The Effective-Vector-Boson Approximation at the LHC

Ramon Winterhalder

INSTITUTE FOR THEORETICAL PHYSICS UNIVERSITY OF HEIDELBERG

Higgs Couplings 8th November 2017

Content

1 Introduction

- 2 Vector-Boson Scattering at the LHC
- 3 The Effective-Vector-Boson Approximation
- 4 Logarithmic Electroweak Corrections
- **5** Conclusion

Content

1 Introduction

- 2 Vector-Boson Scattering at the LHC
- 3 The Effective-Vector-Boson Approximation
- 4 Logarithmic Electroweak Corrections
- **5** Conclusion

Longitudinal W-Boson Scattering

The gauge-bosons W^\pm and Z obtain their mass and longitudinal polarisation state through EWSB.

$$\mathcal{A}(W_L W_L \to W_L W_L) \propto -s - t$$

 \rightarrow unitarity is violated!

Mechanism of EWSB must restore unitarity and regulate $\sigma(W_L W_L \rightarrow W_L W_L)$:

Longitudinal W-Boson Scattering

The gauge-bosons W^\pm and Z obtain their mass and longitudinal polarisation state through EWSB.

$$\mathcal{A}(W_L W_L \to W_L W_L) \propto -s - t + \frac{s^2}{s - M_H^2} + \frac{t^2}{t - M_H^2}$$

 \rightarrow unitarity is violated!

Mechanism of EWSB must restore unitarity and regulate $\sigma(W_L W_L \rightarrow W_L W_L)$:

 \rightarrow a light SM Higgs exactly cancels terms leading in energy

Unitarity Violation

If any or all couplings are slightly modified the cancellation fails and unitarity is violated.

In order to restore unitarity new interactions or particles need to be introduced. \rightarrow Any deviations from the SM represent signals of new physics.

Unitarity Violation

If any or all couplings are slightly modified the cancellation fails and unitarity is violated.

In order to restore unitarity new interactions or particles need to be introduced. \rightarrow Any deviations from the SM represent signals of new physics.

 \rightarrow VBS is a key tool in probing the machanism of EWSB.

Content

1 Introduction

- 2 Vector-Boson Scattering at the LHC
- 3 The Effective-Vector-Boson Approximation
- **4** Logarithmic Electroweak Corrections
- **5** Conclusion

VBS at Hadron Colliders

VBS is only a non-gauge-invariant subprocess in the production of VVjj final states.

- \rightarrow There are two main types of production modes at LO:
 - EW VVjj production: $\mathcal{O}(\alpha^6)$
 - QCD VVjj production: $\mathcal{O}(\alpha^4 \alpha_s^2)$

VBS at Hadron Colliders

VBS is only a non-gauge-invariant subprocess in the production of VVjj final states.

 \rightarrow There are two main types of production modes at LO:

- EW VVjj production: $\mathcal{O}(\alpha^6)$
- QCD VVjj production: $\mathcal{O}(\alpha^4 \alpha_s^2)$
- and interferences: $\mathcal{O}(\alpha^5 \alpha_s)$ (colour and kinematically suppressed)
 - \rightarrow interference of both modes is negligible

Production Modes

EW VVjj production: $\mathcal{O}(\alpha^6)$

QCD VVjj production: $\mathcal{O}(\alpha^4 \alpha_s^2)$

gauge-invariantly separable: can be suppressed by cuts

Vest, Anger '15

final state	VV-channel	$\sigma^{\rm EW}$ [fb]	$\sigma^{\rm QCD}$ [fb]	$\sigma^{\rm EW}/\sigma^{\rm QCD}$
$l^{\pm}l^{\pm}\nu\nu'jj$	$W^{\pm}W^{\pm}$	19.5	18.8	$\sim 1:1$
$l^+l^- \nu \nu' j j$	$W^{\mp}W^{\pm}, ZZ$	93.7	3192	$\sim 1:35$
$l^+l^-l'^\pm\nu'jj$	$W^{\pm}Z$	30.2	687	$\sim 1:20$
$l^+l^-l'^+l'^-jj$	ZZ	1.5	106	$\sim 1:70$

most promising VVjj channel in terms of VBS:

• same-sign $W^{\pm}W^{\pm}jj$ channel

Vest, Anger '15

final state	VV-channel	$\sigma^{\rm EW}$ [fb]	$\sigma^{\rm QCD}$ [fb]	$\sigma^{\rm EW}/\sigma^{\rm QCD}$
$l^{\pm}l^{\pm} u\nu'jj$	$W^{\pm}W^{\pm}$	19.5	18.8	$\sim 1:1$
$l^+l^- \nu \nu' j j$	$W^{\mp}W^{\pm}, ZZ$	93.7	3192	$\sim 1:35$
$l^+l^-l'^\pm \nu' jj$	$W^{\pm}Z$	30.2	687	$\sim 1:20$
$l^+l^-l'^+l'^-jj$	ZZ	1.5	106	$\sim 1:70$

most promising VVjj channel in terms of VBS:

• same-sign $W^{\pm}W^{\pm}jj$ channel

 \rightarrow no gg and gq induced contributions at tree-level

Vest, Anger '15

final state	VV-channel	$\sigma^{\rm EW}$ [fb]	$\sigma^{\rm QCD}$ [fb]	$\sigma^{\rm EW}/\sigma^{\rm QCD}$
$l^{\pm}l^{\pm} u\nu'jj$	$W^{\pm}W^{\pm}$	19.5	18.8	$\sim 1:1$
$l^+l^- \nu \nu' j j$	$W^{\mp}W^{\pm}, ZZ$	93.7	3192	$\sim 1:35$
$l^+l^-l'^\pm \nu' jj$	$W^{\pm}Z$	30.2	687	$\sim 1:20$
$l^+l^-l'^+l'^-jj$	ZZ	1.5	106	$\sim 1:70$

most promising VVjj channel in terms of VBS:

• same-sign $W^{\pm}W^{\pm}jj$ channel

 \rightarrow no gg and gq induced contributions at tree-level

 $ightarrow l^{\pm}l^{\pm}
u'
u j j$ final state is most sensitive to VBS measurements

Vest, Anger '15

final state	VV-channel	$\sigma^{\rm EW}$ [fb]	$\sigma^{\rm QCD}$ [fb]	$\sigma^{\rm EW}/\sigma^{\rm QCD}$
$l^{\pm}l^{\pm} u\nu'jj$	$W^{\pm}W^{\pm}$	19.5	18.8	$\sim 1:1$
$l^+l^- \nu \nu' j j$	$W^{\mp}W^{\pm}, ZZ$	93.7	3192	$\sim 1:35$
$l^+l^-l'^\pm \nu' jj$	$W^{\pm}Z$	30.2	687	$\sim 1:20$
$l^+l^-l'^+l'^-jj$	ZZ	1.5	106	$\sim 1:70$

most promising VVjj channel in terms of VBS:

- same-sign $W^{\pm}W^{\pm}jj$ channel
 - \rightarrow no gg and gq induced contributions at tree-level

 $ightarrow l^{\pm}l^{\pm}
u'
u j j$ final state is most sensitive to VBS measurements

However, VBS diagrams cannot gauge-invariantly separated from non-VBS EW diagrams!

Vest, Anger '15

final state	VV-channel	$\sigma^{\rm EW}$ [fb]	$\sigma^{\rm QCD}$ [fb]	$\sigma^{\rm EW}/\sigma^{\rm QCD}$
$l^{\pm}l^{\pm} u\nu'jj$	$W^{\pm}W^{\pm}$	19.5	18.8	$\sim 1:1$
$l^+l^- \nu \nu' j j$	$W^{\mp}W^{\pm}, ZZ$	93.7	3192	$\sim 1:35$
$l^+l^-l'^\pm \nu' jj$	$W^{\pm}Z$	30.2	687	$\sim 1:20$
$l^+l^-l'^+l'^-jj$	ZZ	1.5	106	$\sim 1:70$

most promising VVjj channel in terms of VBS:

- same-sign $W^{\pm}W^{\pm}jj$ channel
 - \rightarrow no gg and gq induced contributions at tree-level
- $ightarrow l^{\pm}l^{\pm}
 u'
 u j j$ final state is most sensitive to VBS measurements

However, VBS diagrams cannot gauge-invariantly separated from non-VBS EW diagrams!

ightarrow Are there kinematic regions in which the genuine VBS process is dominant?

Content

1 Introduction

- 2 Vector-Boson Scattering at the LHC
- 3 The Effective-Vector-Boson Approximation
- **4** Logarithmic Electroweak Corrections
- **5** Conclusion

The Effective-Vector-Boson Approximation

In the EVBA the W-Boson is treated as constituent of the quark and assumed to be on-shell. Driven by logarithmic enhancements $\log^2(M_V^2/s)$ originating from collinear vector-boson emission off the quarks, in analogy to the Weizsäcker-Williams approximation of QED¹.

¹Weizsäcker '34, Williams '34

²Kuss, Spiesberger '96

The Effective-Vector-Boson Approximation

In the EVBA the W-Boson is treated as constituent of the quark and assumed to be on-shell. Driven by logarithmic enhancements $\log^2(M_V^2/s)$ originating from collinear vector-boson emission off the quarks, in analogy to the Weizsäcker-Williams approximation of QED¹.

Factorization into probability densities $P_{V_1|q}(z_1)$ and $P_{V_2|q'}(z_2)$ and a hard scattering process $\sigma_{V_1V_2 \to X}(xs)$ at reduced CM energy \sqrt{xs} , with $x = z_1z_2$.

$$\sigma_{qq' \to X}(s) = \sum_{V_1, V_2} \int_{x_{\min}}^{1} \mathrm{d}x \int_{z_{\min}}^{1} \frac{\mathrm{d}z_1}{z_1} P_{V_1|q}(z_1) P_{V_2|q'}(x/z_1) \sigma_{V_1V_2 \to X}(xs)$$

¹Weizsäcker '34, Williams '34

²Kuss, Spiesberger '96

8th November 2017

The Effective-Vector-Boson Approximation

In the EVBA the W-Boson is treated as constituent of the quark and assumed to be on-shell. Driven by logarithmic enhancements $\log^2(M_V^2/s)$ originating from collinear vector-boson emission off the quarks, in analogy to the Weizsäcker-Williams approximation of QED¹.

Factorization into probability densities $P_{V_1|q}(z_1)$ and $P_{V_2|q'}(z_2)$ and a hard scattering process $\sigma_{V_1V_2 \to X}(xs)$ at reduced CM energy \sqrt{xs} , with $x = z_1z_2$.

$$\sigma_{qq' \to X}(s) = \sum_{V_1, V_2} \int_{x_{\min}}^1 \mathrm{d}x \int_{z_{\min}}^1 \frac{\mathrm{d}z_1}{z_1} P_{V_1|q}(z_1) P_{V_2|q'}(x/z_1) \sigma_{V_1 V_2 \to X}(xs)$$

However, naive convolution of single-vector-boson probabilities is not adequate to describe the two-vector-boson process sufficiently ².

¹Weizsäcker '34, Williams '34

²Kuss, Spiesberger '96

Factorisation of the Amplitude

The full amplitude reads

$$\mathcal{M}_{qq} = \sum_{\lambda_1, \lambda_2, \lambda_3, \lambda_4} \frac{(-1)^{\lambda_1 + \lambda_2}}{K_1 K_2 K_3 K_4} \, \mathcal{M}_{\lambda_1}^{\mathrm{prod}} \mathcal{M}_{\lambda_2}^{\mathrm{prod}} \times \mathcal{M}_{\lambda_1 \lambda_2 \lambda_3 \lambda_4}^{\mathrm{VBS}} \times \mathcal{M}_{\lambda_3}^{\mathrm{decay}} \mathcal{M}_{\lambda_4}^{\mathrm{decay}},$$

where we have introduced the abbreviations

$$\begin{split} \mathrm{i}\mathcal{M}_{\lambda_{i}}^{\mathrm{prod}} &= J_{i}^{\mu}\varepsilon_{\lambda_{i},\mu}^{*}, \qquad \qquad K_{i} = k_{i}^{2} - M_{\mathrm{W}}^{2}, \qquad \qquad i = 1, 2, \\ \mathrm{i}\mathcal{M}_{\lambda_{f}}^{\mathrm{decay}} &= J_{f}^{\mu}\varepsilon_{\lambda_{f},\mu}, \qquad \qquad K_{f} = k_{f}^{2} - M_{\mathrm{W}}^{2} + \mathrm{i}M_{\mathrm{W}}\Gamma_{\mathrm{W}}, \qquad \qquad f = 3, 4. \end{split}$$

On-Shell Projection

In order to guarantee gauge invariance of the amplitude we need to consider on-shell W-boson scattering.

$$\mathcal{M}_{qq} = \sum_{\lambda_1, \lambda_2, \lambda_3, \lambda_4} \frac{(-1)^{\lambda_1 + \lambda_2}}{K_1 K_2 K_3 K_4} \underbrace{\mathcal{M}_{\lambda_1}^{\text{prod}} \mathcal{M}_{\lambda_2}^{\text{prod}}}_{\text{off-shell}} \times \underbrace{\widetilde{\mathcal{M}}_{\lambda_1 \lambda_2 \lambda_3 \lambda_4}^{\text{VBS}} \times \widetilde{\mathcal{M}}_{\lambda_3}^{\text{decay}} \widetilde{\mathcal{M}}_{\lambda_4}^{\text{decay}}}_{\text{on-shell}}$$

Where the on-shell momenta are defined as follows

$$\begin{split} \text{VBS}: \qquad & \tilde{k}_{12}^{\mu} = \frac{\sqrt{\tilde{s}}}{2}(1,0,0,\pm\beta), \qquad & \tilde{k}_{3/4}^{\mu} = \frac{\sqrt{\tilde{s}}}{2}(1,\pm\beta\sin\tilde{\theta},0,\pm\beta\cos\tilde{\theta}), \\ \text{Decay}: \qquad & \tilde{p}_{3/4}^{\prime\mu} = p_{3/4}^{\prime\mu}\frac{M_{\text{W}}^2}{2\bar{k}_{3/4}\cdot p_{3/4}^\prime}, \qquad & \tilde{p}_{3/4}^{\mu} = \tilde{k}_{3/4}^{\mu} - \tilde{p}_{3/4}^{\prime\mu}, \end{split}$$

with

$$\tilde{s} = 4 M_{\rm W}^2 - t - u, \qquad \beta = \sqrt{1 - 4 M_{\rm W}^2 / \tilde{s}}, \qquad \cos \tilde{\theta} = 1 + 2t / \tilde{s} \beta^2.$$

On-Shell Projection

In order to guarantee gauge invariance of the amplitude we need to consider on-shell W-boson scattering.

$$\mathcal{M}_{qq} = \sum_{\lambda_1, \lambda_2, \lambda_3, \lambda_4} \frac{(-1)^{\lambda_1 + \lambda_2}}{K_1 K_2 K_3 K_4} \underbrace{\mathcal{M}_{\lambda_1}^{\text{prod}} \mathcal{M}_{\lambda_2}^{\text{prod}}}_{\text{off-shell}} \times \underbrace{\widetilde{\mathcal{M}}_{\lambda_1 \lambda_2 \lambda_3 \lambda_4}^{\text{VBS}} \times \widetilde{\mathcal{M}}_{\lambda_3}^{\text{decay}} \widetilde{\mathcal{M}}_{\lambda_4}^{\text{decay}}}_{\text{on-shell}}$$

Where the on-shell momenta are defined as follows

$$\begin{split} \text{VBS}: \qquad & \tilde{k}_{12}^{\mu} = \frac{\sqrt{\tilde{s}}}{2}(1,0,0,\pm\beta), \qquad & \tilde{k}_{3/4}^{\mu} = \frac{\sqrt{\tilde{s}}}{2}(1,\pm\beta\sin\tilde{\theta},0,\pm\beta\cos\tilde{\theta}), \\ \text{Decay}: \qquad & \tilde{p}_{3/4}^{\prime\mu} = p_{3/4}^{\prime\mu}\frac{M_{\text{W}}^2}{2\tilde{k}_{3/4}\cdot p_{3/4}^\prime}, \qquad & \tilde{p}_{3/4}^{\mu} = \tilde{k}_{3/4}^{\mu} - \tilde{p}_{3/4}^{\prime\mu}, \end{split}$$

with

$$\tilde{s} = 4 M_{\rm W}^2 - t - u, \qquad \beta = \sqrt{1 - 4 M_{\rm W}^2 / \tilde{s}}, \qquad \cos \tilde{\theta} = 1 + 2t / \tilde{s} \beta^2.$$

Why do we keep t and u fixed?

On-Shell Projection

In order to guarantee gauge invariance of the amplitude we need to consider on-shell W-boson scattering.

$$\mathcal{M}_{qq} = \sum_{\lambda_1, \lambda_2, \lambda_3, \lambda_4} \frac{(-1)^{\lambda_1 + \lambda_2}}{K_1 K_2 K_3 K_4} \underbrace{\mathcal{M}_{\lambda_1}^{\text{prod}} \mathcal{M}_{\lambda_2}^{\text{prod}}}_{\text{off-shell}} \times \underbrace{\widetilde{\mathcal{M}}_{\lambda_1 \lambda_2 \lambda_3 \lambda_4}^{\text{VBS}} \times \widetilde{\mathcal{M}}_{\lambda_3}^{\text{decay}} \widetilde{\mathcal{M}}_{\lambda_4}^{\text{decay}}}_{\text{on-shell}}$$

Where the on-shell momenta are defined as follows

$$\begin{split} \text{VBS}: \qquad & \tilde{k}_{12}^{\mu} = \frac{\sqrt{\tilde{s}}}{2}(1,0,0,\pm\beta), \qquad & \tilde{k}_{3/4}^{\mu} = \frac{\sqrt{\tilde{s}}}{2}(1,\pm\beta\sin\tilde{\theta},0,\pm\beta\cos\tilde{\theta}), \\ \text{Decay}: \qquad & \tilde{p}_{3/4}^{\prime\mu} = p_{3/4}^{\prime\mu}\frac{M_{\text{W}}^2}{2\tilde{k}_{3/4}\cdot p_{3/4}^\prime}, \qquad & \tilde{p}_{3/4}^{\mu} = \tilde{k}_{3/4}^{\mu} - \tilde{p}_{3/4}^{\prime\mu}, \end{split}$$

with

$$\tilde{s} = 4 M_{\rm W}^2 - t - u, \qquad \beta = \sqrt{1 - 4 M_{\rm W}^2 / \tilde{s}}, \qquad \cos \tilde{\theta} = 1 + 2t / \tilde{s} \beta^2.$$

Why do we keep t and u fixed? \rightarrow Appearance of a photon pole!

The Photon Pole

Physically a consequence of the of the infinite range of the Coulomb potential. Appears also in Møller-, Bhabha-, and in Rutherford scattering.

 \rightarrow either cut on scattering angle θ or fix invariants t and u in the on-shell projection.

The Photon Pole

Physically a consequence of the of the infinite range of the Coulomb potential. Appears also in Møller-, Bhabha-, and in Rutherford scattering.

 \rightarrow either cut on scattering angle θ or fix invariants t and u in the on-shell projection.

Fix t and u invariants to avoid photon pole:

$$\tilde{t} = t, \qquad \tilde{u} = u.$$

The Photon Pole

Physically a consequence of the of the infinite range of the Coulomb potential. Appears also in Møller-, Bhabha-, and in Rutherford scattering.

 \rightarrow either cut on scattering angle θ or fix invariants t and u in the on-shell projection.

Fix t and u invariants to avoid photon pole:

$$\tilde{t} = t, \qquad \tilde{u} = u.$$

Note: Photon pole lies outside the physical phase space of the full $2 \rightarrow 6$ process!

Numerical Results - Phase Space Cuts

We first use standard VBS cuts³:

· Jet recombination:

 $D = 0.7, \quad k_{\rm T}$ algorithm.

· Cuts on jets:

$$\begin{array}{ll} p_{\rm T,j} > 20 \; {\rm GeV}, & |y_{\rm j}| < 4.5, \\ M_{\rm ji} > 600 \; {\rm GeV}, & y_{\rm j_1} \times y_{\rm j_2} < 0, \\ \Delta y_{\rm jj} > 4. \end{array}$$

· Cuts on leptons:

$$\begin{split} p_{\text{T,I}} &> 20 \; \text{GeV}, & |y_{\text{I}}| < 2.5, \\ \Delta R_{\text{II}} &> 0.4, & y_{\text{Jmin}} < y_{\text{I}} < y_{\text{Jmax}}, \\ \Delta R_{\text{II}} &> 0.1. & \end{split}$$

³Denner, Hosekova, Kallweit '12 [arXiv:1209.2389]

Numerical Results - EVBA I

Numerical Results - EVBA I

Phase Space Cuts - Reloaded

We first use standard VBS cuts:

· Jet recombination:

 $D = 0.7, \quad k_{\rm T}$ algorithm.

· Cuts on jets:

 $\begin{array}{ll} p_{{\rm T},{\rm j}} > 20 \; {\rm GeV}, & |y_{\rm j}| < 4.5, \\ M_{\rm ji} > 600 \; {\rm GeV}, & y_{\rm j_1} \times y_{\rm j_2} < 0, \\ \Delta y_{\rm ji} > 4. \end{array}$

· Cuts on leptons:

$$\begin{split} p_{\rm T,l} &> 20 \; {\rm GeV}, & |y_{\rm l}| < 2.5, \\ \Delta R_{\rm jl} &> 0.4, & y_{\rm j_{\rm min}} < y_{\rm l} < y_{\rm j_{\rm max}}, \\ \Delta R_{\rm ll} &> 0.1. \end{split}$$

We now require $p_{\rm T,j} < 150 \, {\rm GeV}.$

\sqrt{s} [TeV]	$\sigma_{\rm LO}~{\rm [fb]}$	$\sigma_{\rm EVBA}$ [fb]	$\delta^{\rm EVBA}$
14	0.579(1)	0.817(2)	41.1 %
100	4.81(2)	6.38(3)	32.6 %

We now require $p_{\rm T,i} < 150 \, {\rm GeV}$.

	0.010(-)	0.01.(-)	
100	4.81(2)	6.38(3)	32.6 %

We now require $p_{\rm T,i} < 150 \, {\rm GeV}$.

	0.010(1)	0.011(2)	1111 /0
100	4.81(2)	6.38(3)	32.6 %

We now require $p_{T,i} < 100 \text{ GeV}$ and $p_{T,i} > 100 \text{ GeV}$.

We now require $p_{T,i} < 100 \text{ GeV}$ and $p_{T,i} > 100 \text{ GeV}$.

Content

1 Introduction

- 2 Vector-Boson Scattering at the LHC
- 3 The Effective-Vector-Boson Approximation
- 4 Logarithmic Electroweak Corrections
- **5** Conclusion

Logarithmic Electroweak Corrections

Typical one-loop Feynman diagrams that lead to Sudakov logarithms:

For high energies, i.e. $s \gg M_W^2$, logarithms become dominant and are of significant size

$$\frac{\alpha}{4\pi s_{\rm W}^2}\log^2\frac{s}{M_{\rm W}^2}\simeq 6.6\%, \qquad \frac{\alpha}{4\pi s_{\rm W}^2}\log\frac{s}{M_{\rm W}^2}\simeq 1.3\%.$$

at $\sqrt{s}=1~{\rm TeV.}$ \rightarrow for VBS at the LHC we can approximate the EW corrections by considering only these logarithms!

In LA the correction factorizes

$$\delta \mathcal{M}^{i_1 \dots i_n} = \mathcal{M}_0^{i'_1 \dots i'_n} \,\delta_{i'_1 i_1 \dots i'_n i_n},$$

and the correction factor can be decomposed

$$\delta = \underbrace{\delta^{\text{LSC}} + \delta^{\text{C}} + \delta^{\text{PR}}}_{= \delta^{\text{LL}}} + \underbrace{\delta^{\text{SSC}}}_{= \delta^{\text{NLL}}},$$

Radiative Corrections to VBS

- We neglect non-factorizable corrections.
- We neglect corrections to the emission and decay process.

Radiative Corrections to VBS

- We neglect non-factorizable corrections.
- We neglect corrections to the emission and decay process.

 \rightarrow We consider only corrections to the $W^+W^+ \rightarrow W^+W^+$ subprocess.

Hence, using the EVBA the correction can be written as

$$\begin{split} \delta \mathcal{M}_{qq}^{\text{EVBA}} &= \sum_{\lambda_1,\lambda_2,\lambda_3,\lambda_4} \frac{(-1)^{\lambda_1+\lambda_2}}{K_1 K_2 K_3 K_4} \, \mathcal{M}_{\lambda_1}^{\text{prod}} \mathcal{M}_{\lambda_2}^{\text{prod}} \\ &\times \delta \widetilde{\mathcal{M}}_{\lambda_1 \lambda_2 \lambda_3 \lambda_4}^{\text{VBS}} \times \widetilde{\mathcal{M}}_{\lambda_3}^{\text{decay}} \widetilde{\mathcal{M}}_{\lambda_4}^{\text{decay}} \end{split}$$

Numerical Results - EW Logarithms

Numerical Results - EW Logarithms

Content

1 Introduction

- 2 Vector-Boson Scattering at the LHC
- 3 The Effective-Vector-Boson Approximation
- 4 Logarithmic Electroweak Corrections
- **5** Conclusion

Conclusion

VBS in general

- · Vector Boson Scattering is a key tool in probing the mechanism of EWSB.
- At the LHC all contributing processes need to be fully understood \rightarrow kinematical cuts are required to suppress background contributions
- · The EVBA may quantify the dominant region of VBS

EVBA

- The photon pole only appears as an artefact in a bad on-shell projection.
- For standard VBS cuts the approximation is not applicable as the collinearity of the W bosons is not ensured.
- * If the collinearity is ensured the relative difference only amounts to ~ 3.5 %. \rightarrow the EVBA yields an appropriate approximation in certain kinematic regions!

Logarithmic EW Corrections

- · Both LL and NLL need to be taken into account.
- * The NLO EW correction amounts to -13.6% , which is compatible with the literature. <code>Biedermann, Denner, Pellen 2017 [arXiv:1708.00268]</code>

QCD Background Suppression Cuts

The SU(2) model

We consider a non-Abelian SU(2) model in which no photon field appears.

$$\begin{aligned} SU(2)_{\mathsf{W}} \times U(1)_{\mathsf{Y}} : \quad D_{\mu} &= \partial_{\mu} - \mathrm{i}gI_{\mathsf{W}}^{i}W_{\mu}^{i} + \mathrm{i}g'\frac{Y}{2}B_{\mu}, \\ \downarrow \qquad g' \to 0 \qquad (g = g_{\mathsf{SM}} = g_{SU(2)} = e/s_{\mathsf{W}}) \\ SU(2)_{\mathsf{W}} : \quad D_{\mu} &= \partial_{\mu} - \mathrm{i}gI_{\mathsf{W}}^{i}W_{\mu}^{i}. \end{aligned}$$

 \rightarrow no photon diagrams \rightarrow no photon pole!

Numerical Results - SU(2) model

Numerical Results - SU(2) model

Numerical Results - s fixed

Numerical Results - s fixed

Numerical Results - Helicity Configurations

Numerical Results - Helicity Configurations

Complex-Shift Procedure

We set the W bosons on-shell by consistently shifting external momenta into the complex plane.

$$\begin{split} \tilde{p}_{i}^{\dot{A}B} &= p_{i}^{\dot{A}} \, \tilde{p}_{i}^{B}, \qquad \tilde{p}_{i}^{B} = p_{i}^{B} + \sum_{f=3}^{4} z_{if} \, p_{f}^{B}, \qquad i = 1, 2, \\ \tilde{p}_{f}^{\dot{A}B} &= \tilde{p}_{f}^{\dot{A}} \, p_{f}^{B}, \qquad \tilde{p}_{f}^{\dot{A}} = p_{f}^{\dot{A}} + \sum_{i=1}^{2} z_{if} \, p_{i}^{\dot{A}}, \qquad f = 3, 4, \end{split}$$

Which is fixed by 4 on-shell conditions

$$\begin{split} M_{\mathsf{W}}^{2} &= \tilde{k}_{i}^{2} = (\tilde{p}_{i} - p_{i}')^{2} = -2\tilde{p}_{i} \cdot p_{i}' \\ &= -2p_{i} \cdot p_{i}' - \sum_{f=3}^{4} z_{if} \langle p_{i}p_{i}' \rangle^{*} \langle p_{f}p_{i}' \rangle, \qquad \qquad i = 1, 2, \\ M_{\mathsf{W}}^{2} &= \tilde{k}_{f}^{2} = (\tilde{p}_{f} + p_{f}')^{2} = 2\tilde{p}_{f} \cdot p_{f}' \\ &= 2p_{f} \cdot p_{f}' + \sum_{i=1}^{2} z_{if} \langle p_{i}p_{f}' \rangle^{*} \langle p_{f}p_{f}' \rangle, \qquad \qquad f = 3, 4. \end{split}$$

 \Rightarrow leads to inconsistent results which are off by several magnitudes or do not even converge.