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Dirac Hermiticity 

 

• guarantees real energy and probability-conserving 

time evolution 

• but … is a mathematical axiom and not a 

physical axiom of quantum mechanics 

 

H = H (    means transpose + complex conjugate) 

Dirac Hermiticity can be generalized... 



P = parity 

T = time reversal 

The point of this work: 

 

Replace Dirac Hermiticity by physical 

and weaker condition of PT symmetry 



 

This Hamiltonian has 

PT symmetry! 

Example: 



A class of PT-symmetric Hamiltonians: 

CMB and S. Boettcher 

PRL 80, 5243 (1998) 





Upside-down potential with 

real positive eigenvalues?! 
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Developments in PT Quantum Mechanics 
(Since its ‘official’ beginning in 1998) 

 

 

       Over fifteen international conferences 

 

       Over 1000 published papers 

 

       Over 122 posts to “PT symmeter” <http://ptsymmetry.net> 

             in last 12 months (92 in previous 12 months) 

 

        Lots of experimental results in last two years 







Proving the reality of eigenvalues 

Proof is difficult! Uses techniques from conformal field  

theory and statistical mechanics: 

 

(1) Bethe ansatz 

(2) Monodromy group 

(3) Baxter T-Q relation 

(4) Functional Determinants 

[P. Dorey, C. Dunning, and R. Tateo] 



PT Boundary 
Region of unbroken 

PT symmetry 

Region of broken 

PT symmetry 



Broken ParroT Unbroken ParroT 



n=2: 

CMB and D. Hook 

Phys. Rev. A 86, 022113 (2012)  

n=3: 



Hermitian Hamiltonians: 

 BORING! 

The eigenvalues are always real – nothing interesting happens 



PT-symmetric Hamiltonians: 

ASTONISHING! 

Phase transition between parametric regions of 

broken and unbroken  PT symmetry... 

Can be observed experimentally! 



Intuitive explanation of PT 

phase transition … 



Box 1: Loss Box 2: Gain 



Two boxes together as a single system: 

This Hamiltonian is PT symmetric, 

 

  

where T is complex conjugation and  



Couple the boxes together with coupling strength g 

Eigenvalues become real if g is sufficiently large: 



Source antenna becomes infinitely strong as 

 

 

 

Sink antenna becomes infinitely strong as  

Time for classical particle to travel from source to sink: 

Examining CLASSICAL limit of PT quantum mechanics 

provides intuitive explanation of the PT transition: 



Source and sink localized at + and - infinity 



Complex eigenvalue problems 

and Stokes wedges… 

At the quantum level: 



Upside down potential 



Step 1: Change path of integration 



Step 1: Change path of integration 



Step 2: Fourier transform 



Step 3: Change dependent variable 



Step 4: Rescale p 



Result: A pair of exactly 

isospectral Hamiltonians 

CMB, D. C. Brody, J.-H. Chen, H. F. Jones , K. A. Milton, and M. C. Ogilvie 

Physical Review D 74, 025016 (2006) [arXiv: hep-th/0605066]  



Reflectionless potentials! 

Z. Ahmed, CMB, and M. V. Berry, 

J. Phys. A: Math. Gen. 38, L627 (2005) [arXiv: quant-ph/0508117]  



In effect, we are extending  

conventional classical mechanics 

and Hermitian quantum 

mechanics into the complex plane… 



Complex plane 



How general is the PT phase transition? 

Implicitly restarted Arnoldi algorithm 
CMB and D. Weir 

[arXiv: quant-ph/1206.5100] 

Journal of Physics A (in press) 







Phase transition at g = 0.04 



The eigenvalues are real and positive, 

but is this quantum mechanics? 

• Probabilistic interpretation?? 

• Hilbert space with a positive metric?? 

• Unitarity time evolution?? 



The Hamiltonian determines its own adjoint! 



Unitarity 

With respect to the CPT adjoint 

the theory has UNITARY time 

evolution. 

 

Norms are strictly positive! 

Probability is conserved!   



Example: 2 x 2 Non-Hermitian  

matrix PT-symmetric Hamiltonian 

where 



PT–symmetric systems are being 

observed experimentally! 



Laboratory verification using 

 table-top optics experiments! 

• Z. Musslimani, K. Makris, R. El-Ganainy, and D.     
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Musslimani, Physical Review Letters 100, 103904 (2008) 

• A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-

Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, 

Physical Review Letters 103, 093902 (2009) 

• C. E. Ruter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, 

M. Segev, and D. Kip, Nature Physics 6, 192 (2010) 

Observing  PT symmetry using optical wave guides: 









The observed PT phase transition 









Another experiment... 

“Enhanced magnetic resonance signal of spin-polarized Rb 

atoms near surfaces of coated cells” 

K. F. Zhao, M. Schaden, and Z. Wu 

Physical Review A 81, 042903 (2010) 



More... 









J. Schindler et al., Phys. Rev. A (2011) 
Experimental study of active LRC circuits with PT symmetries 

Joseph Schindler, Ang Li, Mei C. Zheng, F. M. Ellis, and Tsampikos Kottos 

Phys. Rev. A 84, 040101 (2011) 

Published October 13, 2011 
Everyone learns in a first course on quantum mechanics that the result of a measurement cannot be a complex 

number, so the quantum mechanical operator that corresponds to a measurement must be Hermitian. However, 

certain classes of complex Hamiltonians that are not Hermitian can still have real eigenvalues. The key property 

of these Hamiltonians is that they are parity-time (PT) symmetric, that is, they are invariant under a mirror 

reflection and complex conjugation (which is equivalent to time reversal). 

 

Hamiltonians that have PT symmetry have been used to describe the depinning of vortex flux lines in type-II 

superconductors and optical effects that involve a complex index of refraction, but there has never been a simple 

physical system where the effects of PT symmetry can be clearly understood and explored. Now, Joseph Schindler 

and colleagues at Wesleyan University in Connecticut have devised a simple LRC electrical circuit that displays 

directly the effects of PT symmetry. The key components are a pair of coupled resonant circuits, one with active 

gain and the other with an equivalent amount of loss. Schindler et al. explore the eigenfrequencies of this system 

as a function of the “gain/loss” parameter that controls the degree of amplification and attenuation of the system. 

For a critical value of this parameter, the eigenfrequencies undergo a spontaneous phase transition from real to 

complex values, while the eigenstates coalesce and acquire a definite chirality (handedness). This simple electronic 

analog to a quantum Hamiltonian could be a useful reference point for studying more complex applications.  

– Gordon W. F. Drake 

APS: Spotlighting exceptional research 









Stimulation of the fluctuation superconductivity by PT-symmetry 

N. M. Chtchelkatchev, A. A. Golubov, T. I. Baturina, and V. M. Vinokur 

Accepted for publication in Physical Review Letters on Sept. 4, 2012  

 

We discuss fluctuations near the second order phase transition where the free energy 

has an additional non-Hermitian term. The spectrum of the fluctuations changes when 

the odd-parity potential amplitude exceeds the critical value corresponding to the 

PT-symmetry breakdown in the topological structure of the Hilbert space of the  

effective non-Hermitian Hamiltonian. We calculate the fluctuation contribution to the 

differential resistance of a superconducting weak link and find the manifestation of the 

PT-symmetry breaking in its temperature evolution. We successfully validate our theory 

by carrying out measurements of far from equilibrium transport in mesoscale-patterned 

superconducting wires.   

 



Best way to have loss and gain:  

 

Set a=0 

 
Remove r  (0 < r < 1) of the energy of the x pendulum 

and transfer it to the y pendulum. 

PT-symmetric system of coupled pendula 



CMB, B. Berntson, D. Parker, E. Samuel, American Journal of Physics (in press) [arXiv: math-ph/1206.4972]  



Magnets off Unbroken PT, Rabi oscillations 
(pendula in equilibrium) 

Theory: 

Experiment: 

(r=0) 



Unbroken PT region 
Theory: 

Experiment: 

(r=0.01) 

Weak magnets, Rabi 

oscillations (pendula in equilibrium) 



Broken PT region 
Theory: 

Experiment: 

(r=0.3) 

Strong magnets, no Rabi 

oscillations (pendula out of equilibrium) 



PT quantum mechanics is fun! 

You can re-visit things you 

already know about ordinary 

Hermitian quantum mechanics.  



Two examples: 

 

 

“Ghost Busting: PT-Symmetric Interpretation of the Lee Model” 

CMB, S. F. Brandt, J.-H. Chen, and Q. Wang 

Phys. Rev. D 71, 025014 (2005)  [arXiv: hep-th/0411064] 

 

 

“No-ghost Theorem for the Fourth-Order Derivative Pais-Uhlenbeck 

Oscillator Model” 

CMB and P. D. Mannheim 

Phys. Rev. Lett. 100, 110402 (2008)  [arXiv: hep-th/0706.0207] 



New example: 

 

“Resolution of Ambiguity in the Double-Scaling Limit” 

CMB, M. Moshe, and S. Sarkar 

[arXiv: hep-th/1206.4943] 

Correlated limits 

 

Perturbative solution to a problem: 

a tends to a limit as e approaches 0: 



Examples of correlated limits: 

 

(1) Fourier sine series: 

 

 

 

 



(2) Laplace’s method for asymptotic expansion of integrals: 

Integration by parts: 

Correlated limit: 



(3) Transition in a quantum-mechanical wave function between 

a classically allowed and a classically forbidden region  





This is invalid because  

Correlated limit (double-scaling limit): 

(Two quadratic saddle points fuse into a cubic saddle point) 

 

Result: 



PT-symmetric reformulation: 

Only works when the dimension N+1 is odd! 



“The shortest path between two 

truths in the real domain passes 

through the complex domain.” 

-- Jacques Hadamard 
The Mathematical 

        Intelligencer 13 (1991) 



Possible fundamental applications: 

 1. PT Higgs model:           theory is asymptotically 

   free, stable, conformally invariant, and has 

 

2. PT QED             like a theory of magnetic charge, 

   asymptotically free, opposite Coulomb force 

  

3. PT gravity                has a repulsive force 



THE END! 


