



# **Higgs Fits**

Michael Rauch | Higgs Couplings, 09 November 2017

INSTITUTE FOR THEORETICAL PHYSICS



www.kit.edu

#### Found a Resonance

Resonance at  $\sim 125$  GeV found eliminary s = 7 TeV. L  $\leq 5.1$  fb<sup>-1</sup> s = 8-ocal p-value 10 10-6 10-9 10-13 Combined obs. for SM H 10<sup>-17</sup> 130 135 35 140 145 m<sub>н</sub> (GeV) 110 115 120 125

Assuming SM is correct, full theory:

- $\Rightarrow$  Job done
  - must be Higgs (only missing but expected particle)
  - mass only remaining unknown parameter
  - couplings and quantum numbers fixed by theory prediction





#### Found a Resonance

Assuming SM is correct, full theory:

- $\Rightarrow$  Job done
  - must be Higgs (only missing but expected particle)
  - mass only remaining unknown parameter
  - couplings and quantum numbers fixed by theory prediction

#### $\leftrightarrow \text{test predictions}$





#### Parametrizing Higgs Couplings

Discrete quantum numbers (CP-even scalar) those of SM Higgs Measured rates in reasonable agreement with SM expectation

- ⇒ Constraints on new-physics models
- $\Rightarrow SM(-Higgs) + X$ 
  - (linear) SM Effective Field Theory dimension-6 operators

[Buchmüller, Wyler; Grzadkowski et al.; Giudice et al.; Contino et al.; Passarino;

Gonzalez Garcia et al. ; Trott et al. ; ...]

new-physics heavy and can be integrated out

ightarrow reasonable assumption, but should be tested

Higgs EFT

Dimension-4 contributions to renormalizable Lagrangian + non-decoupling dimension-6 operators

[Zeppenfeld et al. ; Duehrssen et al. ; Lafaye, Plehn, MR, Zerwas; LHC HXSWG]

can be seen as LO contribution of chiral Lagrangian

[Buchalla et al.;...]

Assumptions:

- single narrow resonance at  $\sim$  125 GeV
- width negligible

$$\Rightarrow (\sigma \cdot BR)(ii \rightarrow H \rightarrow ff) = \frac{\sigma_{ii} \cdot \Gamma_f}{\Gamma_{ii}}$$

tensor structure identical to SM



#### **Generalized Higgs sector**



• for Higgs couplings present in the Standard Model  $x = W, Z, t, b, \tau, c, \mu$ 

$$g_{xxH}\equiv g_x\longrightarrow g_x^{ ext{SM}}~(1+\Delta_x)\equiv g_x^{ ext{SM}}~\kappa_x$$

• for loop-induced Higgs couplings  $x = \gamma, g$ 

$$g_x \longrightarrow g_x^{\mathrm{SM}} \left( 1 + \Delta_x^{\mathrm{SM}} + \Delta_x \right) = g_x^{\mathrm{SM}} \left( 1 + \Delta_x^{\mathrm{SM+NP}} \right) \equiv \kappa_x g_x^{\mathrm{SM}}$$

where  $g_{\chi}^{SM}$ : (loop-induced) coupling in the Standard Model  $\Delta_{\chi}^{SM}$ : contribution from modified tree-level couplings to Standard-Model particles

 $\Delta_x$ : additional (dimension-five) contribution

ratios

$$\frac{g_x}{g_y} = \frac{g_x^{\rm SM}}{g_y^{\rm SM}}(1 + \Delta_{x/y})$$

ignore Higgs self-couplings (g<sub>HHH</sub>, g<sub>HHHH</sub>)

#### SFitter

Algorithms:

- Weighted Markov chain
- Cooling Markov chain (~ simulated annealing)
- Modified gradient fit (Minuit)
- Grid scan
- Nested Sampling [Skilling; Feroz, Hobson]

Errors:

- three types:
  - Gaussian arbitrary correlations possible (→ systematic errors)
  - Poisson
  - box-shaped (RFit) [CKMFitter]
- assignment as in exp. studies
- adaption to likelihood input easy
- Output of SFitter:
  - fully-dimensional log-likelihood map
  - one- and two-dimensional distributions via
    - marginalization (Bayesian)
    - profile likelihood (Frequentist)
  - list of best points



[Lafaye, Plehn, MR,Zerwas]

[Eur.Phys.J.C54:617-644,2008, [arXiv:0709.3985 [hep-ph]]]

[JHEP08(2009)009 [arXiv:0904.3866 [hep-ph]]]



# **Experimental Input**



[Corbett, Eboli, Goncalves, Gonzalez-Fraile, Plehn, MR] Karts

#### Higgs data

| production/decay mode            | ATLAS                             | CMS                              |
|----------------------------------|-----------------------------------|----------------------------------|
| $H \rightarrow WW$               | 1412.2641                         | 1312.1129                        |
| $H \rightarrow ZZ$               | 1408.5191                         | 1312.5353                        |
| $H \rightarrow \gamma \gamma$    | 1408.7084                         | 1407.0558                        |
| $H \rightarrow \tau \bar{\tau}$  | 1501.04943                        | 1401.5041                        |
| $H \rightarrow b \bar{b}$        | 1409.6212                         | 1310.3687                        |
| $H \rightarrow Z\gamma$          | ATLAS-CONF-2013-009               | 1307.5515                        |
| $H \rightarrow \text{invisible}$ | 1402.3244, 1502.01518, 1504.04324 | 1404.1344, CMS-PAS-HIG-14-038    |
| ttH production                   | 1408.7084, 1409.3122              | 1407.0558, 1408.1682, 1502.02485 |
| kinematic distributions          | 1409.6212, 1407.4222              |                                  |
| off-shell rate                   | ATLAS-COM-CONF-2014-052           | 1405.3455                        |

# rates and backgrounds from experimental papers ~ 200 channels in total

#### Higgs theory

Couplings from modified versions of

- HDecay
- eHDecay
- private code

[Djouadi, Kalinowski, Mühlleitner, Spira]

[Contino, Ghezzi, Grojean, Mühlleitner, Spira]

[Corbett, Gonzalez-Fraile]

#### Results in $\triangle$ -Framework



#### Run-I Results



#### [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Plehn, MR]



- tested precision on couplings up to O(10%)
- good agreement with SM expectation
- sign ambiguities

#### Results in $\kappa$ -Framework

Official combination from ATLAS & CMS





■ difficult to relate to electroweak sector → try other approach

#### **Effective Field Theory**



 integrate out heavy, non-SM degrees of freedom higher-dimensional operators appearing in Lagrangian

$$\mathcal{L}_{\mathsf{EFT}} = \mathcal{L}_{\mathsf{SM}} + \sum_{d>4} \sum_{i} \frac{f_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

- a priori 59 operators when assuming flavour and CP symmetry [Grzadkowski et al.]
- use HISZ basis [Hagiwara, Ishihara, Szalapski, Zeppenfeld] operators contributing to Higgs physics

$$\begin{split} \mathcal{O}_{GG} &= \Phi^{\dagger} \Phi \ G^{a}_{\mu\nu} \mathcal{G}^{a\mu\nu} & \mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi & \mathcal{O}_{BB} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi \\ \mathcal{O}_{BW} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi & \mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) & \mathcal{O}_{B} = (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi) \\ \mathcal{O}_{\Phi,1} &= (D_{\mu} \Phi)^{\dagger} \Phi \Phi^{\dagger} (D^{\mu} \Phi) & \mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} \left( \Phi^{\dagger} \Phi \right) \partial_{\mu} \left( \Phi^{\dagger} \Phi \right) & \mathcal{O}_{\Phi,4} = (D_{\mu} \Phi)^{\dagger} \left( D^{\mu} \Phi \right) \left( \Phi^{\dagger} \Phi \right) \\ \mathcal{O}_{\Phi,3} &= \frac{1}{3} \left( \Phi^{\dagger} \Phi \right)^{3} & \text{fermionic couplings} \end{split}$$

#### **Final Set**



- rotate to basis without blind directions linked to electroweak precision data
- restrict fermion couplings to SM-like set
- ignore Higgs self-couplings
- $\blacksquare \Rightarrow$

$$\begin{split} \mathcal{O}_{GG} &= \Phi^{\dagger} \Phi \ G^{a}_{\mu\nu} \ G^{a\mu\nu} & \mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi & \mathcal{O}_{BB} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi \\ \mathcal{O}_{W} &= (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) & \mathcal{O}_{B} = (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi) & \mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} \left( \Phi^{\dagger} \Phi \right) \partial_{\mu} \left( \Phi^{\dagger} \Phi \right) \\ \mathcal{O}_{e\Phi,33} &= (\Phi^{\dagger} \Phi) (\bar{L}_{3} \Phi e_{R,3}) & \mathcal{O}_{u\Phi,33} = (\Phi^{\dagger} \Phi) (\bar{Q}_{3} \tilde{\Phi} u_{R,3}) & \mathcal{O}_{d\Phi,33} = (\Phi^{\dagger} \Phi) (\bar{Q}_{3} \Phi d_{R,3}) \end{split}$$

- gauge-boson part can be translated to general HVV vertex structure
  - $\Rightarrow$  7  $\kappa$ -like coupling modifications (*W*=*Z*,  $\gamma$ , *Z* $\gamma$ , *g*, *t*, *b*,  $\tau$ )
  - $\Rightarrow$  5 new Lorentz structures

$$(V_{\mu\nu}V^{\mu}\partial^{\nu}H, V_{\mu\nu}V^{\mu\nu}H \text{ with } V = W, Z; A_{\mu\nu}Z^{\mu}\partial^{\nu}H)$$

kinematic distributions become relevant

#### **Kinematic Distributions**



Two kinematic distributions used:

- transverse momentum of the vector boson in VH,  $H \rightarrow b\bar{b}$  production
- azimuthal angle separation of two jets in  $\gamma\gamma jj$  production



# Analysis



[Corbett, Eboli, Goncalves, Gonzalez-Fraile, Plehn, MR]

Correlations between different operators  $\rightarrow$  distributions crucial



# Results



- secondary solutions for  $\mathcal{O}_{GG}$ , fermion couplings (not shown)
- information from distributions helps
- probed energy scales 300-500 GeV for  $\mathcal{O}(1)$  Wilson coefficients
- good agreement with SM limit



#### Is fitting Higgs couplings useful?



#### Is fitting only Higgs couplings useful?

#### **D6 Higgs-Gauge Operators**



- SU(2) connects Higgs and gauge sector
- $\bullet$   $\rightarrow$  also consider modifications to triple gauge couplings (TGC)
- modification of corresponding TGC vertices:

|                 | $\mathcal{O}_{WWW}$ | $\mathcal{O}_W$ | $\mathcal{O}_B$ | $\mathcal{O}_{WW}$ | $\mathcal{O}_{BB}$ | $\mathcal{O}_{\phi, 2}$ |
|-----------------|---------------------|-----------------|-----------------|--------------------|--------------------|-------------------------|
| WWZ             | Х                   | Х               | Х               |                    |                    |                         |
| $WW\gamma$      | Х                   | Х               | Х               |                    |                    |                         |
| HWŴ             |                     | Х               |                 | Х                  |                    | Х                       |
| HZZ             |                     | Х               | Х               | Х                  | Х                  | Х                       |
| $HZ\gamma$      |                     | Х               | Х               | Х                  | Х                  | (X)                     |
| $H\gamma\gamma$ |                     |                 |                 | Х                  | Х                  | (X)                     |

• one more relevant operator

$$\mathcal{O}_{\textit{WWW}} = \mathrm{Tr} \left( \hat{\textit{W}}^{\mu}{}_{\nu} \, \hat{\textit{W}}^{\nu}{}_{\rho} \, \hat{\textit{W}}^{\rho}{}_{\mu} \right)$$

#### **Experimental Input**



[Butter, Eboli, Gonzalez-Fraile, Gonzalez-Garcia, Plehn, MR] Kantsuber Institut 1

need distributions from Gauge boson data

| Channel                                                               | Distribution                  | Data set                           | Reference          |
|-----------------------------------------------------------------------|-------------------------------|------------------------------------|--------------------|
| $WW \rightarrow \ell^+ \ell'^- + \not\!\! E_T (0j)$                   | Leading lepton pT             | ATLAS 8 TeV, 20.3 fb <sup>-1</sup> | 1603.01702         |
| $WW \rightarrow \ell^+ \ell^{(\prime)-} + \not \! E_T $ (0 <i>j</i> ) | $m_{\rho \rho(\prime)}$       | CMS 8 TeV, 19.4 fb $^{-1}$         | 1507.03268         |
| $WZ \rightarrow \ell^+ \ell^- \ell^{(\prime)\pm}$                     | mT                            | ATLAS 8 TeV, 20.3 fb $^{-1}$       | 1603.02151         |
| $WZ \rightarrow \ell^+ \ell^- \ell^{(\prime)\pm} + \not \! E_T$       | Z candidate $p_T^{\ell \ell}$ | CMS 8 TeV, 19.6 fb <sup>-1</sup>   | CMS-PAS-SMP-12-006 |
| $WV \rightarrow \ell^{\pm} j j + \not \! E_T$                         | V candidate $p_T^{jj}$        | ATLAS 7 TeV, 4.6 fb <sup>-1</sup>  | 1410.7238          |
| $WV \rightarrow \ell^{\pm} j j + \not \! E_T$                         | V candidate $p_T^{jj}$        | CMS 7 TeV, 5.0 fb <sup>-1</sup>    | 1210.7544          |
| $WZ \rightarrow \ell^+ \ell^- \ell^{(\prime)\pm} + \not \in_T$        | Z candidate $p_T^{\ell\ell}$  | ATLAS 7 TeV, 4.6 fb <sup>-1</sup>  | 1208.1390          |
| $WZ \to \ell^+ \ell^- \ell^{(\prime)\pm} + \not\!\! E_T$              | Z candidate $p_T^{\ell\ell}$  | CMS 7 TeV, 4.9 fb <sup>-1</sup>    | CMS-PAS-SMP-12-006 |



#### **Cross-check**



Cross-check results for agreement, e.g. with ATLAS 8 TeV WW



- colour: profile likelihood of our implementation
- black dots:  $\Delta(-2 \log L) = 5.99$
- red solid contour: ATLAS 95% CL result  $\rightarrow$  good agreement

#### **Comparison and Combination with LEP**





TGC measurements available also from LEP

LHC precision dominates

• no significant improvement when adding LEP data (slight shift for *f<sub>B</sub>*)

# **Correlation Plots**



Higgs data only (rates and distributions):

[Butter, Eboli, Gonzalez-Fraile, Gonzalez-Garcia, Plehn, MR] Higgs + TGC + LEP data:



| Data (95% CL; $f/\Lambda^2$ [TeV <sup>-2</sup> ]) | $\mathcal{O}_B$          | $\mathcal{O}_W$ |
|---------------------------------------------------|--------------------------|-----------------|
| Higgs                                             | [-52;-38] U [-15.5;18.1] | [-5.2;6.4]      |
| TGC                                               | [-14.3;15.9]             | [-1.5;6.3]      |
| Higgs+TGC+LEP                                     | [-11.8;8.8]              | [-0.98;5.0]     |

# **Correlation Plots**



#### **Complete Higgs-Gauge Analysis**



[Butter, Eboli, Gonzalez-Fraile, Gonzalez-Garcia, Plehn, MR]



secondary solutions for  $\mathcal{O}_{WW}$ ,  $\mathcal{O}_{BB}$ ,  $\mathcal{O}_{B}$ ,  $\mathcal{O}_{\phi,2}$  removed

- significantly increased precision for O<sub>W</sub>, O<sub>B</sub>
- *O<sub>WW</sub>*, *O<sub>BB</sub>* improve despite no direct contribution to TGC data (correlations!)

## **Chiral Lagrangian**



[see talks by Francesco and Ilaria for more detailed theory discussion]

- two approaches to count dimensions:
  - canonical (energy) dimension  $\rightarrow$  linear realization  $\rightarrow$  shown so far
  - chiral dimension (loop dimension) → non-linear/chiral realization
- equivalent when considering all orders
- different contributions for leading terms only

#### global Higgs and gauge couplings analysis also possible in this framework

[Brivio, Gonzalez-Fraile, Gonzalez-Garcia, Merlo]

# Results



#### [Brivio, Gonzalez-Fraile, Gonzalez-Garcia, Merlo]

Constraints from Higgs data including kinematic distributions: 68%, 90%, 95%, 99% CL



SM limit good solution

■ one bosonic parameter more (10) than in linear EFT fit → slightly wider parameter ranges, otherwise equivalent

## **Results (2)**



[Brivio, Gonzalez-Fraile, Gonzalez-Garcia, Merlo] Constraints from Higgs+TGC data incl. kin. dists: 68%, 90%, 95%, 99% CL



- 13 parameter fit
- significant improvement compared to Higgs data alone also here
- comparison linear ↔ non-linear: investigate nature of electroweak symmetry breaking → higher precision necessary

LHC luminosity of 2016 run already exceeding run-I (plus larger cross sections due to increased centre-of-mass energy)

 $\rightarrow$  include run-II data in analyses

#### on-going work

#### TGC fits

#### Higgs fits

- HiggsSignals
- 5-parameter EFT fit from STXS
- HEPfit, Bayesian fit for chiral Lagrangian
- Combined Higgs+TGC fits
  - SFitter, Higgs+TGC update



 $[\rightarrow$  yesterday's parallel session]

[Falkowski et al. ; Riembau et al. ]

[Stefaniak *et al.*] [Zemaityte, Hays, Sanz] [Krause *et al.*]

[Corbett, Plehn, MR et al. ]

LHC luminosity of 2016 run already exceeding run-I (plus larger cross sections due to increased centre-of-mass energy)

- $\rightarrow$  include run-II data in analyses
- on-going work

TGC fits

Higgs fits HiggsSignals [→ yesterday's parallel session] [Falkowski *et al.* ; Riembau *et al.* ]

[Stefaniak et al.]





25/26

LHC luminosity of 2016 run already exceeding run-I (plus larger cross sections due to increased centre-of-mass energy)

- $\rightarrow$  include run-II data in analyses
- on-going work
  - TGC fits
  - Higgs fits
    - HiggsSignals
    - 5-parameter EFT fit from STXS

Fit to ATLAS STXS measurements (ATLAS-CONF-2017-047)



[Falkowski et al.; Riembau et al.]

[Stefaniak *et al.*] [Zemaityte, Hays, Sanz]





TGC fits Higgs fits

- HiggsSignals
- 5-parameter EFT fit from STXS
- prior dependence

 $c_V = 1.00 \pm 0.06$   $c_t = 0.92^{+0.15}_{-0.17}$   $c_b = 1.07^{+0.17}_{-0.16}$  $c_{\tau} = 1.09 \pm 0.12$   $c_{\varphi} = 0.06^{+0.14}_{-0.12}$   $c_{\gamma} = -0.19^{+0.27}_{-0.26}$  $(c_{\mu} < 0.88 @ 68\% c_{c} > 0.68 @ 68\%)$ 

For a Gaussian prior with  $\sigma \approx 0.5$ , we find:

HEPfit, Bayesian fit for chiral Lagrangian

# **Towards Run-II Results**

LHC luminosity of 2016 run already exceeding run-I (plus larger cross sections due to increased centre-of-mass energy)

 $\rightarrow$  include run-II data in analyses

#### on-going work





[Stefaniak et al.] [Zemaityte, Hays, Sanz] [Krause et al.]

 $[\rightarrow$  yesterday's parallel session]

[Falkowski et al. ; Riembau et al. ]



LHC luminosity of 2016 run already exceeding run-I (plus larger cross sections due to increased centre-of-mass energy)

- $\rightarrow$  include run-II data in analyses
- on-going work
  - TGC fits
  - Higgs fits
    - HiggsSignals
    - 5-parameter EFT fit from STXS
    - HEPfit, Bayesian fit for chiral Lagrangian
  - Combined Higgs+TGC fits
    - SFitter, Higgs+TGC update



 $[\rightarrow \text{ yesterday's parallel session}]$ 

[Falkowski et al. ; Riembau et al. ]

[Stefaniak *et al.*] [Zemaityte, Hays, Sanz] [Krause *et al.*]

[Corbett, Plehn, MR et al.]

#### Conclusions



- combined analysis of Higgs-gauge sector working
- both linear and non-linear formulation
- information from distributions crucial for precision
- work on using run-II data started

# **Higgs Width**



at LHC total width not directly measurable

• indirect limits: compare on-shell and off-shell region in  $pp \rightarrow 4\ell$  production

[Caola, Melnikov]

• limit on Higgs-gauge coupling from sum rule:  $\Delta_W < 0, \, \Delta_Z < 0$ 

 $\Rightarrow$  typical assumption

 $\Gamma_{tot} = \Sigma_{obs} \Gamma_x$  (plus generation universality)

# D6 setup



28/26

$$\mathcal{L}^{HVV} = g_{Hgg} H G^{a}_{\mu\nu} G^{a\mu\nu} + g_{H\gamma\gamma} H A_{\mu\nu} A^{\mu\nu} + g^{(1)}_{HZ\gamma} A_{\mu\nu} Z^{\mu} \partial^{\nu} H + g^{(2)}_{HZ\gamma} H A_{\mu\nu} Z^{\mu\nu} + g^{(1)}_{HZZ} Z_{\mu\nu} Z^{\mu} \partial^{\nu} H + g^{(2)}_{HZZ} H Z_{\mu\nu} Z^{\mu\nu} + g^{(3)}_{HZZ} H Z_{\mu} Z^{\mu} + g^{(1)}_{HWW} (W^{+}_{\mu\nu} W^{-\mu} \partial^{\nu} H + \text{h.c.}) + g^{(2)}_{HWW} H W^{+}_{\mu\nu} W^{-\mu\nu} + g^{(3)}_{HWW} H W^{+}_{\mu} W^{-\mu}$$

$$\begin{split} g_{Hgg} &= -\frac{\alpha_s}{8\pi} \frac{f_{GG}v}{\Lambda^2} & g_{HZ\gamma}^{(1)} &= \frac{g^2v}{2\Lambda^2} \frac{s_w(f_W - f_B)}{2c_w} \\ g_{H\gamma\gamma} &= -\frac{g^2vs_w^2}{2\Lambda^2} \frac{f_{BB} + f_{WW}}{2} & g_{HZ\gamma}^{(2)} &= \frac{g^2v}{2\Lambda^2} \frac{s_w(2s_w^2f_{BB} - 2c_w^2f_{WW})}{2c_w} \\ g_{HZZ}^{(1)} &= \frac{g^2v}{2\Lambda^2} \frac{c_w^2f_W + s_w^2f_B}{2c_w^2} & g_{HWW}^{(1)} &= \frac{g^2v}{2\Lambda^2} \frac{f_W}{2} \\ g_{HZZ}^{(2)} &= -\frac{g^2v}{2\Lambda^2} \frac{s_w^4f_{BB} + c_w^4f_{WW}}{2c_w^2} & g_{HWW}^{(2)} &= -\frac{g^2v}{2\Lambda^2} f_{WW} \\ g_{HZZ}^{(3)} &= m_Z^2(\sqrt{2}G_F)^{1/2} \left(1 - \frac{v^2}{2\Lambda^2} f_{\Phi,2}\right) & g_{HWW}^{(3)} &= m_W^2(\sqrt{2}G_F)^{1/2} \left(1 - \frac{v^2}{2\Lambda^2} f_{\Phi,2}\right) \end{split}$$

## Analysis



Distributions crucial  $\leftrightarrow$  sensitivity only from last  $p_T$  bin



# **Higgs D6 Results**









#### [Butter, Eboli, Gonzalez-Fraile, Gonzalez-Garcia, Plehn, MR]