Higgs physics at FCC-hh

Higgs couplings 2017 – Heidelberg 10/11/2017

most of the results for FCC-hh from:

M. Mangano (ed.), "Physics at the FCC-hh, a 100 TeV pp collider", CERN YR 2017-003-M (in particular chapter 2: "Higgs and EWSB studies", 1606.09408 [hep-ph])

I. FCC-hh is an energy frontier experiment

- direct searches for extended Higgs sectors
- study of high-energy tails of kinematic distributions

I. FCC-hh is an energy frontier experiment

- direct searches for extended Higgs sectors
- study of high-energy tails of kinematic distributions

Fig. 40: Integrated Higgs transverse momentum rates, for various production channels, with 20 ab^{-1} . The light-

- manytesinglentaliggsinchannessis) with correspontate the production of yoat operents with a gives decay
- possible to probe $p_{T,H} > 3 4 \text{ TeV}$

I. FCC-hh is an energy frontier experiment

- direct searches for extended Higgs sectors
- study of high-energy tails of kinematic distributions

2. FCC-hh is an intensity frontier experiment

- precision studies of Higgs couplings
- access to rare processes

2. FCC-hh is an intensity frontier experiment

- precision studies of Higgs couplings
- access to rare processes

	N ₁₀₀	N_{100}/N_8	N_{100}/N_{14}	
$gg \to H$	16×10^9	4×10^4	110	
VBF	1.6×10^9	5×10^4	120	benchmark
WH	3.2×10^8	2×10^4	65	with $L = 20 \text{ ab}^{-1}$
ZH	2.2×10^8	3×10^4	85	
$t\bar{t}H$	$7.6 imes 10^8$	3×10^5	420	

number of events in single Higgs channels

- huge number of Higgs bosons produced (~10 10)
- rare channels get large boost wrt LHC (eg. ttH rate enhanced by ~400)

Huge statistics has several advantages

• can afford harder kinematical cuts

- explore new kinematic regimes (eg. high-energy tails):

 - --> new tests of SM and BSM

Single Higgs processes

Higgs couplings at HL-LHC

110

Coupling to photons at FCC-hh

The $gg \to H \to \gamma\gamma$ channel

- ► Higgs channel dominates over bkg at large pT
- ▶ large S/B at high $p_{T,H}$ (S/B ~ I for $p_{T,H}$ > 300 GeV)
- ▶ accurate probe of Higgs p⊤ spectrum
- better than 1% stat. error for $p_{T,H} < 600$ GeV

$p_{T,H}(\text{GeV})$	$\delta_{ m stat}$
100	0.2%
400	0.5%
600	1%
1600	10%

$p_{T,H}(\text{GeV})$	$\delta_{ m stat}$
100	0.3%
300	1%
1000	10%

- ▶ very low bkg for p_{T,H} > 100 GeV
- better than 1% stat. error for $p_{T,H} < 300 \text{ GeV}$

Coupling to muons at FCC-hh

Coupling to $Z\gamma$ at FCC-hh

The $gg \to H \to Z\gamma \to \ell\ell\gamma$ channel

- ▶ huge improvement in stat. error (~1%) wrt LHC
- ▶ good signal S/B ~ I
- can allow for precision test of HZγ (BSM deviations possible, eg. composite Higgs)

$p_{T,H}(\text{GeV})$	$\delta_{ m stat}$
100	1%
900	10%

Top Yukawa at FCC-hh

Large rates in **ttH production** allow to access several final states

[Mangano, Plehn et al. 15]

- additional interesting channel $H \to b\bar{b}$
 - huge number of events
 - could use ratio $t\bar{t}H/t\bar{t}Z$ to reduce syst. uncertainties
- Determination of top Yukawa at ~1% could be achievable at FCC-hh much better than LHC reach (~10%)!

Rare Higgs decays at FCC-hh

Exclusive Higgs decays can probe light quark Yukawa's

[Bodwin et al. '13; Kagan et al. '15]

• SM rates $BR(H \to V\gamma) \sim 10^{-6}$

• Estimate of **LHC** limits on $H \to J/\psi \gamma$:

+ FCC-hh gives a O(100) enhancement in rate

possible to reach SM value!

Invisible Higgs BR at FCC-hh

Large statistics and better control of systematics can allow for a good determination of **Higgs invisible BR** at FCC-hh [see talk by P. Harris at FCC workshop]

- most sensitive channels at FCC-hh: monojet and ttH
- reach sensitivity to SM $H \rightarrow$ invisible for with $\sim few ab^{-1}$
- with ~ 20 ab⁻¹ can test BR($H \rightarrow \text{invisible}$) ~ few 10⁻⁴

Multiple Higgs production non-linear Higgs couplings

Testing the Higgs self couplings

Testing the **shape of the Higgs potential** is very difficult at the LHC

$$\mathcal{L} = -\frac{1}{2}m_h^2 h^2 - \lambda_3 \frac{m_h^2}{2v}h^3 - \lambda_4 \frac{m_h^2}{8v^2}h^4$$

- small sensitivity to trilinear coupling (mainly accessible through Higgs pair production)
 - ▶ only O(I) determination possible at HL-LHC
- (almost) no sensitivity to quartic coupling

Higgs self-coupling **important for BSM**:

- sizable deviations in many BSM models (eg. composite Higgs, Higgs portal)
- controls **EW phase transition** (consequences for baryogenesys/cosmology)

Multiple Higgs production

Multiple Higgs production rates hugely enhanced!

- double Higgs production in gluon fusion becomes precision channel
- triple Higgs production channel becomes visible

Trilinear Higgs coupling at FCC-hh

 \blacklozenge clean channel $gg \to HH \to b \overline{b} \gamma \gamma$

[Contino, Englert, GP, Papaefstathiou, Ren, Selvaggi, Son Spannowsky, Yao in FCC report]

		events $(L = 30a)$	b^{-1}
	$h(b\bar{b})(\gamma\gamma)$ SM	12060	▲
	$bbj\gamma$	14000	
	$jj\gamma\gamma$	4910	w/ stat. error only:
	$t\bar{t}h(\gamma\gamma)$	4880	$S/B \simeq 0.45$
	$b\overline{b}\gamma\gamma$	2950	$\sqrt{S+B}/S \simeq 0.016$
	$b \overline{b} h(\gamma \gamma)$	227	
)	$bj\gamma\gamma$	155	
	total bkg	27122	← ────┘

	# signal events in $b\bar{b}\gamma\gamma$
LHC 14 TeV 300 $\rm fb^{-1}$	36
LHC 14TeV 3 ab^{-1}	360
FCC 100 TeV 30 $\rm ab^{-1}$	138000
	entering ~% precisior

Trilinear Higgs coupling at FCC-hh

$\Delta\lambda_3(\%)$	$\Delta_S = 0.00$	$\Delta_S = 0.01$	$\Delta_S = 0.015$	$\Delta_S = 0.02$	$\Delta_S = 0.025$	theory error:
$r_B = 0.5$	2.7%	3.4%	4.1%	4.9%	5.8%	uncertainty on signal rate
$r_B = 1.0$	3.4%	3.9%	4.6%	5.3%	6.1%	$\Delta \sigma(pp \to hh)$
$r_B = 1.5$	3.9%	4.4%	5.0%	5.7%	6.4%	$\Delta_S = \frac{1}{\sigma(pp \to hh)}$
$r_B = 2.0$	4.4%	4.8%	5.4%	6.0%	6.8%	
$r_B = 3.0$	5.2%	5.6%	6.0%	6.6%	7.3%	
↑ '	•	•	•	1	1	

overall rescaling /

of bkg rate

 $n_B \to r_B \times n_B$

- precision likely to be limited by systematics (theory syst. dominant for $\Delta_S \gtrsim 2.5\%$, leading to $\Delta\lambda_3 \simeq 2\Delta_S$)
- Itimate FCC-hh reach in the 3 6 % range
- ▶ HE-LHC (~30 TeV) could reach ~30 % precision with ~10 ab⁻¹

Higgs quartic coupling at FCC-hh

- ► SM signal can be probed with O(100%) precision
- order-of-magnitude test of Higgs quartic coupling $\lambda_4 \in [-4, +16]$

Double Higgs from VBF

VBF can test perturbative unitarization and strength of Higgs dynamics

$$\mathcal{L} \supset \left(m_W^2 W_\mu^2 + \frac{m_Z^2}{2} Z_\mu^2 \right) \left(1 + 2c_V \frac{h}{v} + c_{2V} \frac{h^2}{v^2} \right)$$

+ Cross section grows at high m_{hh} if SM couplings are modified (in the SM $c_V = c_{2V} = 1$) enhancement at

Double Higgs from VBF

- ▶ limited reach at HL-LHC (very small statistics)
- huge improvement at FCC-hh: probe ~1% deviations

strong implications for explicit scenarios

eg. SO(5)/SO(4) composite Higgs models: $c_{2V} = 1 - 2\xi = 1 - 2v^2/f^2$

 $|\delta c_{2V}| \lesssim 1\%$ \longrightarrow $f \gtrsim 3.5 \text{ TeV}$

Extended Higgs sectors

Additional scalar singlet

Extensions of the Higgs sector are quite common in BSM scenarios

eg. additional singlet ϕ often present (eg. NMSSM, Twin Higgs, ...)

• complementarity of direct searches and Higgs coupling measurements

MSSM Higgs sector

Classical scenario: **direct searches** for MSSM Higgs sector can access ~10TeV states

Precision EW measurements

Precision EW measurements

Effective Higgs couplings can also be tested through EW precision measurements at high energy

 high-energy longitudinally polarized gauge fields can be "traded" for Higgs/Goldstones

probing di-boson production at high-energy is a way to test Higgs dynamics!

Precision EW measurements

deviations from SM typically grow with energy

$$\frac{\mathcal{A}_{\rm SM+BSM}}{\mathcal{A}_{\rm SM}} \sim 1 + \# \frac{E^2}{\Lambda^2}$$

◆ LHC could match LEP sensitivity by going at high energy
 0.1 % at 100 GeV → 10 % at 1 TeV

• enhancement can **compensate limited accuracy** at hadron machines

Analysis of WZ fully leptonic

- stronger bounds by exploiting the high-energy enhancement
- already LHC can **improve LEP bound**, even better at future machines
- other channels might give complementary information: WH, ZH, WW.

Conclusions

Conclusions

FCC-hh has huge potential to explore new physics territories and improve our knowledge of the Higgs

Exploiting the <u>energy frontier</u>

- probe extended Higgs sectors (2HDM, additional singlets, ...)
- access high-energy tails of distributions (enhanced new-physics effects)
 - test Higgs interactions in di-boson processes (HH in VBF, WZ, \ldots)
- Exploiting the intensity frontier
 - precision studies of Higgs couplings
 - $H \rightarrow \mu \mu$ and $H \rightarrow Z \gamma$ enter precision era
 - large improvement in top Yukawa (~1%)
 - access to rare processes
 - test light quark Yukawa's (eg. charm)
 - test SM Higgs invisible BR
 - test Higgs potential: trilinear coupling 3 -5 %; quadrilinear [-4, +16]