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Review of Previous Talks

I Ralf’s talk
I Coarsegrained YMT ground state described by adjoint scalar

field φ(T )
I Effective action for top. triv. sector

I In eff. theory: SU(2)
φ→ U(1), two massive modes, one

massless mode
I Eff. gauge coupling e(T ) has pole at Tc and a plateau value

of
√

8π ∼ 8.8 for T > Tc

I Markus’ talk
I Loop momenta constraint by |φ|
I Calculation of polarization tensor Σµν of the massless mode as

example for radiative correction
I Implementation of constraints on loop momenta
I Small radiative correction in spite of e ∝

√
8π ∼ 8.8



Loop expansion in YM-thermodynamics, I

I Pressure p as loop expansion in connected diags:
p = T logZ/V

I Connected diags: loop diags. with no external legs

Problem
In a perturbative approach to YM thermodynamics the a priori
estimate for the ground state is trivial and leads to the
nonconvergence of the small-coupling expansion of the partition
function Z .

Cause
The presence of topologically nontrivial fluctuations, which do
contribute to the thermodynamics of the YM system in a direct
(ground-state estimate) and an indirect (quasiparticle masses) way,
is neglected in a perturbative loop expansion due to an essential
zero of their weight in the partition function.



Loop expansion in YM-thermodynamics, II

Solution
The effective theory contains an emergent, inert, and adjoint scalar
field φ which describes the topologically nontrivial part of the
ground state.
In the effective theory, thermodynamical quantities (e.g. pressure)
are calculated as effective loop expansions about the nontrivial
ground state.
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Feynman rules, vertices

I Recall: unitary-Coulomb gauge, which is a completely fixed
gauge and thus no Fadddeev-Popov determinants need to be
considered and no ghost fields need to be introduced

I 3-vertex:

Γµνρ[3]abc = e(T ) (2π)4δ(p + q + k)εabc [gµν(q − p)ρ

+gνρ(k − q)µ + gρµ(p − k)ν ]

I 4-vertex:

Γµνρδ[4]abcd = −ie2(T )(2π)4δ(p + q + s + r)

[εfabεfbd(gµρgνσ − gµσgνρ)

+εfacεfdb(gµσgρν − gµνgρσ)

+εfadεfbc(gµνgσρ − gµρgσν)]



Feynman rules, propagators

I Free propagator of massive mode (real time)

DTLH,0
µν,ab (k) = −2πδabD̃µνδ(k2 −m2) nB(|k0|/T ) , a, b ∈ {1, 2}

No vacuum propagator for massive modes (see Ralf’s talk)

I Free propagator of massless mode (real time)

DTLM,0
µν,ab (p) = δa3δb3

{
PT
µν

[
−i

p2 + iε
− 2πδ(p2) nB(|p0|/T )

]
+ i

uµuν
p2

}

P00
T = P i0

T = P0i
T = 0 , P ij

T = δij − pipj

p2



Feynman rules, constraints

I The compositeness constrains on loop momenta are (see
Markus’ talk)

|(p1 + p2)2| ≤ |φ|2 (s channel)

|(p3 − p1)2| ≤ |φ|2 (t channel)

|(p2 − p3)2| ≤ |φ|2 (u channel)

I Massive modes propagate on-shell only

k2 = m2

I Momentum of massless mode constraint by |p2| ≤ |φ|2
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2-loop diagrams

solid (dashed) lines ↔ massive (massless) modes

∆Pa =
1

8i

∫
d4p d4k

(2π)8
Γλµν[3]abc(p, k ,−p,−k)Γρδτ[3]rst(−p,−k , p + k)

×Dλρ,ar (p)Dµρ,bs(k)Dντ,ct(−p,−k),

∆Pb =
1

8i

∫
d4p d4k

(2π)8
Γµνρδ[4]abcdDµν,ab(p)Dρδ,cd(k)



2-loop diagrams, cntd

Use Feynman rules and carry out the following steps:

I Lorenz and color contractions

I Represent the spatial components of 4 dim. integrals in
spherical coordinates

I Integrate over temporal loop momenta using delta functions
arising from the thermal parts of the propagators

⇒ ∆Pa(b) ' e2Λ4λ−2

∫ 2∏
i=1

dxi

2∏
i 6=j=1

dzij × Polynomials

× Bose-factors



2-loop diagrams, constraints

I Potentially noncompact independent loop variables for 2-loop
diag are (p0, |p|) and (k0, |k|).
Number of potentially noncompact independent loop variables
K̃ = 4

I The constraints for 2-loop diagrames are
– on-shellness: p2 = k2 = 4e2|φ|2
– compositeness constraints:∣∣∣∣4e2 ±

√
x2

1 + 4e2

√
x2

2 + 4e2 − x1x2z12

∣∣∣∣ ≤ 1

2
,

where x1 ≡ |p||φ| and x2 ≡ |k||φ|
I For 2-loop, we have the total number of constraints

K = 1 + 2 = 3

I Thus for the 2-loop case we have more noncompact loop
variables than constraints: K̃ > K

I ⇒ noncompact integration region (Markus’ talk)



Numerical computings: 2-loop diag. (b) with MC

1/8
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3-loop diagrams

Ir. 3-loop diagrams: Solid (dashed) lines are associated with the
propagators of massive (massless) modes

∆Pa = 1
48

∫
d4p1d

4p2d
4p3

(2π)4(2π)4(2π)4
Γµνρσ[4]abcdΓµ̄ν̄ρ̄σ̄

[4]āb̄c̄ d̄

×Dρρ̄,cc̄(p1)Dσσ̄,dd̄(p2)Dµµ̄,aā(p3)Dνν̄,bb̄(p4),

∆Pb = 1
48

∫
d4p1d

4p2d
4p3

(2π)4(2π)4(2π)4
Γαβγλ[4]hijkΓµνρ[3]abcΓµ̄ν̄ρ̄

[3]āb̄c̄
Dµα,ah(p1)

×Dµ̄β,āi (p2)Dγρ,jc(p3)Dλρ̄,kc̄(p4)Dµν̄,bb̄(p5)

∆Pc = 1
48

∫
d4p1d

4p2d
4p3

(2π)4(2π)4(2π)4
Γµνρσ[4]abcdΓµ̄ν̄ρ̄σ̄

[4]āb̄c̄ d̄
Dρρ̄,cc̄(p1)

×Dσσ̄,dd̄(p2)Dµµ̄,aā(p3)Dνν̄,bb̄(p4)



3-loop diagrams, general constraints

I Potentially noncompact independent loop variables for ir.
3-loop diags are (p0, |p|)i for i = 1, 2, 3.
Number of potentially noncompact independent loop variables

K̃ = 6

I The compositeness constrains for ir. 3-loop diags. are

|(p1 + p2)2| ≤ |φ|2 (s channel)

|(p3 − p1)2| ≤ |φ|2 (t channel)

|(p2 − p3)2| ≤ |φ|2 (u channel)

I Additional constraints depend on the number of massless and
massive propagators in each individual ir. 3-loop diag.



Constraints and compactness: ir. 3-loop diag. (a) and (b)

I We have 3 compositeness constraints due to the s-, t-,
u-channels

I In addition to the compositeness constraints, we have the
on-shellness conditions:

p2
1 = m2, p2

2 = m2, p2
3 = m2, p2

4 = (p1+p2−p3)2 = m2

I The max. off-shellness of the massless mode in diag. (b) is
automatically satisfied by the t-channel due to momentum
conservation, p5 = p1 − p3

I The total number of constraints for diag. (a) and (b) is

K = 3 + 4 = 7

I Thus for ir. 3-loop diag. (a) and (b) we have

K̃ = 6 < 7 = K

⇒ Compact integration region



Constraints and compactness: ir. 3-loop diag. (c)

I As before, we have 3 compositeness constraints over the s-, t-,
u-channels

I In addition to the compositeness constraints, the on-shellness
relations for the massive modes in diag. (c)

p2
3 = m2, p2

4 = (p1 + p2 − p3)2 = m2

I For diag. (c), we also have the following constraints due to
the max. off-shellness

|p2
1 | ≤ |φ|2, |p2

2 | ≤ |φ|2

I The above constraints yield for diag. (c)

K = 3 + 4 = 7

I Thus for all ir. 3-loop diag. K = 3 + 4 = 7 and

K̃ < K

⇒ Compact or empty integration region



Ir. 3-loop integrations

⇒ ∆Pa(b) ' e4Λ4λ−2
2∑
l ,m

∫ 3∏
i=1

dxi

3∏
i 6=j=1

dzij × Polynomials

×Bose-factors× delta-functions,

⇒ ∆Pc ' e4Λ4λ−2
2∑
l ,m

∫
dy

3∏
i=1

dxi

3∏
i 6=j=1

dzij × Polynomials

×Bose-factors× delta-functions



Rescaled constraints: ir. 3-loop diag. (a) and (b)

z12 ≤ 1

x1x2

(
4e2 −

√
x2

1 + 4e2

√
x2

2 + 4e2 +
1

2

)
≡ g12(x1, x2) ,

z13 ≥ 1

x1x3

(
−4e2 +

√
x2

1 + 4e2

√
x2

3 + 4e2 − 1

2

)
≡ g13(x1, x3) ,

z23 ≥ 1

x2x3

(
−4e2 +

√
x2

2 + 4e2

√
x2

3 + 4e2 − 1

2

)
≡ g23(x2, x3) .



Rescaled constraints: ir. 3-loop diag. (c)

1 ≥ |y2
1 + y2

2 − x2
1 − x2

2 + 2y1y2 − 2x1x2z12| ,

1 ≥ |y2
2 − x2

2 + 4e2 − (−1)l2y2

√
x2

3 + 4e2 + 2x2x3z23| ,

1 ≥ |y2
1 − x2

1 + 4e2 − (−1)l2y1

√
x2

3 + 4e2 + 2x1x3z13| ,

1 ≥ |y2
1 − x2

1 | , 1 ≥ |y2
2 − x2

2 | ,

where

y1 ≡ p0
1

|φ|
,

y2 ≡ −y1 + 2(−1)l
√
x2

3 + 4e2 + (−1)m f2(x, z) ,

and

f2(x, z) ≡
√

x2
1 + x2

2 + x2
3 + 2x1x2z12 − 2x1x3z13 − 2x2x3z23 .



Monte-Carlo for ir. 3-loop integrations

I Difficulty: ir. 3-loop corrections from diag. (a)-(b) and (c)
involve 6- and 7-dim. integrations, respectively

I Deterministic methods for integrations are too time consuming

I Motivation of using MC: MC is a statistical method and much
more efficient for such high dim. integrations

I Sample for MC: region of radial loop integration

I Bounding for MC is automatic at 3-loop: compositeness
constraints over s-,t- and u-channels

I For diag. (a) and (b), the compositeness constraints
determine the region of radial loop integration explicitly

I For diag. (c), the constraints are not fully resolvable as for
diag. (a) and (b), and a different method is considered to
determine the region of integration



Numerical computings: ir. 3-loop diag. (a) and (b)



Numerical computings: ir. 3-loop diag. (c)

I For diagram (c) the compositeness constraints are very
restrictive and cannot be resolved due to the off-shellness of
massless modes

I For diagram (c) the region of radial loop integration is
determined by a different method

I Method: a small sampling volume containing only a subset of
the integration region is considered

I In this subset a large number of points are chosen randomly
for the seven variables

I It is then checked by running millions of tests whether any of
these points satisfy the constraints

I No points are found to satisfy all conditions simultaneously
I This continues to hold upon successive enlargement of the

sampling volume
I Thus we conclude that the region of integration is empty for

diagram (c)
I Ir. diag. (c) has a vanishing contribution!



Hierarchy between 2-loop and 3-loop corrections

I Ir. 3-loop integrations generate hierarchically suppressed
contributions to the pressure over the 2-loop contributions:

P2-loop

P1-loop
≤ 10−2

P3-loop

P1-loop
≤ 10−5P2-loop

P1-loop
= 10−7

I Ir. 3-loop integrations are either compact (ir. diags. (a)-(b))
or empty (ir. diag. (c)) whereas 2-loop integrations are
noncompact

I The most striking difference between 2-loop and 3-loop
corrections: the contribution from the ir. 3-loop diag. (c) is
vanishing; no 2-loop diagram has this property



Relation between pressure and polarization tensor

The polarization tensor is a sum over connected bubble diags. with
one internal line of momentum p cut, such that the diag. remains
connected, and the two so-obtained external lines amputated

1

2

3
p p

k

p−k

p p

k
1

2

Consequences:

I The hierarchical suppression of 3-loop compared to 2-loop
justifies the calculation of the polarization tensor on 1-loop
level (as done in Markus’ talk).

I The vanishing of a connected bubble diag. due to a
zero-measure support for its loop-momenta integrations
implies that the associated contribution to a polarization
tensor is also nil.
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N-loop diagrams

I Euler-L’Huilliers characteristics: V − I + L + 1 = 2− 2g (L:
# independent loop momenta, I : # internal lines, V : #
vertices, g : genus of diagram)

I diag. containing solely (i) V4 four-vertices, (ii) V3

three-vertices:

(i) I = 2V4 (ii) I = 3/2V3 .

I (i): 2V4 constraints (propagators) + (at least) 3/2V3

constraints (vertices) ⇒ total number of constraints
K ≥ 7/2V4

(ii): K = 3/2V3 (propagators)

I # of potentially noncompact loop-variables K̃ = 2L

I Put together:

K̃

K
≤ 4

7

[
1 +

1

V4
(1− 2g)

]
,

K̃

K
≤ 2

3

[
1 +

2

V3
(1− 2g)

]



The conjecture

I Constraints are inequalities (rather than equalities):
|p2 −m2| ≤ |φ|2 and |p2| ≤ |φ|2

I K̃/K ≤ 1: compact integration regions (rather than isolated
points)

K̃

K
≤ 4

7

[
1 +

1

V4
(1− 2g)

]
,

K̃

K
≤ 2

3

[
1 +

2

V3
(1− 2g)

]
I If K̃/K is sufficiently smaller than unity, which should be the

case for sufficiently large V4 and/or V3, then the associated
diag. should not contribute (e.g. g = 0: V4 ≥ 2, V3 ≥ 6).

Conjecture

There are only finitely many nonvanishing connected bubble
diagrams, provided that all 1PI contributions to the polarization
tensor are resummed.

The loop expansion converges rapidly.



The conjecture, evidence

I Integration regions for 2-loop pressure are non-compact, yet
P2-loop is at most 1% of P1-loop

I Integration regions for 3-loop pressure are compact; The
modulus of the dominant ir. 3-loop contribution, coming from
diag. (b), is nearly equal to modulus of the smallest 2-loop
contribution

I The contribution from the ir. 3-loop diag. (c) is vanishing

Proof?
Your ideas are welcome!

Thank you.
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