σ	0.9σ
$3\ell + 1\tau_{had}$	P	•	1.6 ^{-1.3} 3.5 ^{+1.7}	$\begin{pmatrix} +1.7 \\ -1.3 \end{pmatrix}, -0.2 \end{pmatrix}$		2ℓ SS+ $1\tau_{had}$	3.4σ	1.1σ
$2\ell 33 + 1\ell_{had}$ 3ℓ			1.8 ^{+0.9} _{-0.7}	$\begin{pmatrix} -1.2 & , & -0.5 \end{pmatrix}$ $\begin{pmatrix} +0.6 & +0.6 \\ -0.6 & , & -0.5 \end{pmatrix}$		3ℓ	2.4σ	1.5σ
2ℓSS		I ●H	1.5 ^{+0.7} _0.6	$(\begin{smallmatrix} +0.4 & +0.5 \\ -0.4 & , & -0.4 \end{smallmatrix})$		2ℓSS	2.7σ	1.9σ
combined			1.6 ^{+0.5} -0,4	$\begin{pmatrix} +0.3 \\ -0.3 \end{pmatrix}$, $\begin{pmatrix} +0.4 \\ -0.3 \end{pmatrix}$	-	Combined	4.1σ	2.8σ
	-2 0	2 4	6 8	10 12	-			
		bes	st fit µ fo	r m _H =125 GeV	-			

- Measured $\mu = 1.6^{+0.5}_{-0.4}$ with a significance with respect to background only hypothesis 4.1 σ (expct. 2.8 σ)
- Cross section extrapolated to inclusive phase space

$$\sigma(t\bar{t}H) = 790^{+150}_{-150}(stat)^{+170}_{-150}(syst)fb$$

- Cut and count cross check analysis in most sensitive channels
- Alternate fit model with floating ttV 15% loss in sensitivity µ(ttH)
 - ttV in agreement with SM

 $\mu_{t\bar{t}W} = 0.92 \pm 0.32$ $\mu_{t\bar{t}Z} = 1.17^{+0.25}_{-0.22}$

ATLAS-CONF-2017-045 ATLAS-CONF-2017-043

Combination with ttH(yy) and ttH(ZZ*)

- One ttH and two tH categories in the leptonic channel
- 6 categories in the hadronic channel

- Adding ttH->ZZ* resonant region
- Orthogonal to multilepton 4I category

ATLAS-CONF-2017-077

Combination

- Combining multilepton, bb, γγ, ZZ*
- tHjb and tWH treated as background and fixed to SM prediction
- All backgrounds set to SM prediction

$$\mu_{t\bar{t}H} = 1.17 \pm 0.19(stat)_{-0.23}^{+0.27}(syst)$$

 $\sigma_{t\bar{t}H} = 590^{+160}_{-150} fb$

Significance: 4.2σ (expected: 3.8σ)

53	$t\bar{t} \mod H \to bb$ analysis	+0.15	-0.14
	$t\bar{t}H$ modelling (cross section)	+0.13	-0.06
	Non-prompt light-lepton and fake τ_{had} estimates	+0.09	-0.09
	Simulation statistics	+0.08	-0.08
	Jet energy scale and resolution	+0.08	-0.07
	ttv modelling	+0.07	-0.07
	$t\bar{t}H$ modelling (acceptance)	+0.07	-0.04
	Other non-Higgs boson backgrounds	+0.06	-0.05
	Other experimental uncertainties	+0.05	-0.05
	Luminosity	+0.05	-0.04
	Jet flavour tagging	+0.03	-0.02
	Modelling of other Higgs boson production modes	+0.01	-0.01
-	Total systematic uncertainty	+0.27	-0.23
-	Statistical uncertainty	+0.19	-0.19
- 21.	Total uncertainty	+0.34	-0.30

ATLAS-CONF-2017-077

Combination

- Combining multilepton, bb, γγ, ZZ*
- tHjb and tWH treated as background and fixed to SM prediction
- All backgrounds set to SM prediction

 $\mu_{t\bar{t}H} = 1.17 \pm 0.19(stat)_{-0.23}^{+0.27}(syst)$

 $\sigma_{t\bar{t}H} = 590^{+160}_{-150} fb$

Significance: 4.2σ (expected: 3.8σ)

Summary

- Results from the searches for ttH production using 36.1 fb⁻¹ ATLAS recorded data shown
- Challenging and complex analysis: Improvement possible due to better background modeling and use of multivariate techniques.
- ttH multilepton: $\mu = 1.6 \pm 0.3(\text{stat})_{-0.3}^{+0.4}(\text{syst})$ 4.1 σ (expected 2.8 σ)
- ttH(bb): $\mu = 0.84 \pm 0.29(\text{stat})^{+0.57}_{-0.54}(\text{syst})$ 1.4 σ (expected 1.6 σ)
- Combination with ttH categories in $H(\gamma\gamma)$ and $H(ZZ^*->4I)$

 $\mu_{t\bar{t}H} = 1.17 \pm 0.19(stat)^{+0.27}_{-0.23}(syst)$

Significance: 4.2σ (expected: 3.8σ) Evidence !!

Extrapolated cross section consistent with SM prediction

$$\sigma_{t\bar{t}H} = 590^{+160}_{-150} fb \qquad \sigma_{t\bar{t}H}^{SM} = 507^{+35}_{-50} fb$$

- Towards observation of top-Yukawa coupling:
- Already recorded 42.7 fb⁻¹ of data in 2017

Backup

ttHML: ttW/ttZ CR's

ttHML: light lepton fakes

	2ℓSS	3l	4 <i>ℓ</i>	$1\ell + 2\tau_{had}$	$2\ell SS+1\tau_{had}$	$2\ell OS + 1\tau_{had}$	$3\ell + 1\tau_{had}$
Non-prompt lepton strategy	DD	DD	semi-DD	MC	DD	MC	MC
3651 D.11 3554 ED.446	(MM)	(MM)	(SF)		(FF)		
Fake tau strategy	-	_	-	DD	semi-DD	DD	semi-DD
				(SS data)	(SF)	(FF)	(SF)

2ISS/3I

41

ttHML:Hadronic τ fakes

28

ttHML: fit distributions

ttHML: Cross-check analysis

ttHML: Cross-check analysis

ttHML: Cross-check analysis

ttH(bb): Background composition

ttH(bb): Classification BDT input

ttH(bb): Prefit-Postfit SR's 2I

ttH(bb): Prefit-Postfit SR's 11

ttH(bb): Matrix Element method

- Calculate the likelihood of each event to originate from ttH or tt + bb
- Used in most powerful signal region 6j SR1

describes signal or background process

ttH(bb): CR disturbutions

ttbar + HF modeling

Systematic source	Description	$t\bar{t}$ categories
$t\bar{t}$ cross-section	Up or down by 6%	All, correlated
$k(t\bar{t} + \ge 1c)$	Free-floating $t\bar{t} + \geq 1c$ normalisation	$t\bar{t} + \geq 1c$
$k(t\bar{t} + \ge 1b)$	Free-floating $t\bar{t} + \geq 1b$ normalisation	$t\bar{t} + \geq 1b$
Sherpa $5F$ vs. nominal	Related to the choice of the NLO generator	All, uncorrelated
PS & hadronisation	Powheg-Box+Herwig 7 vs. Powheg-Box+Pythia 8	All, uncorrelated
ISR / FSR	Variations of $\mu_{\rm R}$, $\mu_{\rm F}$, $h_{\rm damp}$ and A14 Var3c parameters	All, uncorrelated
$t\bar{t} + \geq 1c$ ME vs. inclusive	$MG5_aMC@NLO+HERWIG++: ME prediction (3F) vs. incl. (5F)$	$t\bar{t} + \geq 1c$
$t\bar{t} + \geq 1b$ Sherpa4F vs. nominal	Comparison of $t\bar{t} + b\bar{b}$ NLO (4F) vs. POWHEG-BOX+PYTHIA 8 (5F)	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ renorm. scale	Up or down by a factor of two	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ resumm. scale	Vary $\mu_{\rm Q}$ from $H_{\rm T}/2$ to $\mu_{\rm CMMPS}$	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ global scales	Set $\mu_{\rm Q}$, $\mu_{\rm R}$, and $\mu_{\rm F}$ to $\mu_{\rm CMMPS}$	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ shower recoil scheme	Alternative model scheme	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b \text{ PDF} (MSTW)$	MSTW vs. CT10	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b \text{ PDF} (\text{NNPDF})$	NNPDF vs. CT10	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ UE	Alternative set of tunable parameters for the underlying event	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b \text{ MPI}$	Up or down by 50%	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 3b$ normalisation	Up or down by 50%	$t\bar{t} + \geq 1b$

B-tagging Charm rejection and Efficiency scale factor

Performance: Jets & b-tagging

- Jets reconstructed with Anti-kT (R=0.4 jets) from calorimeter clusters calibrated to EM scale
- Particle level calibration by applying JES correction
- Dedicated efforts to mitigate pile up effects
- JES uncertainty about 1-2% above 60 GeV

B-tagging

- Run2 improvement: New inner most pixel layer IBL
 - Significantly improves performance
- MVA algorithm exploits B-decay topologies
- Four calibrated working points with different tagging efficiencies
- b-tag efficiency: 2-10% uncert.
- c-jet mistag rate: 5-20% uncert.
- light-jet mistag rate: 10-50% uncert.

Performance: Leptons

Leptons reconstructed using calorimeter as well as tracking information

• Identification efficiency of e/μ measured in $Z \rightarrow l^+l^$ and $J/\Psi \rightarrow l^+l^-$ in data.

- Hadronic τ are reconstructed from calorimeter cluster and tracking variables.
- Identified using a Boosted decision tree algorithm (BDT)

Calibrated leptons robust to pileup

Performance: Leptons

Charge mis-assignment BDT

- Uses calorimeter and track variables associated to electrons
- Factor of 17 reduction in charge flip processes at 95% efficiency

Non prompt lepton BDT

- For electrons and muons
- Uses isolation variables as well as track jet variables (btagging algorithms)
- Reduces lepton fraction from B-hadron decays by a factor of 20
- Calibrated in $Z \rightarrow l^+ l^-$ events

• These BDT's are only used in multilepton channels