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Distinction of the electromagnetic field?

Consider invariance of action

1

2g2
tr

∫

FµνFµν

under local transformation

Aµ
Ω−→ ΩAµΩ

† + iΩ∂µΩ
† ,

where Ω = Ω(x) ∈ semisimple Lie group G , Aµ = Aµ(x) ∈ g
gauge field, and Fµν = Fµν(x) its curvature.

Before 1954, Pauli, Barker, and Gulmanelli considered Kaluza-Klein
zero-mode reduction over “internal”, compact manifold G with
dimG > 1 ⇒ generally leads to inconsistency of 4D gravity



In 1954, Yang speaks on work with Mills (4D theory with SU(2)
invariance), Pauli in audience:
Pauli asked, ,What is the mass of this field Aµ?’. I said we did not
know. Then I resumed my presentation, but soon Pauli asked the
same question again. I said something to the effect that that was a
very complicated problem, we had worked on it and come to no
definite conclusions. I still remember his repartee: ,That is not
sufficient excuse!’.

Note to Yang by Pauli:
But I was and still am disgusted and discouraged of the vectorfield
corresponding to particles with zero rest-mass (I do not take
your excuse for it with “complications” seriously), and the
difficulty with the group due to the distinction of the
electromagnetic field remains.’



This talk and talks by Markus and Dariush:

◮ Pauli’s conclusion that SU(2) irrelevant on basis of
nonobservation of propagating DOEs premature
(topological field configuration collectively break SU(2)
dynamically ↔ external Higgs mechanism for ew symmetry
breaking in SM)

◮ Yang’s feeling of mass generation (“complications”) in a pure
SU(2) theory confirmed:
mass scale Λ enters the game on the BPS level, no
conceptual problem as in PT

◮ collective nature of associated thermal ground state: both
infrared and ultraviolet divergences do not appear in
effective theory

◮ stable topological defects (magnetic monopoles) are
generated collectively (and unresolvably) by well-controlled
radiative corrections in effective theory: no need to rely on
semiclassical approximation



Euclidean finite-temperature field theory

◮ representation of partition function Z
(field theory of real scalar φ for simplicity)

Z = Tr e−βH = N
∫ φ(x,β)=φα(x)

φ(x,0)=φα(x)

∏

x,τ ′

dφ(x, τ ′)×

exp

[

−
∫ β

0
dτ ′′

∫

d3y

(

1

2
∂τ ′′φ∂τ ′′φ+

1

2
∇φ · ∇φ+ V (φ)

)]

≡ N
∫ φ(x,β)=φα(x)

φ(x,0)=φα(x)

∏

x,τ ′

dφ(x, τ ′) exp

[

−
∫ β

0
dτ ′′

∫

d3y LE

]

,

where β ≡ 1/T .

◮ in gauge theory: admissible changes of gauge respect
periodicity of Aµ

◮ in gauge-theory PT: additional gauge fixing required
(Faddeev-Popov or better)



Euclidean finite-temperature field theory

◮ loop expansion of N-point functions in momentum space,
propagator D̄

D̄(p, ωn) =
1

ω2
n + p2 +m2

,

where ωn ≡ 2π nT (n ∈ Z) nth Matsubara frequency.

◮ re-expressing (but not changing the contour for τ ′′ integration
in Euclid. action) summation over n and integration over p,
∑

n

∫

d3p, by Cauchy’s integral theorem ⇒

− 1

ω2
n + p2 +m2

−→ i

p2 −m2
+ δ(p2 −m2)

2π

eβ|p0| − 1
,

where
∑

n

∫

d3p −→
∫

d4p.



Real-time interpretation of loop integrals

Remarks:

◮ A more elaborate τ ′′ integration contour in the action was
considered in [Umezawa, Matsumoto, and Tachiki (1982), Niemi

and Semenoff (1984)]. This doubles real-time DOEs to avoid
pinch singularities in PT

◮ In Yang-Mills, where topological field configurations
constructed for 0 ≤ τ ′′ ≤ β (ground state!), such a change of
contour for physics of propagating excitations is inconsistent.



Perturbative approach to pressure in Euclidean formulation

◮ in [Linde 1980] uselessness of PT after order g6 pointed out
(scale-separation argument for g ≪ 1: momenta of order T
(hard), gT (soft), and g2T (ultrasoft);
hard and soft OK; ultrasoft: weak screening of magnetic
modes destroys perturbativity starting at g6)

◮ SU(3) pressure in pure-YM PT
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Trivial-holonomy calorons

◮ in singular gauge (winding number |k | = 1 is localized in a
point) there is a superposition principle of instanton centers
in prepotential Π [’t Hooft (1976), Jackiw and Rebbi (1976)]:

Ā+,a
µ (x) = −η̄aµν ∂ν log Π ,

Ā−,a
µ (x) = −ηaµν ∂ν log Π .

◮ can be used to satisfy at |k | = 1 periodic b.c. in strip
(0 ≤ τ ≤ β)× R3 [Harrington and Shepard (1978)]:

Π(τ, x; ρ, β, x0) = 1 +

l=∞
∑

l=−∞

ρ2

(x − xl)2

= 1 +
πρ2

βr

sinh
(

2πr
β

)

cosh
(

2πr
β

)

− cos
(

2πτ
β

) ,

where r ≡ |x|.



Trivial-holonomy calorons, cntd.

◮ holonomy of Ā±,a
µ (x) at r → ∞ trivial:

Π
r→∞
= 1 +

πρ2

βr
⇒ lim

r→∞
Ā±
4 ∝ lim

r→∞
1

r2
= 0 ⇒

P exp

[

i

∫ β

0
dτ Ā±

4

]

= 12 .

◮ Gaussian quantum weight [Gross, Pisarski, and Yaffe (1981)]:

Seff =
8π2

ḡ2
+

4

3
σ2 + 16A(σ) (σ ≡ π

ρ

β
) ,

A(σ) → −1

6
log σ (σ → ∞) A(σ) → −σ2

36
(σ → 0) .

Conclusion of semiclassical approx.:
Trivial-holonomy-caloron weight exponentially suppressed at
high T .



Nontrivial holonomy: Static magnetic dipoles

◮ construction based on [Ward 1977, Atiyah and Ward 1977,

ADHM 1978, Drinfeld and Manin 1978, Manton 1978, Adler 1978,

Rossi 1979, Nahm 1980-1983]

◮ explicitly carried out in [Lee and Lu 1998, Kraan and Van Baal

1998]: A4(τ, r → ∞) = −iut3(0 ≤ u ≤ 2π
β ).

action density of nontrivial-holonomy caloron with

k = 1 plotted on 2D spatial slice

exact cancellation
between A4-mediated
repulsion and
Ai -mediated
attraction;

caloron radius ρ and

thus monopole-core

separation D = π
β
ρ2

increase from left to

right (T and

holonomy fixed)



Nontrivial holonomy, cntd.

computation of functional determinant about nontrivial holonomy
carried out in [Gross, Pisarski, and Yaffe (1981), Diakonov et al. 2004]

in (relevant) limit D
β = π

(

ρ
β

)2
≫ 1

conclusions:

◮ total suppression for nontrivial static holonomy in limit
V → ∞

◮ attraction of monop. and antimonop. for small holonomy
(0 ≤ u ≤ π

β (1− 1√
3
); π

β (1 +
1√
3
) ≤ u ≤ 2 π

β )

◮ repulsion of monop. and antimonop. for large holonomy
(πβ (1− 1√

3
) ≤ u ≤ π

β (1 +
1√
3
))

◮ unstability of classical configuration under quantum noise ⇒
no entering of a priori estimate of thermal ground state



Inert field φ

Observations and principles constraining construction of φ:

◮ Fµν = ±F̃µν ⇒ vanishing energy-momentum:

Θµν = −2 tr
{

δµν

(

∓E ·B± 1

4
(2E ·B+ 2B · E)

)

∓(δµ4δνi + δµi δν4) (E× E)i

±δµiδν(j 6=i) (EiBj − EiBj)± δµ(j 6=i)δνi (EjBi − EjBi)
}

≡ 0 .

◮ spatial isotropy and homogeneity of effective local not
associated with propagation of energy-momentum by
fundamental gauge fields ⇒ inert scalar φ

◮ modulo admissible gauge transformations φ does not depend
on time

◮ relevance of φ (BPS) by gauge-invariant coupling to
coarse-grained k = 0 sector (perturbative renormalizability) ⇒
φ adjoint scalar



Inert field φ

Observations and principles constraining construction of φ, cntd:

◮ Fµν ≡ ±F̃µν ⇒ any local “power” of Fµν with an insertion of
ta vanishes

◮ only trivial holonomy in Fµν ≡ ±F̃µν allowed

◮ |φ| is spacetime homogeneous ⇒ information on φ’s EOM is
encoded in phase φ̂ ≡ φ

|φ|

◮ definition of possible phases {φ̂}: due to BPS of A±
µ no

explicit T dependence, flat measure for admissible
integration over moduli (excluding temporal shifts and
global gauge rotations), Wilson lines between spatial points
along straight lines



Inert field φ

Unique definition of {φ̂} [Herbst and Hofmann 2004]:

{φ̂a} ≡
∑

±
tr

∫

d3x

∫

dρ ta Fµν(τ,0) {(τ,0), (τ, x)}

×Fµν(τ, x) {(τ, x), (τ,0)} ,

where

{(τ,0), (τ, x)} ≡ P exp

[

i

∫ (τ,x)

(τ,0)
dzµ Aµ(z)

]

,

{(τ, x), (τ,0)} ≡ {(τ,0), (τ, x)}† ,

and sum is over Harrington-Shepard (trivial-holonomy) caloron
and anticaloron of scale ρ.

Higher n-point functions, higher topol. charge k? No.

(Would introduce mass dimension d = 3− n −m of object, m > 1

number of dimension-length caloron parameters at k > 1, but d needs to

vanish.)



Inert field φ

Some observations, conventions:

◮ φ̂ indeed transforms as an adjoint scalar:

φ̂a(τ) → Rab(τ)φ̂b(τ) ,

where Rab is τ dependent matrix of adjoint rep.

Rab(τ)tb = Ω†(τ,0)taΩ(τ,0) .

◮ What about shift of spatial center 0 → z±?

0

z
Fµν

µνF

x

C,A

µν

Fµν

0

x

(a) (b)

Fta

ta

(a) graphical representation of definition

(b) only possible generalization to z± 6= 0

Shift of center amounts to

spatially global gauge

rotation induced by the

group element

Ω±
z = {(τ, 0), (τ, z±)}.



Inert field φ

Some observations, conventions, cntd:

◮ one has
∫ (τ,x)

(τ,0)
dzµAµ(z)|± = ±

∫ 1

0
ds xiAi(τ, sx)

= ±tbxb ∂τ

∫ 1

0
ds log Π(τ, sr , ρ) ⇒

integrand in the exponent of {(τ,0), (τ, x)}± varies along a
fixed direction in su(2) (a hedge hog); Path-ordering can be
ignored.

◮ temporal shift freedom in A±
µ : set τ± = 0 and re-instate later

◮ parity: Fµν(τ, x)+ = Fµν(τ,−x)− and

{(τ,0), (τ, x)}+ =
(

{(τ, x), (τ,0)}+
)†

= {(τ,0), (τ,−x)}−
=

(

{(τ,−x), (τ,0)}−
)† ⇒

− contribution to the integrand in definition obtained by
x → −x in + contribution



Inert field φ

Some observations, conventions, cntd:

after tedious computation [Herbst and Hofmann 2004]

+ contribution to integrand in definition reads:

− i β−2 32π
4

3

xa

r

π2ρ̂4 + ρ̂2(2 + cos(2πτ̂ ))

(2π2ρ̂2 + 1− cos(2πτ̂))2
× F [ĝ ,Π] ,

where ρ̂ ≡ ρ
β , r̂ ≡ r

β , τ̂ ≡ τ
β , and functional F is

F [ĝ ,Π] = 2 cos(2ĝ)

(

2
[∂τΠ][∂rΠ]

Π2
− ∂τ∂rΠ

Π

)

+sin(2ĝ)

(

2
[∂rΠ]

2

Π2
− 2

[∂τΠ]
2

Π2
+

∂2
τΠ

Π
− ∂2

r Π

Π

)

,

and

{(τ,0), (τ, x)}± ≡ cos ĝ ± 2itb
xb

r
sin ĝ .

One shows that ĝ saturates exponentially fast for r̂ > 1.



Inert field φ

discussion:

◮ angular integration would yield zero if radial integration was
regular

◮ but: radial integration diverges logarithmically due to term
∂2
r Π
Π ; this term arises from the magnetic-magnetic correlation

(recall: no convergence in PT due to weakly screened
magnetic sector!)

◮ zero×infinity yields undetermined, multiplicative, and real
constants Ξ±

◮ without restriction of generality (global choice of gauge),
angular integration regularized by defect azimuthal angle in
1-2 plane of su(2) for both + and − contributions ⇒
Members of {φ̂} all move in hyperplane of su(2)!

◮ re-instate τ → τ + τ± ⇒



Inert field φ

discussion, cntd:

result:

{φ̂a} = {Ξ+(δ
a1 cosα+ + δa2 sinα+)A (2π(τ̂ + τ̂+))

+Ξ−(δ
a1 cosα− + δa2 sinα−)A (2π(τ̂ + τ̂−))} , where

2 π τ
β

2 π τ
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saturation property (cutoff independence) for ρ̂ integration.



Kernel of a differential operator D and potential for φ

◮ set {φ̂} contains two real parameters for each “polarization”:
Ξ± and τ±; {φ̂} is annihilated by linear, second-order

differential operator D = ∂2
τ +

(

2π
β

)2
⇒

{φ̂} coincides with kernel of D and determines D uniquely

◮ linearity ⇒ also Dφ = 0

◮ but: D depends on β explicitly, not allowed
(BPS, caloron action given by topolog. charge)

◮ therefore seek potential V (|φ|2) such that (Euclidean) action
principle applied to

Lφ = tr
(

(∂τφ)
2 + V (φ2)

)

.

yields solutions annihilated by D, where Lφ does not depend
on β explicitly; demand that energy density Θ44 = 0 on those
solutions



Potential for and modulus of φ

◮ pick motion in 1-2 plane of su(2) (gauge invariance ⇒ V
central potential ⇒ cons. angular momentum); ansatz:

φ = 2 |φ| t1 exp(±4πi

β
t3τ) .

(circular motion in 1-2 plane, |φ| time independent!)
◮ apply E-L to Lφ ⇒

∂2
τφ

a =
∂V (|φ|2)
∂|φ|2 φa (in components) ⇔

∂2
τφ =

∂V (φ2)

∂φ2
φ (in matrix form) .

◮ Θ44 = 0 on ansatz φ ⇒ |φ|2
(

2π
β

)2
− V (|φ|2) = 0

but also: ∂2
τφ+

(

2π
β

)2
φ = 0 ⇒

∂V (|φ|2)
∂|φ|2 = −V (|φ|2)

|φ|2 .



Potential for and modulus of φ, cntd

◮ ⇒ V (|φ|2) = Λ6

|φ|2
where Λ integration constant of mass dim. unity.

◮ ⇒ |φ| =
√

Λ3β
2π (power-like decay of field φ with increasing T )

The field φ describes coarse-grained effect of noninteracting
trivial-holonomy calorons and anticalorons. It does not propagate,
and its modulus |φ| sets the scale of off-shellness down to which
quantum fluctuations, arising from the sector k = 0, must be
considered “integrated out” in full effective theory (see also
Markus’ talk).

◮ Indeed: cutting off ρ and r integrations at |φ|−1, τ
dependence of A(2πτβ ) is perfect sine

(Error at level smaller than 10−22 if knowledge about
Tc = λcΛ

2π with λc = 13.87 is used, later.)



BPS equation for φ

In addition to E-L equation φ satisfies first-order, BPS equation:

∂τφ = ±2i Λ3 t3 φ
−1 = ±i V 1/2(φ) .

Because φ satisfies both, second-order E-L and first-order BPS
equation, usual shift ambiguity in ground-state energy density, as
allowed by E-L equation, absent in SU(2) Yang-Mills
thermodynamics.



Effective action for deconfining phase

Coupling the coarse-grained k = 0 sector to φ, following
constraints:

◮ perturbative renormalizability
[’t Hooft, Veltman, Lee, and Zinn-Justin 1971-1973]

⇒ form invariance of action for effective k = 0 gauge field aµ
from integrating fundamental k = 0 fluctuations only, no
higher dim. ops. for aµ only

◮ no energy-momentum transfer to φ ⇒ absence of higher dim.
ops. involving aµ and φ

◮ gauge invariance ⇒ ∂µφ → Dµφ ≡ ∂µφ− ie[aµ, φ] (e
effective coupling); no momentum transfer to φ if (unitary
gauge φ = 2|φ| t3) massive 1,2 modes propagate on-shell only

+ +

(a)

+ +

p p p p p p

p p

p1

p2
p p

p1

p
2

p

(b)



Effective action and ground-state estimate
unique effective action density:

Leff[aµ] = tr

(

1

2
GµνGµν + (Dµφ)

2 +
Λ6

φ2

)

,

where Gµν = ∂µaν − ∂νaµ − ie[aµ, aν ] ≡ G a
µν ta

ground-state estimate:
◮ E-L EOM from Leff[aµ]

DµGµν = ie[φ,Dνφ] .

◮ solved by zero-curvature (pure-gauge) config. ags
µ :

ags
µ = ∓δµ4

2π

eβ
t3 (Dνφ ≡ Gµν ≡ 0) ⇒

ρgs = −P gs = 4πΛ3 T .
Unresolvable interactions between k = 0 and |k | = 1 lifted ρgs from zero

(BPS). EOS of a cosmological constant; pressure negative. (Short-lived,

attracting magnetic (anti)monopoles by temporary shifts of (anti)caloron

holonomies from trivial to small through absorption of hard plane-wave

fluctuations.)



Winding to unitary gauge: Z2 degeneracy

◮ consider gauge rotation Ω̃(τ) = Ωgl Z (τ)Ω(τ) where

Ω(τ) ≡ exp[±2πi τβ t3], Z (τ) =
(

2Θ(τ − β
2 )− 1

)

12, and

Ωgl = exp[i π2 t2]

◮ Ω̃(τ) transforms ags
µ to ags

µ ≡ 0 and φ to φ = 2t3|φ|
◮ Ω̃(τ) is admissible because respects periodicity of δaµ:

aµ → Ω̃(ags
µ + δaµ)Ω̃

† +
i

e
Ω̃∂µΩ̃

†

= Ωgl

(

Ω(ags
µ + δaµ)Ω

† +
i

e

(

Ω∂µΩ
† + Z∂µZ

)

)

Ω†
gl

= Ωgl

(

ΩδaµΩ
† +

2i

e
δ(τ − β

2
)Z

)

Ω†
gl = ΩglΩ δaµ (ΩglΩ)

† .

◮ Ω̃(τ) transforms Polyakov loop from −12 to 12 ⇒
ground-state estimate is (electric) Z2 degenerate ⇒
deconfining phase



Mass spectrum; outlook resummed radiative corrections

◮ computation in physical and completely fixed unitary,
Coulomb gauge (φ = 2t3|φ|, ∂ia3i = 0), see Markus’ talk

◮ mass spectrum: m2 ≡ m2
1 = m2

2 = 4e2 Λ3

2πT ,m3 = 0 .

◮ resummation of polarization tensor of massless mode as

=  + + + ...

⇒ small linear-in-T correction to tree-level ground-state
estimate [Falquez, Hofmann, Baumbach 2010]

tree-level:
ρgs

T 4
= 3117.09λ−3 ,

one-loop resummed:
∆ρgs

T 4
= 3.95λ−3 .

◮ large hierarchy between loop orders (conjecture about
termination at finite irreducible order, see Dariush’ talk),
so one-loop correction practically exact



T dependence of e: selfconsistent thermal quasiparticles

P and ρ at one loop:

P(λ) = −Λ4

{

2λ4

(2π)6
[

2P̄(0) + 6P̄(2a)
]

+ 2λ

}

,

ρ(λ) = Λ4

{

2λ4

(2π)6
[2ρ̄(0) + 6ρ̄(2a)] + 2λ

}

,

where

P̄(y) ≡
∫ ∞

0
dx x2 log

[

1− exp(−
√

x2 + y2)
]

,

ρ̄(y) ≡
∫ ∞

0
dx x2

√

x2 + y2

exp(
√

x2 + y2)− 1
,

and a ≡ m
2T = 2πeλ−3/2. For later use introduce function D(2a) as

∂y2P̄
∣

∣

∣

y=2a
= − 1

4π2

∫ ∞

0
dx

x2
√

x2 + (2a)2
1

e
√

x2+(2a)2 − 1
≡ − 1

4π2
D(2a) .



Legendre transformation and evolution equation

◮ for m(T ) to respect Legendre trafo (fundamental partition
function) between P and ρ ⇔ ∂mP = 0

◮ ⇒ first-order evolution equation

∂aλ = −24λ4a

(2π)6
D(2a)

1 + 24λ3a2

(2π)6
D(2a)

.

or

1 = − 24λ3

(2π)6

(

λ
da

dλ
+ a

)

aD(2a) .

◮ ⇒ dependence a(λ) monotonic decreasing
⇒ for λ ≫ 1 a must fall below unity

◮ fixed points of evolution equation:

repulsive at a = 0 (λ → ∞)

attractive at a = ∞ (λ = λc)



Solution to evolution equation

◮ a ≪ 1 [Dolan, Jackiw 1974] ⇒ 1 = − λ3

(2π)4

(

λ da
dλ + a

)

a;

solution (a(λi ) = ai ≪ 1):

a(λ) = 4
√
2π2λ−3/2

(

1− λ

λi

[

1− a2i λ
3
i

32π4

])1/2

.

⇒ attractor a(λ) = 4
√
2π2λ−3/2 as long as a ≪ 1

⇒ e =
√
8π as long as a ≪ 1 (amusingly: S = 8π2

e2
= 1)

◮ full solution for e(λ) ⇒ λc = 13.87:
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T dependence of P and ρ
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◮ notice negativity of P shortly above λc

◮ relative correction to one-loop quasiparticle P and ρ by
radiative effects: < 1%, see talks by Markus and Dariush



Summary and outlook

Summary:

◮ brief motivation why nonperturbative approach to YMTD
necessary: mass generation, poor convergence of pert. orders

◮ mini review on calorons: trivial vs. nontrivial holonomy for
|k | = 1 plus semiclassical approx.

◮ construction of thermal ground-state estimate: inert field φ;
BPS and E-L; potential

◮ discussion of constraints of effective action: pert.
renormalizability plus inertness of φ ⇒ unique answer

◮ full ground-state estimate, deconfining nature, tree-level
quasiparticles

◮ evolution of effective coupling

◮ T dependence pressure and energy density



Summary and outlook

Outlook:

◮ radiative corrections: polarization tensor of massless mode
(Markus)

◮ radiative corrections: stable but unresolvable monopoles
(Markus)

◮ radiative corrections: two-loop and three-loop cases (Dariush)

◮ radiative corrections: loop expansion of pressure, conjecture
on termination at finite irreducible order (Dariush)

◮ two other phases:

◮ preconfining (thermal ground state: condensate of massless
monopoles and antimonopoles)

◮ confining (ground state of zero energy density: condensate of
single, round-point like center-vortex loops)



Summary and outlook

Some physics implications:

(i) mechanism for ew SB (LHC: not much of a Higgs signal so far)

(ii) postulate: SU(2) (10−4 eV) describes photon propagation

⇒ black-body spectral anomaly at T ∼ 3K and low frequencies
(cold H1 clouds, large-angle anomalies in TT of CMB, UEGE)

⇒ Planck-scale axion plus such an SU(2) yield Dark Energy

Thank you.
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