

In collaboration with Franceschini,Panico, Pomarol, Wulzer' last week (were it not for Catalunya) Panico, Wulzer 1708.07823, Azatov, Contino, Machado 1607.05236 Liu, Pomarol, Rattazzi 1603.03064

LHC Exploration (so far 2009-2015)

LHC Exploration (so far 2009-2015)

Experimentally: First accessible signal/Easy to study

LHC Exploration (so far 2009-2015)

Experimentally: First accessible signal/Easy to study

LHC Exploration (now -> 2030's)

LHC Exploration (now -> 2030's)

LHC Exploration (now -> 2030's)

LHC Exploration (now -> 2030's)

LHC Exploration (now -> 2030's)

LHC Exploration (now -> 2030's)

e.g. Higgs Couplings,...

LHC Exploration (now -> 2030's)

e.g. Drell-Yann, VH, VV',...

e.g. Higgs Couplings,...

LHC Exploration (now -> 2030's)

LHC Exploration (now -> 2030's)

Longitudinal dibosons

Simplicity at High-E

At high-E only one effect survives (for given i, f states) Jackob, Wick'59, Franceschini, Panico, Pomarol, FR, Wulzer

e.g.
$$\frac{a^{(3)}}{\text{TeV}^2} iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D}_{\mu}H\bar{Q}\sigma^a\gamma^{\mu}Q$$

Di-Bosons

Franceschini, Panico, Pomarol, FR, Wulzer'17

Which channel has the best reach?

 $\langle \alpha \rangle$

Estimate (no syst, LO,...):

Challenge:

Channel	Bound without bkg.	Bound with bkg.		
Wh	$\left[-0.0024, 0.0024 ight]$	$\left[-0.0089, 0.0078 ight]$	2	Boosted higgs for
Zh	$\left[-0.0074, 0.0070 ight]$	_	5	top:h->bb fakes?
 WW	[-0.0029, 0.0028]	[-0.011, 0.0093]	- 7	
WZ	$\left[-0.0032, 0.0031 ight]$	$\left[-0.0057, 0.0052 ight]$	5	Large VT bgnd

(WW pT>1000GeV 3/ab: 7 LL events, 70 TT events)

Di-Bosons

Franceschini, Panico, Pomarol, FR, Wulzer'17

Which channel has the best reach?

Estimate (no syst, LO,...):

Challenge:

Channel	Bound without bkg.	Bound with bkg.		
Wh	$\left[-0.0024, 0.0024 ight]$	$\left[-0.0089, 0.0078 ight]$	2	Boosted higgs for
Zh	$\left[-0.0074, 0.0070 ight]$	_	5	top:h->bb fakes?
WW	[-0.0029, 0.0028]	[-0.011, 0.0093])	
WZ	$\left[-0.0032, 0.0031 ight]$	$\left[-0.0057, 0.0052 ight]$	5	Large VT bgnd

(WW pT>1000GeV 3/ab: 7 LL events, 70 TT events)

(0)

Fully leptonic WZ

pT cut on extra radiation: (kinematics close to LO)

$Cos\theta$ cut close to central (exploit radiation-zero)

Results - NLO - LHC

is this a good result?

(...) Testable also with inaccurate measurements

Testable also with inaccurate measurements

Not very interesting (composite light quarks well constrained in dijets)

BSM Perspective: What are we after?

Composite Higgs: $g_{g_{NP}}$ $g_{g_{NP}}$ $\sim g^2 \frac{E^2}{\Lambda^2} \ll g^2$ Universal NP:

 $\sum_{m}^{g} g / \sim g^2$

 $(\ref{eq:Very interesting}) \\ (\ref{eq:Very interesting}) \\ (\ref{eq:Very$

Results - NLO - LHC

Transverse dibosons

... are easy to study since dominate the x-sec...

Transverse dibosons

... are easy to study since dominate the x-sec...

or not?

Challenge: Non-Interference for BSM, amplitudes Azatov, Contino, Machado, FR'16

Exploit:

For $E \gg m_W$ states have well defined helicity $rac{P}{s}$ Amplitudes for 2-2 with different total h don't interfere Challenge: Non-Interference for BSM6 amplitudes Azatov, Contino, Machado, FR'16

Exploit: For $E \gg m_W$ states have well defined helicity $rac{1}{s}$ $rac{1}{s}$ Amplitudes for $2 \rightarrow 2$ with different total h don't interfere

				My Reu		
heorem:	A_4	$ h(A_4^{ m SM}) $	$ h(A_4^{ m BSM}) $	J SM	dim-s	-
	VVVV	0	4,2		V	operation
	$VV\phi\phi$	0	2			
	$VV\psi\psi$	0	2			
	$V\psi\psi\phi$	0	2			
	$\psi\psi\psi\psi\psi$	2,0	2,0			
	$\psi\psi\phi\phi$	0	0			
	$\phi\phi\phi\phi\phi$	0	0			

Massless limit + tree level + at least one transverse vector > SM and BSM6 contribute to different helicity amplitudes > No interference

Why Interference?

When SM and BSM contribute to the same amplitude:

$$Amp = SM + BSM = SM(1 + \delta_{BSM})$$

$$\delta_{BSM} = c \frac{E^2}{M^2}$$

Why Interference?

When SM and BSM contribute to the same amplitude:

$$Amp = SM + BSM = SM(1 + \delta_{BSM})$$

$$\delta_{BSM} = c \frac{E^2}{M^2}$$

$$\sigma \propto |Amp|^2 \simeq SM^2 (1 + \delta_{BSM} + \delta_{BSM}^2)$$

For small BSM effects $1 \gg \delta_{BSM}$, interference dominates $\delta_{BSM} \gg \delta_{BSM}^2$

Non-Interference?

If SM and BSM contribute to different amplitudes:

 $\sigma \propto \sum |Amp|^2 \simeq SM^2 (1 + c_i \frac{E^2}{\Lambda^2} + c_i^2 \frac{E^4}{\Lambda^4})$

Non-Interference?

If SM and BSM contribute to different amplitudes:

•
$$\sigma \propto \sum |Amp|^2 \simeq SM^2(1 + c_i \frac{E^2}{\Lambda^2} + c_i^2 \frac{E^4}{\Lambda^4})$$

The leading effects BSM are $O\left(\frac{1}{\Lambda^4}\right)$:
(the same order as dimension-8 that do interfere)

Small effects, even smaller!

Interference necessary in a precision program

Interference Resurrection

3. NLO

Non-interference only for massless/tree-level/2->2 processes!

3. NLO

Non-interference only for massless/tree-level/2->2 processes!

 \blacktriangleright EW finite mass effects $\sim rac{m_W^2}{E^2}$

3. NLO

Non-interference only for massless/tree-level/2->2 processes!

3. NLO

Non-interference only for massless/tree-level/2->2 processes!

3. NLO

Non-interference only for massless/tree-level/2->2 processes!

Azatov, Elias-Miro, Reyimuaji, Venturini'17

3. NLO

Non-interference only for massless/tree-level/2->2 processes!

 $V_{1,2}$: Helicity $\pm \mp/\pm \pm$ in SM/BSM

Quantum mechanically different, no interference

V1,2: Helicity ±∓/±± in SM/BSM ▶ Quantum mechanically different, no interference

f(1,3) f(2,4): Helicity +1/2 -1/2 in SM and in BSM

QM same, interference possible

 \blacktriangleright Cancels when integrated over $arphi \in [-\pi,\pi]$

Differential measurements WY

 $Int^{\rm CP} = 2g^2 \sin^2 \theta \mathcal{A}_{++}^{\rm BSM_+} \left[\mathcal{A}_{-+}^{\rm SM} + \mathcal{A}_{+-}^{\rm SM} \right] \cos 2\varphi ,$ $Int^{\rm QP} = 2ig^2 \sin^2 \theta \mathcal{A}_{++}^{\rm BSM_-} \left[\mathcal{A}_{-+}^{\rm SM} - \mathcal{A}_{+-}^{\rm SM} \right] \sin 2\varphi$

Differential measurements WY

$$Int^{\rm CP} = 2g^2 \sin^2 \theta \mathcal{A}_{++}^{{}_{\rm BSM}} \left[\mathcal{A}_{-+}^{{}_{\rm SM}} + \mathcal{A}_{+-}^{{}_{\rm SM}} \right] \cos 2\varphi ,$$
$$Int^{\rm QP} = 2ig^2 \sin^2 \theta \mathcal{A}_{++}^{{}_{\rm BSM}} \left[\mathcal{A}_{-+}^{{}_{\rm SM}} - \mathcal{A}_{+-}^{{}_{\rm SM}} \right] \sin 2\varphi$$

Differential azimuthal distributions = SM-BSM interference

Neutrino: from missing energy + reconstruct W mass

 $arphi_{reco}$

 φ_{true}

Neutrino: from missing energy + reconstruct W mass

2) Some events:
$$m_{\perp}^2 > m_W^2$$

(off-shell, exp.error)
reconstructed as $m_{inv}^2 = m_W^2$
 $\Rightarrow \varphi = \pi/2$ or $\varphi = -\pi/2$.

Neutrino: from missing energy + reconstruct W mass

2) Some events:
$$m_{\perp}^2 > m_W^2$$

(off-shell, exp.error)
reconstructed as $m_{inv}^2 = m_W^2$
 $\Rightarrow \varphi = \pi/2$ or $\varphi = -\pi/2$.

Neutrino: from missing energy + reconstruct W mass

2) Some events: $m_{\perp}^2 > m_W^2$ (off-shell, exp.error) reconstructed as $m_{inv}^2 = m_W^2$ $\Rightarrow \varphi = \pi/2$ or $\varphi = -\pi/2$.

Neutrino: from missing energy + reconstruct W mass

2) Some events: $m_{\perp}^2 > m_W^2$ (off-shell, exp.error) reconstructed as $m_{inv}^2 = m_W^2$ $\varphi = \pi/2$ or $\varphi = -\pi/2$.

Neutrino: from missing energy + reconstruct W mass With (DELPHES) detector simulation

Neutrino: from missing energy + reconstruct W mass With (DELPHES) detector simulation

Neutrino: from missing energy + reconstruct W mass With (DELPHES) detector simulation

Neutrino: from missing energy + reconstruct W mass With (DELPHES) detector simulation

Resurrection is real

Results

Results

 $p_{\perp \gamma}$

Results

Results

Important improvement, though not yet there for weakly coupled/loop-generated new physics

Interference Resurrection makes the difference.

Interference Resurrection makes the difference.

Message

SM precision tests will define the new distance frontier

> LHC good in High-E 2>2 processes

Challenges:

- Non-interference limits precision in learning about transverse vectors
- Longitudinals hidden in transverse background
- Azimuthal distributions crucial (Realistic in other processes? WZ? VBF?)
- > SM precision program LHC completes LEP

Results

At small energy, interference has impact already now. (improving low-energy measurement, important for validity)

SM:

Liu,Pomarol,Rattazzi,FR'16

S Interesting-ish (for me. paper has 20 citations...) Testable also with inaccurate measurements

 $\sum_{n=1}^{g} g_{NP} \stackrel{n}{\sim} gg_{NP} \stackrel{E^2}{\xrightarrow{\Lambda^2}} \gtrsim g^2$

>>1

1000

200

m(ee) [GeV

 $g g ' \sim g^2$

 g_{NP}

SM:

Composite Higgs 1000 2000 m(ee) [GeV]

 \odot Very interesting \odot To test it we need accurate measurements $\delta\sigma$

 $\underbrace{g_{g_{NP}}}_{g} \left(\sim g^2 \frac{E^2}{\Lambda^2} \ll g^2 \right)$

<<1

Accuracy target:
$$\frac{\delta\sigma}{\sigma_{SM}}$$
 <<1 also at high-energy

Higgs closest cousin

In the SM, all scalars belong to Higgs doublet $\begin{pmatrix} h^+ \\ h + ih^0 \end{pmatrix} Z_L$

> Their interactions are related also in BSM:

Higgs closest cousin

In the SM, all scalars belong to Higgs doublet $\begin{pmatrix} h^+ \\ h + ih^0 \end{pmatrix} Z_L$

> Their interactions are related also in BSM:

This talk: anatomy of high-E diboson processes

1. Longitudinals $\psi\psi \to V_L V_L$ 2. Transverse $\psi\psi \to V_T V_T$

Comparisons

high-E is unique, but it compares at lower-E with different effects:

Genuine SM precision test

Non-Interference for BSM6 amplitudes

Azatov, Contino, Machado, FR'16

2->2 processes:

