Mass effects in the Higgs transverse momentum distribution

Chris Wever (Karlsruhe Institute of Technology)

In collaboration with: K. Kudashkin, J. Lindert , K. Melnikov, L. Tancredi

Higgs Couplings, Heidelberg, 06-10 Nov, 2017

Introduction

Introduction

- <u>Higgs couplings</u> form a crucial part of LHC physics program
- Higgs $p_{T,H}$ distributions can give more constraints than inclusive rate measurements (example: light-quark Yukawa couplings) [Bishara, Monni et al '16; Soreq et al '16]
- Alternative to $t\bar{t}H$ for studying the top Yukawa coupling: H + j distributions at large $p_{T,H}$
- Furthermore: Higgs coupling to top-partners can be constrained by studying Higgs distribution at large $p_{T,H}$
- Experiments have <u>already</u> begun searching for boosted $H \rightarrow b\overline{b}$ decay
- <u>Theoretical caveat</u>: usual HEFT approach breaks down starting at very large $p_{T,H} \sim 400~{
 m GeV}$
- At large $p_{T,H}$: top mass corrections cannot be neglected

[Banfi, Martin, Sanz, arXiv:1308.4771]

Experimental motivation: boosted Higgs

Plots taken from: Mangano talk at Higgs Couplings 2016

• HL-LHC at large $p_{T,H} > 400~{
m GeV}$: many events can be expected ~ 10^4

Introduction

2

- <u>Boosted Higgs advantage: large signal to</u>
 <u>background ratio</u>
 <u>Exploit large boosted Higgs differential</u>
 <u>measurements to constrain Higgs couplings</u>
 - <u>This project</u>: focus on H production recoiling against a jet

Introduction

Theoretical interest: boosted H + j

- 3
 - H + j at LHC proceeds largely through quark loops, historically computed in HEFT limit $m_t \rightarrow \infty$

$p_{T,H}$ range:	below top threshold	close to threshold	above top threshold
${\cal A}^{LO}_{gg ightarrow gH} \sim$	g Therefore g	increasing $p_{T,H}$	
Expansion parameters:	$\frac{m_h^2}{4m_t^2}, \frac{p_\perp^2}{4m_t^2} \ll 1$	$1 - \frac{4m_t^2}{\hat{s}} \ll 1$	$\frac{m_h^2}{4m_t^2}, \frac{4m_t^2}{p_{\perp}^2} \ll 1$

Above top threshold:

• At $p_{T,H}$ larger than twice the top mass, the gggH coupling is not point-like anymore

Introduction

Theoretical interest: boosted H + j

- 3
 - H + j at LHC proceeds largely through quark loops, historically computed in HEFT limit $m_t \rightarrow \infty$

$p_{T,H}$ range:	below top threshold	close to threshold	above top threshold
${\cal A}^{LO}_{gg ightarrow gH} \sim$	g Therefore g	increasing $p_{T,H}$	
Expansion parameters:	$\frac{m_h^2}{4m_t^2}, \frac{p_{\perp}^2}{4m_t^2} \ll 1$	$1 - \frac{4m_t^2}{\hat{s}} \ll 1$	$\frac{m_h^2}{4m_t^2}, \frac{4m_t^2}{p_{\perp}^2} \ll 1$

Above top threshold:

$$m_h^2 \ll (2m_t)^2 \ll (p_\perp)^2$$

 HEFT expansion fails

- At $p_{T,H}$ larger than twice the top mass, the gggH coupling is not point-like anymore
- In fact: top amplitude contains enhanced Sudakov-like logarithms above top threshold

$$\mathcal{A}_{gg \to Hg}^{(L)}(m_h^2, m_t^2, s, t) = \frac{y_t m_t}{p_\perp} \sum_{j,l \ge 0} \left(\frac{m_h^2}{4m_t^2}\right)^j \left(\frac{4m_t^2}{p_\perp^2}\right)^l \sum_{n=0}^{2L} A_{jln}(s, t) \times \log^n\left(\frac{4m_t^2}{p_\perp^2}\right)$$

Boosted Higgs $p_{T,H}$ -distribution at LO

4

Introduction

Boosted Higgs $p_{T,H}$ -distribution at LO

Introduction

4

Boosted Higgs $p_{T,H}$ -distribution at LO

Introduction

4

What about NLO corrections above top threshold with finite top mass? Potentially large!

- Two-loop amplitude adds terms with <u>higher powers of enhancing logarithms</u>
- $\log^{(3,4)}(4m_t^2/p_{\perp}^2)$
- NLO corrections below top threshold very large ~ 100% possibly large also above

NLO computation

5

Calculation at NLO

• Real (2 to 3) and virtual (2 to 2) contributions need to be combined, very well understood at NLO

- Peculiarity in this case: <u>LO is already 1-loop</u>
- Real corrections receive contributions from kinematical regions where one parton become soft or collinear to another parton, so a <u>numerically stable</u> approach required
- <u>Real corrections</u> computed in **Openloops** with exact top mass dependence

[Cascioli, Lindert, Pozzorini et al '12-17; Denner et al '03-'17]

• One new ingredient are two-loop virtual corrections

NLO computation

6

$$\mathrm{d}\sigma^{\mathrm{virt}} \sim \mathrm{Re}\left[\frac{\alpha_s}{2\pi} (A^{(2L)} A^{(1L)*})\right]$$

• Typical two-loop Feynman diagrams are:

• Exact mass dependence in two-loop Feynman Integrals currently out of reach [planar diagrams: Bonciani et al '16]

Scale hierarchy:
$$m_h^2 \ll (2m_t)^2 \ll (p_\perp)^2$$

- <u>Expand</u> amplitudes in small parameters by using <u>differential equation method (DE)</u>
- Expansion with DE approach already used successfully for small bottom mass loop [Mueller & Ozturk '15; Lindert, Melnikov, Tancredi, CW '17]
- Bonus of DE approach: extending to higher powers in m_h and m_t is very algorithmic
- In this work: expand amplitudes to LP in m_h (effectively $m_h = 0$) and NLP in m_t

7

Computing virtual two-loop amplitudes

[Melnikov, Tancredi, CW '17]

- Virtual amplitude made up of <u>complicated two-loop tensor Feynman integrals</u>
- Powerful tool for scalar integrals: <u>IBP reduction</u> to minimal set of Master Integrals (MI)

project amplitude onto form factors

 $\mathcal{A}_{H \to ggg} \left(p_1^{a_1}, p_2^{a_2}, p_3^{a_3} \right) = f^{a_1 a_2 a_3} \epsilon_1^{\mu} \epsilon_2^{\nu} \epsilon_3^{\rho} \left(F_1 g^{\mu\nu} p_2^{\rho} + F_2 g^{\mu\rho} p_1^{\nu} + F_3 g^{\nu\rho} p_3^{\mu} + F_4 p_3^{\mu} p_1^{\nu} p_2^{\rho} \right)$

• Form factors F_i expressed in terms of scalar integrals

Three families flashing by

NLO

computation

$$\mathcal{I}_{\text{top}}(a_1, a_2, ..., a_8, a_9) = \int \frac{\mathfrak{D}^d k \mathfrak{D}^d l}{[1]^{a_1} [2]^{a_2} [3]^{a_3} [4]^{a_4} [5]^{a_5} [6]^{a_6} [7]^{a_7} [8]^{a_8} [9]^{a_9}}$$

Prop.	Topology PL1	Topology PL2	Topology NPL
[1]	k^2	$k^{2} - m_{t}^{2}$	$k^{2} - m_{t}^{2}$
[2]	$(k - p_1)^2$	$(k-p_1)^2 - m_t^2$	$(k+p_1)^2 - m_t^2$
[3]	$(k - p_1 - p_2)^2$	$(k - p_1 - p_2)^2 - m_t^2$	$(k - p_2 - p_3)^2 - m_t^2$
[4]	$(k - p_1 - p_2 - p_3)^2$	$(k - p_1 - p_2 - p_3)^2 - m_t^2$	$l^2 - m_t^2$
[5]	$l^2 - m_t^2$	$l^2 - m_t^2$	$(l+p_1)^2 - m_t^2$
[6]	$(l-p_1)^2 - m_t^2$	$(l-p_1)^2 - m_t^2$	$(l-p_3)^2 - m_t^2$
[7]	$(l-p_1-p_2)^2 - m_t^2$	$(l - p_1 - p_2)^2 - m_t^2$	$(k-l)^2$
[8]	$(l-p_1-p_2-p_3)^2-m_t^2$	$(l - p_1 - p_2 - p_3)^2 - m_t^2$	$(k-l-p_2)^2$
[9]	$(k-l)^2 - m_t^2$	$(k-l)^2$	$(k - l - p_2 - p_3)^2$

7

Computing virtual two-loop amplitudes

[Melnikov, Tancredi, CW '17]

- Virtual amplitude made up of <u>complicated two-loop tensor Feynman integrals</u>
- Powerful tool for scalar integrals: <u>IBP reduction</u> to minimal set of Master Integrals (MI)

project amplitude onto form factors

 $\mathcal{A}_{H \to ggg} \left(p_1^{a_1}, p_2^{a_2}, p_3^{a_3} \right) = f^{a_1 a_2 a_3} \epsilon_1^{\mu} \epsilon_2^{\nu} \epsilon_3^{\rho} \left(F_1 g^{\mu\nu} p_2^{\rho} + F_2 g^{\mu\rho} p_1^{\nu} + F_3 g^{\nu\rho} p_3^{\mu} + F_4 p_3^{\mu} p_1^{\nu} p_2^{\rho} \right)$

- Form factors F_i expressed in terms of scalar integrals
- Integration by parts (IBP) identities $\int \left(\prod_{i} d^{d}k_{i}\right) \frac{\partial}{\partial k_{j}^{\mu}} \left(v^{\mu}I\right) = \text{Boundary term} \stackrel{DR}{=} 0$
- Reduce to set of MI is <u>very</u> difficult, naïve reduction with public codes failed
- Performed in steps: top topology to subtopology reduction with Form+Reduze, then FIRE

$$\mathcal{I}_{a_1 \cdots a_n}(s) = \sum_{\substack{(b_1 \cdots b_n) \in \text{Master Integrals}}} \operatorname{Rational}_{a_1 \cdots a_n}^{b_1 \cdots b_n}(s, d) \operatorname{MI}_{b_1 \cdots b_n}(s)$$

```
DE method
```

MI with DE method for $m_h^2 \ll (2m_t)^2 \ll s, t$

8

[Kudashkin, Melnikov, CW '17]

• System of partial differential equations (**DE**) in m_h^2, m_t^2, s, t with IBP relations

$$\frac{\partial}{\partial \tilde{s}_k} \vec{\mathcal{I}}^{MI}(\tilde{s},\epsilon) \stackrel{\text{IBP}}{=} \overline{\overline{M}}_k(\tilde{s},\epsilon) . \vec{\mathcal{I}}^{MI}(\tilde{s},\epsilon)$$

• Interested in $m_h^2 \ll (2m_t)^2 \ll s$, t expansion of Master integrals I^{MI}

expand homogeneous matrix M_k in small m_h , then small m_t

Solve DE in m_h and m_t

• Solve m_h and m_t DE with following ansatz

$$\mathcal{I}_i^{MI}(m_h^2, m_t^2, s, t, \epsilon) = \sum_{ijklmn} c_{ijklmn}(s, t, \epsilon) \left(\frac{m_h^2}{4m_t^2}\right)^{j-k\epsilon} \left(\frac{m_t^2}{s}\right)^{l-m\epsilon} \log^n\left(\frac{m_t^2}{s}\right)^{l-m\epsilon}$$

- Plug into m_h and m_t DE and get constraints on coefficients $c_{i...n}$
- <u>Algorithmic</u>: higher power expansion coefficients fixed from lower order power coefficients
- Remaining $c_{i...n}(s, t, \epsilon)$ fixed by DE in (s, t) and expressed in: Goncharov Polylogarithms

$\sigma(fb)$ $p_{T,H}(GeV)$	LO(HEFT)	LO(full)	NLO(HEFT)	NLO(full)	K(HEFT)	K(full)
≥ 400	33.82	12.425	63.90	24.36	1.89	1.96
≥ 450	22.00	6.75	41.71	13.25	1.90	1.96
≥ 1000	0.628	0.042	1.149	0.080	1.83	1.93

Bottom effects

10

Top-bottom interference

[Lindert, Melnikov, Tancredi, CW '17]

• What about bottom mass corrections to Higgs plus jet production?

<u>Bottom</u> amplitude similarly <u>contains enhanced Sudakov-like logarithms</u> above bottom threshold

$$\mathcal{A}_{gg \to Hg}^{(L), \text{bottom-loop}}(m_b^2, m_h^2, s, t) = \frac{y_b m_b}{p_\perp} \sum_{l \ge 0} \left(\frac{4m_b^2}{p_\perp^2}\right)^l \sum_{n=0}^{2L} A_{ln}(m_h^2, s, t) \times \log^n\left(\frac{4m_b^2}{p_\perp^2}\right)$$

• Expansion of amplitude with DE approach applied in same way for small bottom mass loop (to LP in m_b^2)

Quantitatively, how large are the bottom corrections at NLO?

Bottom results

- Top-bottom interference at moderate $p_{T,H}$ =30 GeV: -6% at LO and -7% at NLO
- Large relative corrections to top-bottom interference ~ relative corrections to top-top ~ 40%
- Mass renormalization-scheme: reduction at small $p_{T,H}$ by a factor of two at NLO; less pronounced at larger $p_{T,H}$

Summary

12

Top mass corrections

- Boosted Higgs production: for $p_{T,H} > 2 * m_t \sim 350$ GeV to get reliable LHC results for H + j production we are <u>forced</u> to include finite top mass effects (HEFT breakdown)
- For first time computed fully differential NLO QCD corrections H + j above top mass threshold, <u>including finite top mass effects</u>
- Two-loop integrals computed at leading power expansion in Higgs mass and next-to-leading power expansion in top mass expansion with differential equation method
- NLO K-factor of full result ~ 2, HEFT K-factor~1.9 flat on large $p_{T,H} > 400$ GeV range

Bottom mass corrections

- Two-loop bottom integrals computed at leading power in bottom mass expansion with DE method
- NLO bottom contribution ~ [-10, -4] % of NLO top contribution at lower range of Higgs $p_{T,H}$
- Large relative NLO corrections to top-bottom interference similar to pure top NLO corrections ~ 40% for Higgs $p_{T,H}$ and rapidity distributions

Backup slides

Backup

3

IBP reduction

[Melnikov, Tancredi, CW '16-'17]

• IBP reduction to Master Integrals

$$\mathcal{I}_{a_1 \cdots a_n}(s) = \sum_{(b_1 \cdots b_n) \in \text{Master Integrals}} \text{Rational}_{a_1 \cdots a_n}^{b_1 \cdots b_n}(s, d) \text{MI}_{b_1 \cdots b_n}(s)$$

- <u>Reduction very non-trivial</u>: we were not able to reduce top non-planar integrals with t = 7 denominators with FIRE5/Reduze
- Reduction fails because coefficients multiplying MI become too large to simplify ~ hundreds of Mb of text
- <u>Reduction for complicated t=7 non-planar integrals performed in two steps</u>: I) FORM code reduction: $T^{NPL} = \sum a MI^{i} + \sum d T^{i}$

$$\mathcal{I}_{t=7}^{\text{NPL}} = \sum c_i \text{MI}_{t=7}^i + \sum d_i \mathcal{I}_{t=6}^i$$

2) Plug reduced integrals into amplitude, expand coefficients c_i , d_i in m_h , m_t

- 3) Reduce with FIRE/Reduze: t = 6 denominator integrals $\mathcal{I}_{t=6}$
- Exact m_t dependence kept at intermediate stages. Algorithm for <u>solving IBP identities directly expanded</u> in small parameter is still an open problem
- Expansion in m_t occurs at last step: solving with Master integrals with differential equation method

Backup

How useful are expansions?

14

- NLO amplitudes require computing 2-loop Feynman integrals with massive quark loop
- If these integral are computed exactly in quark mass, results in very complicated functions

 $\log \left(x_3 x_1^2 - x_1^2 + x_2 x_1 - 4 x_3 x_1 + R_1(x_1) R_2(x_1) R_7(x) \right) ,$ $\log\left(-x_2^2 + x_1x_2 - x_1x_3x_2 + 2x_3x_2 + 2x_1x_3 + R_1(x_2)R_2(x_2)R_7(x)\right),$ $\log\left(-x_3^2x_1^2+3x_3x_1^2+4x_3^2x_1-4x_2x_3x_1+R_1(x_3)R_5(x)R_6(x)x_1\right),$ $\log (x_3 R_1(x_2) R_2(x_2) + x_2 R_1(x_3) R_2(x_3)) .$ $\log (x_1 R_1(x_2) R_2(x_2) + x_2 R_1(x_1) R_2(x_1)) ,$ $\log(x_1R_1(x_3)R_2(x_3) - R_1(x_1)R_1(x_3)R_5(x))$, $\log (x_3 R_1(x_1) R_2(x_1) - R_1(x_1) R_1(x_3) R_5(x)) ,$ $\log\left(-x_2R_1(x_1)R_2(x_1)+x_3R_1(x_1)R_2(x_1)+x_1R_3(x_3)R_4(x_3)\right),$ $\log\left(-x_2R_1(x_2)R_2(x_2)+x_3R_1(x_2)R_2(x_2)+x_2R_3(x_3)R_4(x_3)\right)\,,$ $\log\left(-x_2R_1(x_3)R_2(x_3)+x_1R_1(x_3)R_2(x_3)+x_3R_3(x_1)R_4(x_1)\right),$ $\log\left(-x_2R_1(x_2)R_2(x_2)+x_1R_1(x_2)R_2(x_2)+x_2R_3(x_1)R_4(x_1)\right),$ $\log\left(-x_3^2x_1^2+3x_3x_1^2+4x_3^2x_1-3x_2x_3x_1+R_1(x_1)R_1(x_3)R_5(x)R_7(x)\right),$ $\log \left(x_2 R_1(x_1) R_1(x_3) R_5(x) - x_1 x_3 R_1(x_2) R_2(x_2) \right) \,,$ $\log\left(-x_2x_3+x_1x_3+R_1(x_2)R_2(x_2)x_3-R_1(x_1)R_1(x_3)R_5(x)\right).$

[planar diagrams: Bonciani et al '16]

$$\begin{aligned} R_1(x_1) &= \sqrt{-x_1} , R_1(x_3) = \sqrt{-x_3} , R_1(x_2) = \sqrt{-x_2} ,\\ R_2(x_1) &= \sqrt{4-x_1} , R_2(x_3) = \sqrt{4-x_3} , R_2(x_2) = \sqrt{4-x_2} ,\\ R_3(x_1) &= \sqrt{x_2 - x_1} , R_3(x_3) = \sqrt{x_2 - x_3} ,\\ R_4(x_1) &= \sqrt{x_2 - x_1 - 4} , R_4(x_3) = \sqrt{x_2 - x_3 - 4} ,\\ R_5(x) &= \sqrt{4x_2 + x_1x_3 - 4(x_1 + x_3)} ,\\ R_6(x) &= \sqrt{2x_3(-2x_2 + x_1 + 2x_3) - x_1x_3^2 - x_1} ,\\ R_7(x) &= \sqrt{2x_1x_3(x_2 - x_1) + (x_2 - x_1)^2 + (x_1 - 4)x_1x_3^2} .\end{aligned}$$

- Starting from weight three not possible to express in terms of usual GPL's anymore
- <u>Expanding</u> in small quark mass results in simple <u>2-dimensional harmonic polylogs</u>

[Vermaseren, Remiddi, Gehrmann]

Backup

15

Real corrections with Openloops

• Channels for real contribution to Higgs plus jet at NLO

 $gg \to Hgg, gg \to Hq\bar{q}, qg \to Hqg, q\bar{q} \to Hgg, \cdots$

- Receives contributions from kinematical regions where one parton become soft or collinear to another parton
- This requires a delicate approach of these regions in phase space integral
- Openloops algorithm is publicly available program which is capable of dealing with these singular regions in a numerically stable way
- Crucial ingredient is tensor integral reduction performed via expansions in small Gram determinants: Collier

[Cascioli et al '12, Denner et al '03-'17]

• Exact top mass dependence kept throughout for one-loop computations