On the observable spectrum of theories with a Brout-Englert-Higgs effect

René Sondenheimer FSU Jena

> & L. Egger, A. Maas arXiv:1701.02881

& A. Maas, P.Törek arXiv:1709.07477, arXiv:1710.01941

Higgs Couplings 2017, Heidelberg 8th of November 2017

Carl Zeiss Stiftung

seit 1558

Physical observable is gauge invariant!

- Physical observable is gauge invariant!
- QED: Dressing by Dirac phase factor

- Physical observable is gauge invariant!
- QED: Dressing by Dirac phase factor
- QCD: Confinement

- Physical observable is gauge invariant!
- QED: Dressing by Dirac phase factor
- QCD: Confinement

Elementary fields: Quarks and Gluons

$$\mathcal{L} = -\frac{1}{4} G^{i\,\mu\nu} G^i_{\mu\nu} + \bar{q}^a \,\mathrm{i} D^{ab} \,q^b + m_q \bar{q}^a q^a$$

- Physical observable is gauge invariant!
- QED: Dressing by Dirac phase factor
- QCD: Confinement

Elementary fields: Quarks and Gluons

$$\mathcal{L} = -\frac{1}{4} G^{i\,\mu\nu} G^i_{\mu\nu} + \bar{q}^a \,\mathrm{i} D^{ab} \,q^b + m_q \bar{q}^a q^a$$

Observable states: hadrons

- Physical observable is gauge invariant!
- QED: Dressing by Dirac phase factor
- QCD: Confinement

Elementary fields: Quarks and Gluons

$$\mathcal{L} = -\frac{1}{4} G^{i\,\mu\nu} G^i_{\mu\nu} + \bar{q}^a \,\mathrm{i} D^{ab} \,q^b + m_q \bar{q}^a q^a$$

Observable states: hadrons

Weak interaction?

• Elementary fields: Higgs and W

$$\mathcal{L} = -\frac{1}{4} W^{i\,\mu\nu} W^{i}_{\mu\nu} + (D_{\mu}\phi)^{a\dagger} (D^{\mu}\phi)^{a} - U(\phi^{a\dagger}\phi^{a})$$

• Elementary fields: Higgs and W

$$\mathcal{L} = -\frac{1}{4} W^{i\,\mu\nu} W^{i}_{\mu\nu} + (D_{\mu}\phi)^{a\dagger} (D^{\mu}\phi)^{a} - U(\phi^{a\dagger}\phi^{a})^{a}$$

• Higgs potential: $U = -\mu^2 \phi^{\dagger} \phi + \frac{\lambda}{2} (\phi^{\dagger} \phi)^2$

• Elementary fields: Higgs and W

$$\mathcal{L} = -\frac{1}{4} W^{i\,\mu\nu} W^{i}_{\mu\nu} + (D_{\mu}\phi)^{a\dagger} (D^{\mu}\phi)^{a} - U(\phi^{a\dagger}\phi^{a})^{a}$$

• Higgs potential:
$$U = -\mu^2 \phi^\dagger \phi + \frac{\lambda}{2} (\phi^\dagger \phi)^2$$

• Expansion around vev:

$$\phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} \varphi^+(x) \\ v + h(x) + \varphi^0(x) \end{pmatrix}$$

• Elementary fields: Higgs and W

$$\mathcal{L} = -\frac{1}{4} W^{i\,\mu\nu} W^{i}_{\mu\nu} + (D_{\mu}\phi)^{a\dagger} (D^{\mu}\phi)^{a} - U(\phi^{a\dagger}\phi^{a})^{a}$$

• Higgs potential:
$$U = -\mu^2 \phi^{\dagger} \phi + \frac{\lambda}{2} (\phi^{\dagger} \phi)^2$$

$$\phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} \varphi^+(x) \\ v + h(x) + \varphi^0(x) \end{pmatrix}$$

Mass for the W's from the Higgs kinetic term

$$(D_{\mu}\phi)^{\dagger}D^{\mu}\phi = \frac{1}{2}\frac{g^{2}v^{2}}{4}W_{\mu}^{i}W^{i\,\mu} + \dots$$

BUT!

- Elementary states are not gauge invariant Cannot be observable
- Gauge-invariant states are composite

e.g., Higgs-Higgs, W-W, Higgs-W,

- Bound states are not asymptotic states in perturbation theory
- Why does perturbation theory works at all?
- Higgs condensate exist only in some gauges
- "Local symmetry breaking" vs Elitzur's theorem

Lee et al '72, Osterwalder&Seiler'77

Elitzur '81

1. Construct a gauge-invariante operator

1. Construct a gauge-invariante operator

 $\mathcal{O}(x) = (\phi^{\dagger}\phi)(x)$

2. Expand Higgs field in correlator in fluctuations around the vev $\langle \mathcal{O}(x)\mathcal{O}(y)\rangle \stackrel{_{\phi=v+\varphi}}{=} const. + v^2 \langle h(x)h(y)\rangle + v^3 \langle \varphi \rangle + v \langle \varphi^3 \rangle + \langle \varphi^4 \rangle$

1. Construct a gauge-invariante operator

- 2. Expand Higgs field in correlator in fluctuations around the vev $\langle \mathcal{O}(x)\mathcal{O}(y) \rangle \stackrel{_{\phi=v+\varphi}}{=} const. + v^2 \langle h(x)h(y) \rangle + v^3 \langle \varphi \rangle + v \langle \varphi^3 \rangle + \langle \varphi^4 \rangle$
- 3. Perform standard perturbation theory on the right-hand side $\langle \mathcal{O}(x)\mathcal{O}(y)\rangle = v^2 \langle h(x)h(y)\rangle_{\mathrm{tl}} + \langle h(x)h(y)\rangle_{\mathrm{tl}}^2 + O(g^2,\lambda)$

1. Construct a gauge-invariante operator

- 2. Expand Higgs field in correlator in fluctuations around the vev $\langle \mathcal{O}(x)\mathcal{O}(y) \rangle \stackrel{_{\phi=v+\varphi}}{=} const. + v^2 \langle h(x)h(y) \rangle + v^3 \langle \varphi \rangle + v \langle \varphi^3 \rangle + \langle \varphi^4 \rangle$
- 3. Perform standard perturbation theory on the right-hand side $\langle \mathcal{O}(x)\mathcal{O}(y)\rangle = v^2 \langle h(x)h(y)\rangle_{\mathrm{tl}} + \langle h(x)h(y)\rangle_{\mathrm{tl}}^2 + O(g^2,\lambda)$
- 4. Compare poles on both sides

1. Construct a gauge-invariante operator

- 2. Expand Higgs field in correlator in fluctuations around the vev $\langle \mathcal{O}(x)\mathcal{O}(y) \rangle \stackrel{_{\phi=v+\varphi}}{=} const. + v^2 \langle h(x)h(y) \rangle + v^3 \langle \varphi \rangle + v \langle \varphi^3 \rangle + \langle \varphi^4 \rangle$
- 3. Perform standard perturbation theory on the right-hand side $\langle \mathcal{O}(x)\mathcal{O}(y)\rangle = v^2 \langle h(x)h(y)\rangle_{\mathrm{tl}} + \langle h(x)h(y)\rangle_{\mathrm{tl}}^2 + O(g^2,\lambda)$
- 4. Compare poles on both sides
- Confirmed on the lattice for SU(2)-Higgs theory Maas '12

• W-Higgs sector of the standard model

$$\mathcal{L} = -\frac{1}{4} W^i_{\mu\nu} W^{i\mu\nu} + (D_\mu \phi)^\dagger D^\mu \phi - U(\phi^\dagger \phi)$$

Local SU(2)_L Symmetry

$$W_{\mu} \to U W_{\mu} U^{-1} - \frac{1}{g} (\partial_{\mu} U) U^{-1}, \qquad \phi \to U \phi$$

• W-Higgs sector of the standard model

$$\mathcal{L} = -\frac{1}{4} W^i_{\mu\nu} W^{i\mu\nu} + (D_\mu \phi)^\dagger D^\mu \phi - U(\phi^\dagger \phi)$$

Local SU(2) Symmetry

$$W_{\mu} \to U W_{\mu} U^{-1} - \frac{1}{g} (\partial_{\mu} U) U^{-1}, \qquad \phi \to U \phi$$

Additional global SU(2)_{cust.} symmetry

$$W_{\mu} \to W_{\mu}, \qquad \phi \to V\phi + W\phi^*$$

• W-Higgs sector of the standard model

$$\mathcal{L} = -\frac{1}{4} W^i_{\mu\nu} W^{i\mu\nu} + (D_\mu \phi)^\dagger D^\mu \phi - U(\phi^\dagger \phi)$$

Local SU(2) Symmetry

$$W_{\mu} \to U W_{\mu} U^{-1} - \frac{1}{g} (\partial_{\mu} U) U^{-1}, \qquad \phi \to U \phi$$

Additional global SU(2)_{cust.} symmetry

$$W_{\mu} \to W_{\mu}, \qquad \phi \to V\phi + W\phi^*$$

Convenient to rewrite Higgs-Lagrangian

• W-Higgs sector of the standard model

$$\mathcal{L} = -\frac{1}{4} W^i_{\mu\nu} W^{i\mu\nu} + (D_\mu \phi)^\dagger D^\mu \phi - U(\phi^\dagger \phi)$$

Local SU(2) Symmetry

$$W_{\mu} \to U W_{\mu} U^{-1} - \frac{1}{g} (\partial_{\mu} U) U^{-1}, \qquad \phi \to U \phi$$

Additional global SU(2)_{cust.} symmetry

$$W_{\mu} \to W_{\mu}, \qquad \phi \to V\phi + W\phi^*$$

Convenient to rewrite Higgs-Lagrangian

$$\mathcal{L} = \operatorname{Tr}[\partial_{\mu} X^{\dagger} \partial^{\mu} X] - U(\operatorname{Tr} X^{\dagger} X)$$

where $X = (\tilde{\phi} \ \phi) = \begin{pmatrix} \phi_{2}^{*} & \phi_{1} \\ -\phi_{1}^{*} & \phi_{2} \end{pmatrix} = \begin{pmatrix} v & 0 \\ 0 & v \end{pmatrix} + O(\varphi)$

• Full symmetry acting on the Higgs field: $SU(2)_{L} \times SU(2)_{cust.}$

$$X \to U_{\rm L} X U_{\rm cust} \qquad \qquad X = \begin{pmatrix} \phi_2^* & \phi_1 \\ -\phi_1^* & \phi_2 \end{pmatrix}$$

• Full symmetry acting on the Higgs field: SU(2)_L x SU(2)_{cust.}

$$X \to U_{\rm L} X U_{\rm cust} \qquad \qquad X = \begin{pmatrix} \phi_2^* & \phi_1 \\ -\phi_1^* & \phi_2 \end{pmatrix}$$

• W mass: bound state operator in 1- channel

$$\mathcal{O}_{\mu}^{\tilde{i}} = \operatorname{i} \operatorname{Tr} \left(\tau^{\tilde{i}} X^{\dagger} D_{\mu} X \right)$$

• Full symmetry acting on the Higgs field: SU(2)_L x SU(2)_{cust.}

$$X \to U_{\rm L} X U_{\rm cust} \qquad \qquad X = \begin{pmatrix} \phi_2^* & \phi_1 \\ -\phi_1^* & \phi_2 \end{pmatrix}$$

• W mass: bound state operator in 1- channel

$$\mathcal{O}_{\mu}^{\tilde{i}} = \operatorname{i} \operatorname{Tr} \left(\tau^{\tilde{i}} X^{\dagger} D_{\mu} X \right)$$

• Expand Higgs field:

$$\langle \mathcal{O}_{\mu}^{\tilde{i}}(x)\mathcal{O}_{\nu}^{\tilde{j}}(y)\rangle = g^2 v^4 \langle W_{\mu}^i(x)W_{\nu}^j(y)\rangle \delta^{i\tilde{i}}\delta^{j\tilde{j}} + O(\varphi^2)$$

• Full symmetry acting on the Higgs field: SU(2)_L x SU(2)_{cust.}

$$X \to U_{\rm L} X U_{\rm cust} \qquad \qquad X = \begin{pmatrix} \phi_2^* & \phi_1 \\ -\phi_1^* & \phi_2 \end{pmatrix}$$

• W mass: bound state operator in 1- channel

$$\mathcal{O}_{\mu}^{\tilde{i}} = \operatorname{i} \operatorname{Tr} \left(\tau^{\tilde{i}} X^{\dagger} D_{\mu} X \right)$$

• Expand Higgs field:

$$\langle \mathcal{O}_{\mu}^{\tilde{i}}(x)\mathcal{O}_{\nu}^{\tilde{j}}(y)\rangle = g^2 v^4 \langle W_{\mu}^i(x)W_{\nu}^j(y)\rangle \delta^{i\tilde{i}}\delta^{j\tilde{j}} + O(\varphi^2)$$

Pole of bound state the same as for the elementary fields

• Full symmetry acting on the Higgs field: SU(2)_L x SU(2)_{cust.}

$$X \to U_{\rm L} X U_{\rm cust} \qquad \qquad X = \begin{pmatrix} \phi_2^* & \phi_1 \\ -\phi_1^* & \phi_2 \end{pmatrix}$$

• W mass: bound state operator in 1- channel

$$\mathcal{O}_{\mu}^{\tilde{i}} = \operatorname{i} \operatorname{Tr} \left(\tau^{\tilde{i}} X^{\dagger} D_{\mu} X \right)$$

• Expand Higgs field:

$$\langle \mathcal{O}_{\mu}^{\tilde{i}}(x)\mathcal{O}_{\nu}^{\tilde{j}}(y)\rangle = g^2 v^4 \langle W_{\mu}^i(x)W_{\nu}^j(y)\rangle \delta^{i\tilde{i}}\delta^{j\tilde{j}} + O(\varphi^2)$$

- Pole of bound state the same as for the elementary fields
- Mapping of local to global multiplets

Fröhlich et al '80 Egger,Maas,RS'17

Fröhlich et al '80 Egger,Maas,RS'17

• Flavor = weak gauge charge in a given generation

- Flavor = weak gauge charge in a given generation
- Necessary to construct suitable gauge-invariant state which emulate elementary fermions

- Flavor = weak gauge charge in a given generation
- Necessary to construct suitable gauge-invariant state which emulate elementary fermions

$$\mathcal{O}^g(x) = X^{\dagger}(x) f^g(x)$$

- Flavor = weak gauge charge in a given generation
- Necessary to construct suitable gauge-invariant state which emulate elementary fermions

$$\mathcal{O}^g(x) = X^{\dagger}(x) f^g(x)$$

State remains custodial doublet
- Flavor = weak gauge charge in a given generation
- Necessary to construct suitable gauge-invariant state which emulate elementary fermions

$$\mathcal{O}^g(x) = X^{\dagger}(x) f^g(x)$$

- State remains custodial doublet
- E.g., (left-handed) electron and neutrino

- Flavor = weak gauge charge in a given generation
- Necessary to construct suitable gauge-invariant state which emulate elementary fermions

$$\mathcal{O}^g(x) = X^{\dagger}(x) f^g(x)$$

- State remains custodial doublet
- E.g., (left-handed) electron and neutrino

$$\mathcal{O}^{\nu e} = X^{\dagger} \begin{pmatrix} \nu \\ e \end{pmatrix} = \begin{pmatrix} \phi_2 \nu - \phi_1 e \\ \phi_1^* \nu + \phi_2^* e \end{pmatrix} = v \begin{pmatrix} \nu \\ e \end{pmatrix} + O(\varphi)$$

- Flavor = weak gauge charge in a given generation
- Necessary to construct suitable gauge-invariant state which emulate elementary fermions

$$\mathcal{O}^g(x) = X^{\dagger}(x) f^g(x)$$

- State remains custodial doublet
- E.g., (left-handed) electron and neutrino

$$\mathcal{O}^{\nu e} = X^{\dagger} \begin{pmatrix} \nu \\ e \end{pmatrix} = \begin{pmatrix} \phi_2 \nu - \phi_1 e \\ \phi_1^* \nu + \phi_2^* e \end{pmatrix} = v \begin{pmatrix} \nu \\ e \end{pmatrix} + O(\varphi)$$

Ordinary states remerge when applying FMS

- Flavor = weak gauge charge in a given generation
- Necessary to construct suitable gauge-invariant state which emulate elementary fermions

$$\mathcal{O}^g(x) = X^{\dagger}(x) f^g(x)$$

- State remains custodial doublet
- E.g., (left-handed) electron and neutrino

$$\mathcal{O}^{\nu e} = X^{\dagger} \begin{pmatrix} \nu \\ e \end{pmatrix} = \begin{pmatrix} \phi_2 \nu - \phi_1 e \\ \phi_1^* \nu + \phi_2^* e \end{pmatrix} = v \begin{pmatrix} \nu \\ e \end{pmatrix} + O(\varphi)$$

- Ordinary states remerge when applying FMS
- Phenomenological consequences

$$\mathcal{O}^{ud} = X^{\dagger} \begin{pmatrix} u \\ d \end{pmatrix} = \begin{pmatrix} \phi_2 u - \phi_1 d \\ \phi_1^* u + \phi_2^* d \end{pmatrix} = v \begin{pmatrix} u \\ d \end{pmatrix} + O(\varphi)$$

$$\mathcal{O}^{ud} = X^{\dagger} \begin{pmatrix} u \\ d \end{pmatrix} = \begin{pmatrix} \phi_2 u - \phi_1 d \\ \phi_1^* u + \phi_2^* d \end{pmatrix} = v \begin{pmatrix} u \\ d \end{pmatrix} + O(\varphi)$$

• Quark sector different from lepton sector, bound in hadrons

$$\mathcal{O}^{ud} = X^{\dagger} \begin{pmatrix} u \\ d \end{pmatrix} = \begin{pmatrix} \phi_2 u - \phi_1 d \\ \phi_1^* u + \phi_2^* d \end{pmatrix} = v \begin{pmatrix} u \\ d \end{pmatrix} + O(\varphi)$$

- Quark sector different from lepton sector, bound in hadrons
- Hadrons singlets of strong interaction, not necessarily of weak interaction

$$\mathcal{O}^{ud} = X^{\dagger} \begin{pmatrix} u \\ d \end{pmatrix} = \begin{pmatrix} \phi_2 u - \phi_1 d \\ \phi_1^* u + \phi_2^* d \end{pmatrix} = v \begin{pmatrix} u \\ d \end{pmatrix} + O(\varphi)$$

- Quark sector different from lepton sector, bound in hadrons
- Hadrons singlets of strong interaction, not necessarily of weak interaction
- Obvious for baryons (strong indices suppressed)

$$\mathcal{O}^{ud} = X^{\dagger} \begin{pmatrix} u \\ d \end{pmatrix} = \begin{pmatrix} \phi_2 u - \phi_1 d \\ \phi_1^* u + \phi_2^* d \end{pmatrix} = v \begin{pmatrix} u \\ d \end{pmatrix} + O(\varphi)$$

- Quark sector different from lepton sector, bound in hadrons
- Hadrons singlets of strong interaction, not necessarily of weak interaction
- Obvious for baryons (strong indices suppressed)

$$c_{ijkl}q_iq_jq_kX_{\tilde{i}l}^{\dagger}$$
 or $q_iq_jq_kX_{\tilde{i}i}^{\dagger}X_{\tilde{j}j}^{\dagger}X_{\tilde{k}k}^{\dagger}$

$$\mathcal{O}^{ud} = X^{\dagger} \begin{pmatrix} u \\ d \end{pmatrix} = \begin{pmatrix} \phi_2 u - \phi_1 d \\ \phi_1^* u + \phi_2^* d \end{pmatrix} = v \begin{pmatrix} u \\ d \end{pmatrix} + O(\varphi)$$

- Quark sector different from lepton sector, bound in hadrons
- Hadrons singlets of strong interaction, not necessarily of weak interaction
- Obvious for baryons (strong indices suppressed)

$$c_{ijkl}q_{i}q_{j}q_{k}X_{\tilde{i}l}^{\dagger} \quad \text{or} \quad q_{i}q_{j}q_{k}X_{\tilde{i}i}^{\dagger}X_{\tilde{j}j}^{\dagger}X_{\tilde{k}k}^{\dagger}$$
$$c_{ijkl} = a_{1}\epsilon_{ij}\delta_{kl} + a_{2}\epsilon_{ik}\delta_{jl} + a_{3}\epsilon_{jk}\delta_{il} \quad \text{and} \quad \tilde{i} = 1$$

Egger, Maas, RS'17

$$\mathcal{O}^{ud} = X^{\dagger} \begin{pmatrix} u \\ d \end{pmatrix} = \begin{pmatrix} \phi_2 u - \phi_1 d \\ \phi_1^* u + \phi_2^* d \end{pmatrix} = v \begin{pmatrix} u \\ d \end{pmatrix} + O(\varphi)$$

- Quark sector different from lepton sector, bound in hadrons
- Hadrons singlets of strong interaction, not necessarily of weak interaction
- Obvious for baryons (strong indices suppressed) $c_{ijkl}q_iq_jq_kX_{\tilde{i}l}^{\dagger}$ or $q_iq_jq_kX_{\tilde{i}i}^{\dagger}X_{\tilde{i}i}^{\dagger}X_{\tilde{i}j}^{\dagger}X_{\tilde{k}k}^{\dagger}$

• Proton: $c_{ijkl} = a_1 \epsilon_{ij} \delta_{kl} + a_2 \epsilon_{ik} \delta_{jl} + a_3 \epsilon_{jk} \delta_{il}$ and $\tilde{i} = 1$

Egger, Maas, RS'17

$$\mathcal{O}^{ud} = X^{\dagger} \begin{pmatrix} u \\ d \end{pmatrix} = \begin{pmatrix} \phi_2 u - \phi_1 d \\ \phi_1^* u + \phi_2^* d \end{pmatrix} = v \begin{pmatrix} u \\ d \end{pmatrix} + O(\varphi)$$

- Quark sector different from lepton sector, bound in hadrons
- Hadrons singlets of strong interaction, not necessarily of weak interaction
- Obvious for baryons (strong indices suppressed) $c_{ijkl}q_iq_jq_kX_{\tilde{i}l}^{\dagger}$ or $q_iq_jq_kX_{\tilde{i}i}^{\dagger}X_{\tilde{i}i}^{\dagger}X_{\tilde{i}j}^{\dagger}X_{\tilde{k}k}^{\dagger}$

• Proton: $c_{ijkl} = a_1 \epsilon_{ij} \delta_{kl} + a_2 \epsilon_{ik} \delta_{jl} + a_3 \epsilon_{jk} \delta_{il}$ and $\tilde{i} = 1$

Some mesons are weak-gauge singlets, e.g.,

Egger, Maas, RS'17

$$\mathcal{O}^{ud} = X^{\dagger} \begin{pmatrix} u \\ d \end{pmatrix} = \begin{pmatrix} \phi_2 u - \phi_1 d \\ \phi_1^* u + \phi_2^* d \end{pmatrix} = v \begin{pmatrix} u \\ d \end{pmatrix} + O(\varphi)$$

- Quark sector different from lepton sector, bound in hadrons
- Hadrons singlets of strong interaction, not necessarily of weak interaction
- Obvious for baryons (strong indices suppressed) $c_{ijkl}q_iq_jq_kX_{\tilde{i}l}^{\dagger}$ or $q_iq_jq_kX_{\tilde{i}i}^{\dagger}X_{\tilde{i}i}^{\dagger}X_{\tilde{i}j}^{\dagger}X_{\tilde{k}k}^{\dagger}$

• Proton: $c_{ijkl} = a_1 \epsilon_{ij} \delta_{kl} + a_2 \epsilon_{ik} \delta_{jl} + a_3 \epsilon_{jk} \delta_{il}$ and $\tilde{i} = 1$

- Some mesons are weak-gauge singlets, e.g., $\omega - \mathrm{meson} \ \ (\bar{u}u + \bar{d}d)$

Egger, Maas, RS'17

$$\mathcal{O}^{ud} = X^{\dagger} \begin{pmatrix} u \\ d \end{pmatrix} = \begin{pmatrix} \phi_2 u - \phi_1 d \\ \phi_1^* u + \phi_2^* d \end{pmatrix} = v \begin{pmatrix} u \\ d \end{pmatrix} + O(\varphi)$$

- Quark sector different from lepton sector, bound in hadrons
- Hadrons singlets of strong interaction, not necessarily of weak interaction
- Obvious for baryons (strong indices suppressed) $c_{ijkl}q_iq_jq_kX_{\tilde{i}l}^{\dagger}$ or $q_iq_jq_kX_{\tilde{i}i}^{\dagger}X_{\tilde{j}i}^{\dagger}X_{\tilde{k}k}^{\dagger}$

• Proton: $c_{ijkl} = a_1 \epsilon_{ij} \delta_{kl} + a_2 \epsilon_{ik} \delta_{jl} + a_3 \epsilon_{jk} \delta_{il}$ and $\tilde{i} = 1$

- Some mesons are weak-gauge singlets, e.g., $\omega \mathrm{meson}~(\bar{u}u + \bar{d}d)$
- Not true for all mesons, e.g., pions

$$\pi^+: \ \bar{\mathcal{O}}_2^{ud}\mathcal{O}_1^{ud}(\sim \bar{d}u)$$

Maas, Törek '16, Maas, RS, Törek '17

Maas, Törek '16, Maas, RS, Törek '17

• SU(N) gauge theory + Higgs in fundamental representation

Maas, Törek '16, Maas, RS, Törek '17

- SU(N) gauge theory + Higgs in fundamental representation
- Local and global symmetry group do not match for N > 2

- SU(N) gauge theory + Higgs in fundamental representation
- Local and global symmetry group do not match for N > 2

J^P	Field	Mass	Degeneracy	Operator	Mass	Degeneracy
0^{+}	h	$m_{ m h}$	1			
1-						

- SU(N) gauge theory + Higgs in fundamental representation
- Local and global symmetry group do not match for N > 2

J^P	Field	Mass	Degeneracy	Operator	Mass	Degeneracy
0^{+}	h	$m_{ m h}$	1	$\phi^\dagger \phi$	$m_{ m h}$	1
1-						

- SU(N) gauge theory + Higgs in fundamental representation
- Local and global symmetry group do not match for N > 2

J^P	Field	Mass	Degeneracy	Operator	Mass	Degeneracy
0^+	h	$m_{ m h}$	1	$\phi^\dagger \phi$	$m_{ m h}$	1
1-	A^{μ}_{i}	0	$(N-1)^2 - 1$			
	U					

- SU(N) gauge theory + Higgs in fundamental representation
- Local and global symmetry group do not match for N > 2

J^P	Field	Mass	Degeneracy	Operator	Mass	Degeneracy
0^+	h	$m_{ m h}$	1	$\phi^\dagger \phi$	$m_{ m h}$	1
1-	A^{μ}_i	0	$(N-1)^2 - 1$			
	$ ilde{A}^{\mu}_{i}$	$m_{ m A}$	2(N - 1)			

- SU(N) gauge theory + Higgs in fundamental representation
- Local and global symmetry group do not match for N > 2

J^P	Field	Mass	Degeneracy	Operator	Mass	Degeneracy
0^+	h	$m_{ m h}$	1	$\phi^\dagger \phi$	$m_{ m h}$	1
1-	A^{μ}_i	0	$(N-1)^2 - 1$			
	$ ilde{A}^{\mu}_{i}$	$m_{ m A}$	2(N-1)			
	$ar{A}^{\mu}_i$	$\sqrt{rac{2(N-1)}{N}}m_{ m A}$. 1			

- SU(N) gauge theory + Higgs in fundamental representation
- Local and global symmetry group do not match for N > 2

J^P	Field	Mass	Degeneracy	Operator	Mass	Degeneracy
0^+	h	$m_{ m h}$	1	$\phi^\dagger \phi$	$m_{ m h}$	1
1-	A^{μ}_i	0	$(N-1)^2 - 1$	${ m i}\phi^\dagger D_\mu\phi$	$\sqrt{rac{2(N-1)}{N}}m_{ m A}$	1
	$ ilde{A}^{\mu}_{i}$	$m_{ m A}$	2(N-1)			
	$ar{A}^{\mu}_i$	$\sqrt{rac{2(N-1)}{N}}m_{ m A}$. 1			

- SU(N) gauge theory + Higgs in fundamental representation
- Local and global symmetry group do not match for N > 2

J^P	Field	Mass	Degeneracy	Operator	r Mass	Degeneracy
0^+	h	$m_{ m h}$	1	$\phi^\dagger \phi$	$m_{ m h}$	1
1-	A^{μ}_i	0	$(N-1)^2 - 1$	${ m i}\phi^\dagger D_\mu\phi$	$\sqrt{rac{2(N-1)}{N}}m_{\mathbf{A}}$	1
	$ ilde{A}^{\mu}_{i}$	$m_{ m A}$	2(N-1)	$O_{\pm 1}$	$(N-1)m_{\rm A}$	$1/\overline{1}$
	$ar{A}^{\mu}_i$	$\sqrt{rac{2(N-1)}{N}}m_{ m A}$	1			

- SU(N) gauge theory + Higgs in fundamental representation
- Local and global symmetry group do not match for N > 2

J^P	Field	Mass	Degeneracy	Operato	r Mass	Degeneracy
0^+	h	$m_{ m h}$	1	$\phi^\dagger \phi$	$m_{ m h}$	1
				$O_{\pm 1}$	$(N-1)m_A$	$1/\overline{1}$
1-	A^{μ}_i	0	$(N-1)^2 - 1$	${ m i}\phi^\dagger D_\mu\phi$	$\sqrt{rac{2(N-1)}{N}}m_{ m A}$	1
	$ ilde{A}^{\mu}_{i}$	$m_{ m A}$	2(N-1)	$O_{\pm 1}$	$(N-1)m_A$	$1/\overline{1}$
	$ar{A}^{\mu}_i$	$\sqrt{rac{2(N-1)}{N}}m_{ m A}$	1			

- SU(N) gauge theory + Higgs in fundamental representation
- Local and global symmetry group do not match for N > 2

J^P	Field	Mass	Degeneracy	Operato	r Mass	Degeneracy
0^+	h	$m_{ m h}$	1	$\phi^\dagger \phi$	$m_{ m h}$	1
				$O_{\pm 1}$	$(N-1)m_A$	$1/\overline{1}$
1-	A_i^{μ}	0	$(N-1)^2 - 1$	$\mathrm{i}\phi^{\dagger}D_{\mu}\phi$	$\sqrt{rac{2(N-1)}{N}}m_{ m A}$	1
	$ ilde{A}^{\mu}_{i}$	$m_{ m A}$	2(N-1)	$O_{\pm 1}$	$(N-1)m_A$	$1/\overline{1}$
	$ar{A}^{\mu}_i$	$\sqrt{rac{2(N-1)}{N}}m_{ m A}$	1			

Nonperturbative check for N=3

SU(5)
$$\xrightarrow{\langle \Sigma \rangle \sim w}$$
 SU(3)xSU(2)xU(1) $\xrightarrow{\langle \phi \rangle \sim v}$ U(1) $w \gg v$

SU(5)
$$\xrightarrow{\langle \Sigma \rangle \sim w}$$
 SU(3)xSU(2)xU(1) $\xrightarrow{\langle \phi \rangle \sim v}$ U(1) $w \gg v$

J^P	Field	Mass	Degeneracy	Operator	Mass	Degeneracy
0^+	h	$m_{ m h}$	1			
	$arphi^a$	$\sim w$	6			
	σ_{i}	$\sim w$	8			
	$ ilde{\sigma}_i$	$\sim w$	3			
	$ar{\sigma}_i$	$\sim w$	1			
1-						
	-		1	1		

SU(5)
$$\xrightarrow{\langle \Sigma \rangle \sim w}$$
 SU(3)xSU(2)xU(1) $\xrightarrow{\langle \phi \rangle \sim v}$ U(1) $w \gg v$

J^P	Field	Mass	Degeneracy	Operator	Mass	Degeneracy
$\overline{0^+}$	h	$m_{ m h}$	1			
	$arphi^a$	$\sim w$	6			
	σ_i	$\sim w$	8			
	$ ilde{\sigma}_i$	$\sim w$	3			
	$\bar{\sigma}_i$	$\sim w$	1			
1^{-}	A^{μ}	0	1			
	$W^{\pm\mu}$	$m_{ m W}$	$1/\overline{1}$			
	Z^{μ}	$m_{\mathbf{Z}}$	1			
	X^{μ}	$\sim w$	6			
	Y^{μ}	$\sim w$	6			
	I		1	ı 1		

SU(5)
$$\xrightarrow{\langle \Sigma \rangle \sim w}$$
 SU(3)xSU(2)xU(1) $\xrightarrow{\langle \phi \rangle \sim v}$ U(1) $w \gg v$

• Global symmetry: U(1)xZ₂

J^P	Field	Mass	Degeneracy	Operator	Mass	Degeneracy
0^+	h	$m_{ m h}$	1			
	$arphi^a$	$\sim w$	6			
	σ_i	$\sim w$	8			
	$ ilde{\sigma}_i$	$\sim w$	3			
	$ar{\sigma}_i$	$\sim w$	1			
1-	A^{μ}	0	1			
	$W^{\pm\mu}$	$m_{ m W}$	$1/\overline{1}$			
	Z^{μ}	$m_{ m Z}$	1			
	X^{μ}	$\sim w$	6			
	Y^{μ}	$\sim w$	6			

$$SU(5) \xrightarrow{\langle \Sigma \rangle \sim w} SU(3) \times SU(2) \times U(1) \xrightarrow{\langle \phi \rangle \sim v} U(1) \qquad w \gg v$$

• Global symmetry: U(1)xZ₂

J^P	Field	Mass	Degeneracy	Operator	Mass	Degeneracy		
$\overline{0^+}$	h	$m_{ m h}$	1	O_{0+}	$m_{ m h}$	1		
	$arphi^a$	$\sim w$	6	O_{0-}	$m_{ m h}$	1		
	σ_i	$\sim w$	8	$O_{\pm 1,+}$	$\sim w$	$1/\overline{1}$		
	$ ilde{\sigma}_i$	$\sim w$	3	$O_{\pm 1,-}$	$\sim w$	$1/\overline{1}$		
	$ar{\sigma}_i$	$\sim w$	1					
1-	A^{μ}	0	1					
	$W^{\pm\mu}$	$m_{ m W}$	$1/\overline{1}$					
	Z^{μ}	$m_{\mathbf{Z}}$	1					
	X^{μ}	$\sim w$	6					
	Y^{μ}	$\sim w$	6					
11								

$$SU(5) \xrightarrow{\langle \Sigma \rangle \sim w} SU(3) \times SU(2) \times U(1) \xrightarrow{\langle \phi \rangle \sim v} U(1) \qquad w \gg v$$

• Global symmetry: U(1)xZ₂

J^P	Field	Mass	Degeneracy	Operator	Mass	Degeneracy
$\overline{0^+}$	h	$m_{ m h}$	1	O_{0+}	$m_{ m h}$	1
	$arphi^a$	$\sim w$	6	O_{0-}	$m_{ m h}$	1
	σ_i	$\sim w$	8	$O_{\pm 1,+}$	$\sim w$	$1/\overline{1}$
	$ ilde{\sigma}_i$	$\sim w$	3	$O_{\pm 1,-}$	$\sim w$	$1/\overline{1}$
	$ar{\sigma}_i$	$\sim w$	1			
1-	A^{μ}	0	1	O_{0+}	0	1
	$W^{\pm\mu}$	$m_{ m W}$	$1/\overline{1}$	O_{0-}	0	1
	Z^{μ}	$m_{\mathbf{Z}}$	1	$O_{\pm 1,+}$	$\sim w$	$1/\overline{1}$
	X^{μ}	$\sim w$	6	$O_{\pm 1,+}$	$\sim w$	$1/\overline{1}$
	Y^{μ}	$\sim w$	6			

11

Summary

- Observable spectrum must be gauge invariant
- Non-Abelian gauge theory: composite operator
- FMS mechanism provides a mapping of the local to the global multiplets
- Gauge-invariant perturbation theory as a tool
- Same results in leading order for the standard model
- BSM model building may be affected
- Verification requieres non-perturbative methods

Generations as excitation spectra (speculation!)
Generations as excitation spectra (speculation!) Eg

Egger, Maas, RS'17

• Flavor identity from combination of generation and weak isospin

- Flavor identity from combination of generation and weak isospin
- Difference: Yukawa and weak interactions cannot be simultaneously diagonal in generation space

- Flavor identity from combination of generation and weak isospin
- Difference: Yukawa and weak interactions cannot be simultaneously diagonal in generation space
- Flavor distinguishes between inter- and intrageneration effects

- Flavor identity from combination of generation and weak isospin
- Difference: Yukawa and weak interactions cannot be simultaneously diagonal in generation space
- Flavor distinguishes between inter- and intrageneration effects
- Speculation(!): 3 generations could be internal excitations of a single generation

- Flavor identity from combination of generation and weak isospin
- Difference: Yukawa and weak interactions cannot be simultaneously diagonal in generation space
- Flavor distinguishes between inter- and intrageneration effects
- Speculation(!): 3 generations could be internal excitations of a single generation
- SM effective theory of excitation spectrum

- Flavor identity from combination of generation and weak isospin
- Difference: Yukawa and weak interactions cannot be simultaneously diagonal in generation space
- Flavor distinguishes between inter- and intrageneration effects
- Speculation(!): 3 generations could be internal excitations of a single generation
- SM effective theory of excitation spectrum

$$X^{\dagger}Q_{\rm E} = \begin{pmatrix} \phi^T \epsilon^T Q_{\rm E} \\ \phi^{\dagger} Q_{\rm E} \end{pmatrix} = \begin{pmatrix} \phi_2 u_{\rm E} - \phi_1 d_{\rm E} \\ \phi_2^* d_{\rm E} + \phi_1^* u_{\rm E} \end{pmatrix}$$

- Flavor identity from combination of generation and weak isospin
- Difference: Yukawa and weak interactions cannot be simultaneously diagonal in generation space
- Flavor distinguishes between inter- and intrageneration effects
- Speculation(!): 3 generations could be internal excitations of a single generation
- SM effective theory of excitation spectrum

$$X^{\dagger}Q_{\rm E} = \begin{pmatrix} \phi^T \epsilon^T Q_{\rm E} \\ \phi^{\dagger} Q_{\rm E} \end{pmatrix} = \begin{pmatrix} \phi_2 u_{\rm E} - \phi_1 d_{\rm E} \\ \phi_2^* d_{\rm E} + \phi_1^* u_{\rm E} \end{pmatrix}$$

• Ground state:

- Flavor identity from combination of generation and weak isospin
- Difference: Yukawa and weak interactions cannot be simultaneously diagonal in generation space
- Flavor distinguishes between inter- and intrageneration effects
- Speculation(!): 3 generations could be internal excitations of a single generation
- SM effective theory of excitation spectrum

$$X^{\dagger}Q_{\rm E} = \begin{pmatrix} \phi^T \epsilon^T Q_{\rm E} \\ \phi^{\dagger} Q_{\rm E} \end{pmatrix} = \begin{pmatrix} \phi_2 u_{\rm E} - \phi_1 d_{\rm E} \\ \phi_2^* d_{\rm E} + \phi_1^* u_{\rm E} \end{pmatrix}$$

• Ground state: $d = (\phi^{\dagger} Q_{\rm E})_g$

- Flavor identity from combination of generation and weak isospin
- Difference: Yukawa and weak interactions cannot be simultaneously diagonal in generation space
- Flavor distinguishes between inter- and intrageneration effects
- Speculation(!): 3 generations could be internal excitations of a single generation
- SM effective theory of excitation spectrum

$$X^{\dagger}Q_{\rm E} = \begin{pmatrix} \phi^T \epsilon^T Q_{\rm E} \\ \phi^{\dagger} Q_{\rm E} \end{pmatrix} = \begin{pmatrix} \phi_2 u_{\rm E} - \phi_1 d_{\rm E} \\ \phi_2^* d_{\rm E} + \phi_1^* u_{\rm E} \end{pmatrix}$$

- Ground state: $d = (\phi^{\dagger} Q_{\rm E})_g$
- higher excitations:

- Flavor identity from combination of generation and weak isospin
- Difference: Yukawa and weak interactions cannot be simultaneously diagonal in generation space
- Flavor distinguishes between inter- and intrageneration effects
- Speculation(!): 3 generations could be internal excitations of a single generation
- SM effective theory of excitation spectrum

$$X^{\dagger}Q_{\rm E} = \begin{pmatrix} \phi^T \epsilon^T Q_{\rm E} \\ \phi^{\dagger} Q_{\rm E} \end{pmatrix} = \begin{pmatrix} \phi_2 u_{\rm E} - \phi_1 d_{\rm E} \\ \phi_2^* d_{\rm E} + \phi_1^* u_{\rm E} \end{pmatrix}$$

- Ground state: $d = (\phi^{\dagger} Q_{\rm E})_g$
- higher excitations: $s = (\phi^{\dagger}Q_{\rm E})_{*}, \quad b = (\phi^{\dagger}Q_{\rm E})_{**}$