HiggsSignals

Testing BSM physics with LHC Higgs precision data

Tim Stefaniak

Deutsches Elektronen-Synchrotron DESY, Hamburg

in collaboration with P. Bechtle, D. Dercks, S. Heinemeyer, T. Klingl, G. Weiglein

Higgs Couplings 2017, Heidelberg

November 8th, 2017

http://higgsbounds.hepforge.org

A common question...

BSM theorist: "Is my model consistent with the Higgs data?"

A common question...

BSM theorist: "Is my model consistent with the Higgs data?"

To-Do List:

Calculate masses, total decay widths, cross sections and decay rates for all neutral and charged Higgs bosons in the model;

- Calculate masses, total decay widths, cross sections and decay rates for all neutral and charged Higgs bosons in the model;
- Select and implement all relevant exclusion limits from LEP, Tevatron, LHC;
- Select and implement all relevant Higgs signal measurements from the LHC;

- Calculate masses, total decay widths, cross sections and decay rates for all neutral and charged Higgs bosons in the model;
- Select and implement all relevant exclusion limits from LEP, Tevatron, LHC;
- Select and implement all relevant Higgs signal measurements from the LHC;
- Validate your implementation;

- Calculate masses, total decay widths, cross sections and decay rates for all neutral and charged Higgs bosons in the model;
- Select and implement all relevant exclusion limits from LEP, Tevatron, LHC;
- Select and implement all relevant Higgs signal measurements from the LHC;
- Validate your implementation;
- Test your model against them in a statistically well-defined way;

- Calculate masses, total decay widths, cross sections and decay rates for all neutral and charged Higgs bosons in the model;
- **②** Select and implement all relevant exclusion limits from LEP, Tevatron, LHC;
- Select and implement all relevant Higgs signal measurements from the LHC;
- Validate your implementation;
- Test your model against them in a statistically well-defined way;
- Interpret your result (95% C.L. allowed/excluded or χ^2).

To-Do List:

 Calculate masses, total decay widths, cross sections and decay rates for all neutral and charged Higgs bosons in the model;

Run HiggsBounds and HiggsSignals.

• Interpret your result (95% C.L. allowed/excluded or χ^2).

HiggsBounds and HiggsSignals: Code overview

Team: P. Bechtle, D. Dercks, S. Heinemeyer, T. Klingl, TS, G. Weiglein

http://higgsbounds.hepforge.org

HiggsBounds

Confronts BSM Higgs sectors with exclusion limits from LEP, Tevatron and LHC Higgs searches

 \Rightarrow excluded/allowed at 95% C.L.

HiggsSignals

Confronts BSM Higgs sectors with LHC (& Tevatron) Higgs signal rate and mass measurements

 $\Rightarrow \chi^2$ (sep. for rates and mass)

HiggsSignals

HiggsSignals: The basic idea

• Take model-predictions for *physical quantities* of given Higgs sector:

 m_k , Γ_k^{tot} , $\sigma_i(pp \to H_k)$, $\text{BR}(H_k \to XX)$,

with k = 1, ..., N, $i \in \{ggH, VBF, WH, ZH, t\bar{t}H, ...\}$ for N neutral Higgs bosons as the program's user input. *Optional input*: Theo. uncertainties for mass, cross sections and BR's.

@ Calculate the predicted signal strength μ for every observable,

$$\mu_{H\to XX} = \frac{\sum_{i} \epsilon_{\text{model}}^{i} \left[\sigma_{i}(pp \to H) \times \text{BR}(H \to XX) \right]_{\text{model}}}{\sum_{i} \epsilon_{\text{SM}}^{i} \left[\sigma_{i}(pp \to H) \times \text{BR}(H \to XX) \right]_{\text{SM}}}$$

(narrow width approximation assumed)

Solution Perform a χ^2 test of model predictions against all available signal rate and mass measurements from Tevatron and LHC.

Try to be as model-independent and precise as possible.

Tim Stefaniak (DESY)

Theoretical Input

• Model-predictions for physical quantities of given Higgs sector,

 m_k , Γ_k^{tot} , $\sigma_i(pp \to H_k)$, $\text{BR}(H_k \to XX)$,

with $k = 1, \ldots, N$, $i \in \{ggH, VBF, WH, ZH, t\bar{t}H, \ldots\}$.

 σ , BR given via effective couplings or at hadronic level using the HiggsBounds framework:

- SLHA (requires two HiggsBounds specific Blocks),
- HiggsBounds specific input data-files, or
- Fortran 90 subroutines.
- Input for specific models can be provided by other tools, e.g., FeynHiggs, CPsuperH, 2HDMC, SARAH/SPheno, NMSSMTools,...
- Many example programs provided.

Experimental input

• Signal strength measurements:

$$\mu_{H\to XX} = \frac{\sum_{i} \epsilon_{\text{model}}^{i} \left[\sigma_{i}(pp \to H) \times \text{BR}(H \to XX) \right]_{\text{model}}}{\sum_{i} \epsilon_{\text{SM}}^{i} \left[\sigma_{i}(pp \to H) \times \text{BR}(H \to XX) \right]_{\text{SM}}},$$

with $i \in \{ggH, VBF, WH, ZH, t\bar{t}H\}$ and efficiencies ϵ_i .

Examples:

experimental categories

"pure" signal channels [ATLAS+CMS 7/8 TeV, 1606.02266]

Signal efficiencies

Valuable information! Is included in HiggsSignals if available.

Event Categories	SM 125 GeV Higgs boson expected signal									
Event Categories	Total	ggH	VBF	ttH	bbH	tHq	tHW	WH lep	ZH	
Untagged 0	45.83	80.19 %	11.75 %	1.83 %	0.40 %	0.47 %	0.22 %	0.41 %	0.1	
Untagged 1	480.56	86.81 %	7.73 %	0.56 %	1.15 %	0.13 %	0.02 %	0.47 %	0.2	
Untagged 2	670.45	89.76 %	5.48 %	0.44~%	1.18 %	0.08~%	0.01 %	0.51 %	0.3	
Untagged 3	610.07	91.13 %	4.51 %	0.48~%	1.07 %	0.07~%	0.01 %	0.55 %	0.3	
VBF 0	10.01	21.69 %	77.09 %	0.34 %	0.35 %	0.29 %	0.03 %	0.03 %	0.0	
VBF 1	8.64	33.58 %	64.64 %	0.39 %	0.52 %	0.36 %	0.04 %	0.13 %	0.0	
VBF 2	27.76	50.14 %	46.46 %	0.81 %	0.73 %	0.53 %	0.07 %	0.20 %	0.0	
ttH Hadronic	5.85	10.99 %	0.70 %	77.54 %	2.02 %	4.13 %	2.02 %	0.09 %	0.0	
ttH Leptonic	3.81	1.90 %	0.05 %	87.48 %	0.08 %	4.73 %	3.04 %	1.53 %	1.1	
ZH Leptonic	0.49	0.00 %	0.00 %	2.56 %	0.00 %	0.02 %	0.13 %	0.00 %	97.3	
WH Leptonic	3.61	1.26 %	0.59 %	5.18 %	0.18 %	3.03 %	0.73 %	84.48 %	4.3	
VH LeptonicLoose	2.75	9.16 %	2.70 %	2.34 %	0.57 %	1.81~%	0.13 %	63.62 %	18.8	
VH Hadronic	9.69	57.38 %	3.68 %	3.61 %	0.35 %	1.39 %	0.27 %	0.17 %	0.4	
VH Met	4.25	23.63 %	2.46 %	14.45 %	0.41 %	2.00 %	1.14 %	25.17 %	28.6	
Total	1883.77	86.96 %	7.09 %	1.00 %	1.09 %	0.15 %	0.04 %	0.81 %	0.4	

It is possible to insert relative efficiency scale factors $\zeta^i \equiv \epsilon^i_{\rm model}/\epsilon^i_{\rm SM}$ per tested parameter point and measurement.

The χ^2 evaluation for the signal rates

The global χ^2 for the signal rate measurements is given by

$$\chi^2_{\mu} = (\hat{\boldsymbol{\mu}} - \boldsymbol{\mu})^T (\mathbf{Cov})^{-1} (\hat{\boldsymbol{\mu}} - \boldsymbol{\mu}).$$

Include correlations of major systematic uncertainties (if publicly known):

$$\Delta \sigma_i^{\text{theo}}, \quad \Delta \text{BR}(H_k \to XX)^{\text{theo}}, \quad \Delta \mathcal{L}, \quad \dots \quad \to \quad \mathbf{Cov}$$

(assume inclusive rate uncertainties given by the LHC Higgs XS WG) [LHC HXSWG, YR4, 1610.07922]

Ideally, correlation matrices are provided directly by the experiment, which can then be easily inserted in HiggsSignals.

[ATLAS+CMS 7/8 TeV, 1606.02266]

Try to reproduce 7 or 8-dimensional κ -fit of ATLAS+CMS Run 1 combination with HiggsSignals, using two different experimental inputs:

[ATLAS+CMS 7/8 TeV, 1606.02266]

Try to reproduce 7 or 8-dimensional κ -fit of ATLAS+CMS Run 1 combination with HiggsSignals, using two different experimental inputs:

1) Run-1 combination input

[ATLAS+CMS 7/8 TeV, 1606.02266]

Try to reproduce 7 or 8-dimensional κ -fit of ATLAS+CMS Run 1 combination with HiggsSignals, using two different experimental inputs:

- 1) Run-1 combination input
 - $\sigma_i \cdot \mathrm{BR}^f$ measurements
 - $\bullet~20\times20$ correlation matrix

[ATLAS+CMS 7/8 TeV, 1606.02266]

Try to reproduce 7 or 8-dimensional κ -fit of ATLAS+CMS Run 1 combination with HiggsSignals, using two different experimental inputs:

- 1) Run-1 combination input
 - $\sigma_i \cdot \mathrm{BR}^f$ measurements
 - $\bullet~20\times20$ correlation matrix

2) All individual μ measurements (total: 76)

assumption: no new Higgs decay modes, $BR(H \rightarrow NP) = 0.$

- Both HiggsSignals results are well consistent with official ATLAS+CMS results;
- Official 1σ and 2σ intervals are slightly tighter in all parameters.

assumption: upper limit on Higgs-vector boson coupling scale factors:

 $|\kappa_V| \leq 1 \quad (V = W, Z)$

- Both HiggsSignals results are well consistent with official ATLAS+CMS results;
- Official 1σ and 2σ intervals are slightly tighter in all parameters.
- ATLAS+CMS find tighter constraints on $BR(H \rightarrow NP)$.
- ⇒ Possible explanation: HiggsSignals assumes Gaussian uncertainties.

Complications with multiple neutral Higgs bosons

Any neutral Higgs boson could be responsible for the observed signal.

 Higgs boson *i* is *assigned* to the observable α, if its mass is close enough to observed signal position:

$$|m_i - \hat{m}_{lpha}| \leq \Lambda \sqrt{(\Delta m_i)^2 + (\Delta \hat{m}_{lpha})^2} \quad \Rightarrow \quad {\sf Higgs} \, \, i \, {\sf assigned}$$

with tuning parameter $\Lambda \simeq 1$ (assignment range).

- If multiple Higgs bosons are assigned, their signal strengths are added incoherently: $\mu_{\alpha} = \sum_{i} \mu_{\alpha,i}$. In case of a mass measurement, a signal-strength weighted mass average is used in the χ^2_m evaluation.
- If no Higgs boson is assigned to an observable α , its χ^2 contribution is evaluated for zero predicted signal strength, $\mu_{\alpha} = 0$.

Mass dependence of total χ^2 for a SM-like Higgs boson

HiggsSignals provides three different probability distribution functions (pdfs) for the Higgs mass: box-shaped, Gaussian, box-theo.+Gaussian-exp.

Example: SM Higgs boson with $\Delta m = 2$ GeV (and $\Lambda = 1$)

HiggsSignals

Example: Real Higgs singlet extension of the SM

• consider SM extended by a real Higgs singlet with vev \neq 0.

 \Rightarrow doublet-singlet mixing to physical states (*h*, *H*)

Example: pMSSM

[P. Bechtle, H. Haber, S. Heinemeyer, O. Stål, TS, G. Weiglein, L. Zeune, 1608.00638]

- Combine HiggsSignals χ^2 with other constraints $(b \rightarrow s\gamma, B_s \rightarrow \mu\mu, B_u \rightarrow \tau\nu, (g-2)_{\mu}, M_W$; Higgs & SUSY limits)
- Study pMSSM with 8 parameters (relevant for Higgs sector)

• Found allowed points in *decoupling limit* and in *alignment without decoupling* region.

Tim Stefaniak (DESY)

Current status

Current versions, HiggsBounds-5.1.1beta and HiggsSignals-2.1.0beta, contain the 13 TeV LHC results, extended input quantities and several new features.

New documentation for each code is in work (hence, the "beta").

Current status

Current versions, HiggsBounds-5.1.1beta and HiggsSignals-2.1.0beta, contain the 13 TeV LHC results, extended input quantities and several new features.

New documentation for each code is in work (hence, the "beta").

Some new developments und future directions:

• Possibility to insert signal rates directly [e.g. $\sigma(gg \to \phi \to f\bar{f})$] without assumption of narrow width approximation (i.e. factorization of XS and BR). \Rightarrow Possible to account for non-trivial rate modifications (e.g. interferences).

Current status

Current versions, HiggsBounds-5.1.1beta and HiggsSignals-2.1.0beta, contain the 13 TeV LHC results, extended input quantities and several new features.

New documentation for each code is in work (hence, the "beta").

Some new developments und future directions:

- Possibility to insert signal rates directly [e.g. $\sigma(gg \rightarrow \phi \rightarrow f\bar{f})$] without assumption of narrow width approximation (i.e. factorization of XS and BR). \Rightarrow Possible to account for non-trivial rate modifications (e.g. interferences).
- Enable & transition to new form of experimental input:
 - Simplified Template Cross Sections (STXS): maximize model discrimination power while minimizing model-dependence;
 - $\blacktriangleright~\sigma$ and ${\rm BR}$ ratio parameters: cancellation of theoretical uncertainties;

$$\sigma(gg \rightarrow H \rightarrow ZZ), \ \sigma_{VBF}/\sigma_{ggF}, \dots \ BR^{WW}/BR^{ZZ}, \dots$$

Note: This experimental input is useless unless it comes with a correlation matrix!

Simplified Template Cross Sections (STXS)

[LHC HXSWG, YR4, 1610.07922]

Tim Stefaniak (DESY)

STXS performance of ATLAS $H ightarrow \gamma \gamma$ 13 ${ m TeV}$ results

- ATLAS presented 9 STXS together with a correlation matrix.
- \Rightarrow Use with HiggsSignals and compare with official fit results!

STXS performance of ATLAS $H ightarrow \gamma \gamma$ 13 ${\rm TeV}$ results

- ATLAS presented 9 STXS together with a correlation matrix.
- \Rightarrow Use with HiggsSignals and compare with official fit results!

STXS performance of ATLAS $H ightarrow \gamma \gamma$ 13 ${\rm TeV}$ results

- ATLAS presented 9 STXS together with a correlation matrix.
- \Rightarrow Use with HiggsSignals and compare with official fit results!

STXS performance of ATLAS $H ightarrow \gamma \gamma$ 13 ${ m TeV}$ results

[ATLAS-CONF-2017-045]

- ATLAS presented 9 STXS together with a correlation matrix.
- \Rightarrow Use with HiggsSignals and compare with official fit results!

Tim Stefaniak (DESY)

HiggsSignals

STXS performance of ATLAS $H ightarrow \gamma \gamma$ 13 ${\rm TeV}$ results

- ATLAS presented 9 STXS together with a correlation matrix.
- \Rightarrow Use with HiggsSignals and compare with official fit results!

Summary

HiggsBounds and HiggsSignals provide an interface between experiment and theory. They test the compatibility of BSM theories with latest Higgs data:

- accurate and validated tool for testing your model,
- works well also for extended Higgs sectors,
- requires physical quantities as input \Rightarrow (almost) model-independent,
- interfaces to many model building tools exist,
- complete information on rate measurements is crucial for implementation: signal efficiencies, correlation matrices,...
- new experimental input (STXS, σ and BR-ratios) is being implemented and first results look promising.

Available at http://higgsbounds.hepforge.org! (Sign up on mailing list!)

Summary

HiggsBounds and HiggsSignals provide an interface between experiment and theory. They test the compatibility of BSM theories with latest Higgs data:

- accurate and validated tool for testing your model,
- works well also for extended Higgs sectors,
- requires physical quantities as input \Rightarrow (almost) model-independent,
- interfaces to many model building tools exist,
- complete information on rate measurements is crucial for implementation: signal efficiencies, correlation matrices, . . .
- new experimental input (STXS, σ and BR-ratios) is being implemented and first results look promising.

Available at http://higgsbounds.hepforge.org! (Sign up on mailing list!)

Thanks for your attention!

Backup Slides

Observables included in HiggsSignals-1.4.0

Tim Stefaniak (DESY)

Perform a random scan over 8 MSSM parameters ($\sim 10^7$ points):

 $M_A, \tan \beta, \ \mu, \ M_{\tilde{q}_3}, \ M_{\tilde{\ell}_3}, \ M_{\tilde{\ell}_{1,2}}, \ A_t = A_b = A_{\tau}, \ M_2 = 2M_1, \ (+ \ m_{top})$

using FeynHiggs and SuperIso for MSSM predictions. (fix other parameters, e.g. $m_{\tilde{q}_{1,2}}=m_{\tilde{g}}=1.5~{\rm TeV}$)

$$\chi^2_{ ext{total}} = rac{(M_{h/H} - \hat{M})^2}{\sigma_M^2} + \chi^2_{ ext{HS}} + \sum rac{(O_i - \hat{O}_i)^2}{\sigma_i^2} - 2 \ln \mathcal{L}_{ ext{limits}}$$

Perform a random scan over 8 MSSM parameters ($\sim 10^7$ points):

 $M_{A}, \, \tan \beta, \, \mu, \, M_{\tilde{q}_{3}}, \, M_{\tilde{\ell}_{3}}, \, M_{\tilde{\ell}_{1,2}}, \, A_{t} = A_{b} = A_{\tau}, \, M_{2} = 2M_{1}, \, (+ \, m_{top})$

using FeynHiggs and SuperIso for MSSM predictions. (fix other parameters, e.g. $m_{\tilde{q}_{1,2}}=m_{\tilde{g}}=1.5~{\rm TeV}$)

$$\chi^{2}_{\text{total}} = \frac{(M_{h/H} - \hat{M})^{2}}{\sigma_{M}^{2}} + \chi^{2}_{\text{HS}} + \sum \frac{(O_{i} - \hat{O}_{i})^{2}}{\sigma_{i}^{2}} - 2 \ln \mathcal{L}_{\text{limits}}$$
Higgs mass
$$\int (\sigma_{M}^{\text{theo}} = 3 \text{ GeV})$$

Perform a random scan over 8 MSSM parameters ($\sim 10^7$ points):

 $M_{A}, \, \tan \beta, \, \mu, \, M_{\tilde{q}_{3}}, \, M_{\tilde{\ell}_{3}}, \, M_{\tilde{\ell}_{1,2}}, \, A_{t} = A_{b} = A_{\tau}, \, M_{2} = 2M_{1}, \, (+ \, m_{top})$

using FeynHiggs and SuperIso for MSSM predictions. (fix other parameters, e.g. $m_{\tilde{q}_{1,2}}=m_{\tilde{g}}=1.5~{\rm TeV}$)

$$\chi^{2}_{\text{total}} = \frac{(M_{h/H} - \hat{M})^{2}}{\sigma_{M}^{2}} + \chi^{2}_{\text{HS}} + \sum \frac{(O_{i} - \hat{O}_{i})^{2}}{\sigma_{i}^{2}} - 2 \ln \mathcal{L}_{\text{limits}}$$

$$\overset{\text{Higgs signal rates}}{(\text{HiggsSignals})}$$

Perform a random scan over 8 MSSM parameters ($\sim 10^7$ points):

 $M_{A}, \, \tan \beta, \, \mu, \, M_{\tilde{q}_{3}}, \, M_{\tilde{\ell}_{3}}, \, M_{\tilde{\ell}_{1,2}}, \, A_{t} = A_{b} = A_{\tau}, \, M_{2} = 2M_{1}, \, (+ \, m_{top})$

using FeynHiggs and SuperIso for MSSM predictions. (fix other parameters, e.g. $m_{\tilde{q}_{1,2}}=m_{\tilde{g}}=1.5~{\rm TeV}$)

$$\chi^{2}_{\text{total}} = \frac{(M_{h/H} - \hat{M})^{2}}{\sigma_{M}^{2}} + \chi^{2}_{\text{HS}} + \sum \frac{(O_{i} - \hat{O}_{i})^{2}}{\sigma_{i}^{2}} - 2 \ln \mathcal{L}_{\text{limits}}$$

$$\text{Low energy observables (LEO)} / \\O_{i} \in \{b \to s\gamma, B_{s} \to \mu\mu, B_{u} \to \tau\nu_{\tau}, (g - 2)_{\mu}, M_{W}\}$$

Perform a random scan over 8 MSSM parameters ($\sim 10^7$ points):

 $M_{A}, \, \tan \beta, \, \mu, \, M_{\tilde{q}_{3}}, \, M_{\tilde{\ell}_{3}}, \, M_{\tilde{\ell}_{1,2}}, \, A_{t} = A_{b} = A_{\tau}, \, M_{2} = 2M_{1}, \, (+ \, m_{top})$

using FeynHiggs and SuperIso for MSSM predictions. (fix other parameters, e.g. $m_{\tilde{q}_{1,2}}=m_{\tilde{g}}=1.5~{\rm TeV}$)

$$\chi^{2}_{\text{total}} = \frac{(M_{h/H} - \hat{M})^{2}}{\sigma_{M}^{2}} + \chi^{2}_{\text{HS}} + \sum \frac{(O_{i} - \hat{O}_{i})^{2}}{\sigma_{i}^{2}} - 2 \ln \mathcal{L}_{\text{limits}}$$

$$\underset{(\text{LEP, }h/H/A \to \tau^{+}\tau^{-})}{\overset{/}}$$

Perform a random scan over 8 MSSM parameters ($\sim 10^7$ points):

 $M_A, \, \tan \beta, \, \mu, \, M_{\tilde{q}_3}, \, M_{\tilde{\ell}_3}, \, M_{\tilde{\ell}_{1,2}}, \, A_t = A_b = A_{\tau}, \, M_2 = 2M_1, \, (+ \, m_{top})$

using FeynHiggs and SuperIso for MSSM predictions. (fix other parameters, e.g. $m_{\tilde{q}_{1,2}}=m_{\tilde{g}}=1.5~{\rm TeV}$)

Observables and limits:

$$\chi^2_{ ext{total}} = rac{(M_{h/H} - \hat{M})^2}{\sigma^2_M} + \chi^2_{ ext{HS}} + \sum rac{(O_i - \hat{O}_i)^2}{\sigma^2_i} - 2 \ln \mathcal{L}_{ ext{limits}}$$

Hard cuts:

- + 95% CL limits from Higgs searches (HiggsBounds)
- + Limits from LHC SUSY searches (Herwig++/CheckMATE)
- + require neutral lightest supersymmetric particle (LSP)

Best-fit points

	Higgs data			Higgs data + LEO			
	χ^2/ u	χ^2_{ν}	${\mathcal P}$	χ^2/ u	χ^2_{ν}	\mathcal{P}	
$SM~(m_h=125.1~\mathrm{GeV})$	70.2/86	0.82	0.89	83.7/91	0.92	0.69	
MSSM light Higgs h	67.9/79	0.86	0.81	68.5/84	0.82	0.89	
MSSM heavy Higgs H	70.0/80	0.88	0.78	73.7/85	0.87	0.80	

number degrees of treedom: $\nu = n_{obs} - n_{param}$

- SM and both MSSM cases provide similar fit to the Higgs data.
- Including LEOs, SM fit becomes worse, mainly due to $(g-2)_{\mu}$.

	M _A	$\tan\beta$	μ	A_0	$M_{\widetilde{q}_3}$	$M_{\tilde{\ell_3}}$	$M_{\tilde{\ell}_{1,2}}$	<i>M</i> ₂
	(GeV)		(GeV)	(GeV)	(GeV)	(GeV)	(GeV)	(GeV)
MSSM h	929	21.0	7155	4138	2957	698	436	358
MSSM H	172	6.6	4503	-71	564	953	262	293

	<u> </u>		$= c \cdot c$
l um	Staton	124 1	 - 5 V
	oteran		_

Favored parameter regions

- Bulk of favored points have $M_A \gtrsim 350 \text{ GeV} \Rightarrow decoupling limit.$
- points with $M_A \gtrsim 200 \text{ GeV}$ possible \Rightarrow alignment w/o decoupling.

Recall: alignment condition
$$\rightarrow$$
 tan $eta \sim \left[rac{\mu A_t}{M_S^2} \left(rac{A_t^2}{M_S^2}-6
ight)
ight]^{-1}$

 \Rightarrow Alignment occurs at small tan β values if $\mu A_t/M_S^2$ is large.

The κ -framework

- What is the compatibility of the present data with the SM?
- Are there tendencies for deviations from the SM prediction?
- What is the allowed range for possible deviations?

Strategy: Profile likelihood fits of simplified models with scale factors (κ)parametrizing the relevant Higgs couplings.[LHC Higgs XS WG, 1307.1347]

 $\kappa_u, \kappa_d, \kappa_\ell, \kappa_W, \kappa_Z, \kappa_g, \kappa_\gamma, \ldots$

Partial widths and cross sections are scaled with relevant scale factor. E.g.:

$$\kappa_V^2 = \frac{\sigma_{VBF}}{\sigma_{VBF}^{\rm SM}} = \frac{\sigma_{VH}}{\sigma_{VH}^{\rm SM}} = \frac{\Gamma_{H \to VV^*}}{\Gamma_{H \to VV^*}^{\rm SM}}, \quad \kappa_g^2 = \frac{\sigma_{ggF}}{\sigma_{ggF}^{\rm SM}} = \frac{\Gamma_{H \to gg}}{\Gamma_{H \to gg}^{\rm SM}}$$

Loop-induced coupling scale factors (κ_g , κ_γ) either derived or free parameters. We can allow additional decay modes to "new physics": BR($H \rightarrow NP$)