

Low mass scalar searches at CMS

Mario Pelliccioni

Istituto Nazionale di Fisica Nucleare

Higgs Couplings 2017 - Heidelberg

Low invariant mass searches!

Experimentally, among the most difficult analyses at LHC

- \rightarrow Special tuning of selection tools
- \rightarrow Theoretical guidance sometimes limited
- \rightarrow Trigger, trigger, trigger

CMS low mass searches

 $h \rightarrow aa signatures$

- h \rightarrow aa \rightarrow 4τ

- 8 TeV Phys. Lett. B 752 (2016) 146 - h \rightarrow aa \rightarrow 4 μ 13 TeV CMS PAS HIG-16-035
 - JHEP 01 (2016) 079 (low m_a) 8 TeV HIG-16-015 (high m₂)
- h \rightarrow aa $\rightarrow 2\mu 2\tau$ 8 TeV HIG-16-015
- h \rightarrow aa $\rightarrow 2\mu 2b$
- HIG-16-015 8 TeV

 $h \rightarrow \gamma \gamma$

8 TeV CMS PAS HIG-14-037 13 TeV CMS PAS HIG-17-013

bbA, $A \rightarrow \mu \mu$ bbA, $A \rightarrow \tau \tau$

HIG-15-009, accepted by JHEP 8 TeV 8 TeV Phys. Lett. B 758 (2016) 296

CMS low mass searches

 $h \rightarrow aa \ signatures$

- h $ ightarrow$ aa $ ightarrow$ 4 μ	8 TeV	Phys. Lett. B 752 (2016) 146	
	13 TeV	CMS PAS HIG-16-035	
- $h \rightarrow aa \rightarrow 4\tau$	8 TeV	JHEP 01 (2016) 079 (low m _a)	
		HIG-16-015 (high m _a)	
- h \rightarrow aa $\rightarrow 2\mu 2\tau$	8 TeV	HIG-16-015	
- $h \rightarrow aa \rightarrow 2\mu 2b$	8 TeV	HIG-16-015	
		Will (mostly) cover these	today
$h \rightarrow \gamma \gamma$		Will (mostly) cover these	today
$h \rightarrow \gamma \gamma$	8 TeV	Will (mostly) cover these CMS PAS HIG-14-037	today
$h \rightarrow \gamma \gamma$	8 TeV 13 TeV	Will (mostly) cover these CMS PAS HIG-14-037 CMS PAS HIG-17-013	today
$h \rightarrow \gamma \gamma$	8 TeV 13 TeV	Will (mostly) cover these CMS PAS HIG-14-037 CMS PAS HIG-17-013	today

bbA, $A \rightarrow \mu\mu$ 8 TeVHIG-15-009, accepted by JHEPbbA, $A \rightarrow \tau\tau$ 8 TeVPhys. Lett. B 758 (2016) 296

CMS HIG-16-015, accepted by JHEP

Run1 "combination"

- All channels below the $h \rightarrow aa$ kinematic limit
- (all channels possible thanks to lepton triggers)
- **Reminders:**
- -BR($a \rightarrow \mu \mu$)/BR($a \rightarrow \tau \tau$) does not depend on tan β in 2HDM+S
- -This is true for
- BR($a \rightarrow \mu \mu$)/BR($a \rightarrow bb$) for Types I-II

Caveat on sensitivity

Example: $\tau\tau$ /bb sensitivity as function of tan β

So conclusions on most sensitive channels are to be drawn carefully

$h \rightarrow yy$ at low mass

CMS PAS HIG-17-013

Main characteristics

Similar concept to the standard $H \rightarrow \gamma \gamma$ analysis, but in different region

8 TeV: 80 <
$$m_{\gamma\gamma}$$
 < 110 GeV/c²
13 TeV: 70 < $m_{\gamma\gamma}$ < 110 GeV/c²

Main differences:

- Lower E_{τ} , a bit more aggressive selection cuts
- Edge of the trigger acceptance
- Important $Z \rightarrow e^+e^-$ background

Note: 8 TeV analysis limited at 80 GeV because of trigger, this was improved at 13 TeV

Why trigger matters

- L1 Trigger: only calorimeters and muons
 - Limited to maximum 100 kHz
 - Electrons and photons indistinguishable
 - In design system: no "complex" operations possible
 - Typical e/y thresholds in 2016:
 - Around 30 GeV for one object
 - Around 20/15 GeV for two objects

Why trigger matters

HLT: can use the tracker

- Limited to about 1 kHz
- Discriminate electrons from photons
- Dedicated algorithms for low mass yy analysis in 2016!

Event election (13 TeV)

- E_τ > 30/18 GeV
- Pixel veto for electron rejection
- $m_{yy} > 55 \text{ GeV}$
- Distinguish photons in barrel and endcap:
 - In endcap -
 - Additional shower shape selections
 - Cuts on hadronic/EM energy
 - Isolation
- Selection $p_{T,\gamma1}/m_{\gamma\gamma} > 30.6/65$ $p_{T,\gamma2}/m_{\gamma\gamma} > 18.2/65$ Standard single photon selection criteria
- MVA (BDT) to reject non-prompt photon pairs
- BDT to classify events (based on kinematics, photon ID, mass resolution) in four categories

Trigger

Signal characterization

Use Z → e⁺e⁻ events, only EM part reconstructed, retune MC Reparametrized on full mass range with signal MC and extrapolated

Background parametrization

Two components: smoothly falling and $Z \rightarrow e^+e^-$ double mis-ID

- For continuum, exp/N-order polynomials
- For $Z \rightarrow e^+e^-$, Double Crystal Ball

13 TeV: Discrete profiling \rightarrow choice of background function discrete parameter in likelihood Order of polynomials decided with F-test

Extensive bias studies to validate background choice

Invariant mass fits

8 TeV

Events / GeV

best fit PDF

data -

Events / GeV

data - best fit PDF

Low stat higher sensitivity categories merged in 13 TeV sample

Interpretation

Main systematic uncertainties

Photon ID, largest unc. 14.6% (VBF, 13 TeV) Photon energy resolution 13.7% (gg, 8 TeV) QCD scale 7.5% (gg, 8 TeV) Trigger efficiency 5.5% (13 TeV) **8 TeV**: Excess with $\sim 2.0\sigma$ local significance at 97.6 GeV

13 TeV: Excess with ~2.9 σ local (1.47 σ global) significance at 95.3 GeV

Combination

All systematics uncorrelated, but for signal acceptance (for scale) and on production cross section (100% correlated)

8TeV+13 TeV: Excess with ~2.8 σ local (1.3 σ global) significance at 95.3 GeV

Production processes contribution assumed with SM ratio

2HDM with low mass A

 $bbA \rightarrow bb\mu\mu$

CMS HIG-15-009, Accepted by JHEP

Selection criteria

- Single (24 GeV) or double (17/8 GeV) isolated muon trigger
- Offline request of PV and combined isolation
- At least one b-jet with $p_{T} > 20$ GeV
 - ID Efficiency ~ 45% with 6% mis-ID, mainly charm)
- p_{T,miss} < 40 GeV 12 < m_{μμ} < 70 GeV

Analysis strategy: fit $m_{\mu\mu}$ with signal and background templates from MC

Use m_{pp} to validate background modelization

p_ b jet (GeV)

10

1.5 0.5

Data/MC

Results

Main sources of systematic uncertainty:

- Top quark normalization uncertainty: 7%
- Renormalization and factorization scales on DY: 20%
- Uncertainty on signal acceptance (shower scale, renormalization and factorization, PDFuncertainties): ~ 18%

We have just started to extract the physics potential of the 13 TeV dataset!

- We have a comprehensive view of the potential of the main channels from the Run1 experience
- Yet, some lessons can be learned:
 - Necessary to plan our trigger needs in advance, either to maintain or improve our sensitivity
 - Dedicated tools and studies for low p_{T} searches
 - In other words, sensitivity depends also on interest in particular class of topologies
- Feedback with theory community fundamental to keep interest in exploring these signatures

Backup

