The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics

Markus Schwarz

Karlsruhe Institute of Technology (KIT)

1st Symposium on **Analysis of Quantum Field Theory** 9th International Conference of Numerical Analysis and Applied Mathematics Haldiki, Greece, 19-25 September 2011

21 September 2011

Table of Contents

Review of YMT

Polarization Tensor and Momentum Constraints

Approximate Calculation

Selfconsistent Calculation

Transverse Dispersion Relation Longitudinal Dispersion Relation

Monopole Properties from a 2-Loop Correction to the Pressure

Summary and Outlook

Table of Contents

Review of YMT

Polarization Tensor and Momentum Constraints

Approximate Calculation

Selfconsistent Calculation

Transverse Dispersion Relation Longitudinal Dispersion Relation

Monopole Properties from a 2-Loop Correction to the Pressure

Summary and Outlook

Review of Ralf's talk

 After coarse-graining, nonperturbative YMT ground state described by scalar field φ(T) [Herbst,Hofmann '04, Hofmann '05, Giacoa,Hofmann '05]

Effective action for top. trivial sector

$$S_{\mathsf{E}}\left[a_{\mu}\right] = \int_{0}^{\frac{1}{T}} \mathrm{d}x_{4} \int \mathrm{d}x^{3} \mathrm{Tr}\left(\frac{1}{2}G_{\mu\nu}G_{\mu\nu} + D_{\mu}\phi D_{\mu}\phi + \Lambda^{6}\phi^{-2}\right)$$

- In deconfining phase $(T > \Lambda)$: $SU(2) \rightarrow U(1)$
- Two tree-level massive modes (TLH) with mass m²(T) = 4e²(T)|φ(T)|² = 4e²Λ³/2πT, one tree-level massless mode (TLM)
- ► Eff. coupling e(T) has plateau value $e_{\text{plateau}} \sim \sqrt{8}\pi \approx 8.8$, no PT but loop expansion
- $|\phi|$ yields max. resolution

Table of Contents

Review of YMT

Polarization Tensor and Momentum Constraints

Approximate Calculation

Selfconsistent Calculation

Transverse Dispersion Relation Longitudinal Dispersion Relation

Monopole Properties from a 2-Loop Correction to the Pressure

Summary and Outlook

Polarization Tensor, Motivation

- Effect TLH modes on propagation of TLM modes described by polarization tensor Σ^{μν}.
- On one-loop level: $\Sigma^{\mu\nu} = \frac{1}{r} + \frac{1}{r} + \frac{1}{r} + \frac{1}{r} + \frac{1}{r}$ (one-loop sufficient, cmp. talk by Dariush)
- simplest radiative correction
- generic radiative correction
- interesting consequences for physics

Polarization Tensor, Decomposition

U(1) gauge symmetry unbroken, $\Rightarrow \Sigma^{\mu\nu}$ 4D transverse: $p_{\mu}\Sigma_{\mu\nu} = 0$ Decomposition into spatially transverse and longitudinal part:

$$\Sigma^{\mu
u} = G(p_4, \mathbf{p}) P_T^{\mu
u} + F(p_4, \mathbf{p}) P_L^{\mu
u}$$

with

$$\mathcal{P}_{L}^{\mu\nu} \equiv \delta^{\mu\nu} - \frac{p^{\mu}p^{\nu}}{p^{2}} - \mathcal{P}_{T}^{\mu\nu} \,,$$

projecting also onto **p**.

Free Propagators

Free propagator for TLH and TLM modes in

- unitary gauge (particle content manifest)
- Coulomb gauge $(\nabla \mathbf{A} = 0)$

$$D_{\mu\nu,ab}^{TLH,0}(k) = -\delta_{ab}\tilde{D}_{\mu\nu}\frac{1}{k^2 + m^2}, \qquad \{a, b\} \in \{1, 2\}$$
$$D_{\mu\nu,ab}^{TLM,0}(p) = -\delta_{a3}\delta_{b3}\left(P_{\mu\nu}^T\frac{1}{p^2} + \frac{u_{\mu}u_{\nu}}{\mathbf{p}^2}\right)$$

$$\begin{split} u_{\mu} &= \delta_{4\mu} \text{ four-velocity of head bath.} \\ \tilde{D}_{\mu\nu} \text{ projects out the component transverse to } k \\ P_{T}^{\mu\nu} \text{ projects out the component transverse to } \mathbf{p}. \\ \text{Gauge fixed completely} \Rightarrow \text{ no ghost fields needed.} \end{split}$$

Dressed Propagator

Propagator for interacting TLM mode (imaginary time)

$$D_{\mu\nu,ab}^{TLM}(p) = -\delta_{a3}\delta_{b3} \left(P_{\mu\nu}^{T} \frac{1}{p^{2} + G} + \frac{p^{2}}{p^{2}} \frac{u_{\mu}u_{\nu}}{p^{2} + F} \right)$$

 $F(p_4, \mathbf{p}) = \left(1 - \frac{p_4^2}{p^2}\right)^{-1} \Sigma^{44} \text{ describes propagation of longitudinal} mode A_4$ For $\mathbf{p} \parallel \mathbf{e}_3$, $G(p_4, \mathbf{p}) = \Sigma^{11} = \Sigma^{22}$ describes propagation of transverse mode A_i

Vertices and Momentum constraints

 Exclude these modes in effective theory to avoid "double counting" (already included in a^{g.s.}_μ; cmp. talk by Ralf)

Momentum constraints

 $|\phi|$ yields maximum resolution in effective theory \Rightarrow constraints on momentum transfer in vertex

s-channel:
$$|(p_1 + p_2)^2| \le |\phi|^2$$

t-channel: $|(p_1 - p_3)^2| \le |\phi|^2$
u-channel: $|(p_2 - p_3)^2| \le |\phi|^2$

Recall

Finite temperature QFT defined in imaginary time x_4 with fields being periodic in x_4 . Only discrete p_4 momenta allowed (Matsubara sums).

Problem

Momentum constraints formulated in terms of physical, continuous four momenta.

Real time propagators

Solution

Express Matsubara sums as integrals over continuous real time t. [Kapusta, LeBellac]

Free propagator for TLH and TLM modes in unitary Coulomb gauge and real-time formalism

$$D_{\mu\nu,ab}^{TLM,0}(p) = \delta_{a3}\delta_{b3} \left\{ P_{\mu\nu}^{T} \left[\frac{-\mathrm{i}}{p^{2} + \mathrm{i}\epsilon} - 2\pi\delta(p^{2}) n_{B}(|p_{0}|/T) \right] + \mathrm{i}\frac{u_{\mu}u_{\nu}}{p^{2}} \right\}$$

 $D_{\mu\nu,ab}^{TLH,0}(k) = -2\pi\delta_{ab}\tilde{D}_{\mu\nu}\delta(k^2 - m^2) n_B(|k_0|/T), \quad a, b \in \{1,2\}$

No vacuum propagator for TLH modes (cmp. talk by Ralf):

Modified dispersion relation of TLM

Dressed propagator of transverse and longitudinal TLM mode (real time)

$$D_{\mu\nu,ab}^{TLM}(p_t) = -\delta_{a3}\delta_{b3}P_{\mu\nu}^{T} \left[\frac{i}{p_t^2 - G} + 2\pi\delta(p_t^2 - G) n_B(|p_{0,t}|/T) \right]$$
$$D_{\mu\nu,ab}^{TLM}(p_l) = \delta_{a3}\delta_{b3}u_{\mu}u_{\nu} \left[\frac{p_l^2}{\mathbf{p}_l^2 - F} - 2\pi\delta(p_l^2 - F) n_B(|p_{0,l}|/T) \right]$$

Poles yield dispersion relations ($\textit{p}_0=\omega+i\gamma$, assume $\gamma\ll\omega$):

$$\begin{split} \omega_t^2(\mathbf{p}_t) &= \mathbf{p}_t^2 + \operatorname{Re} G(\omega(\mathbf{p}_t), \mathbf{p}_t) & \omega_l^2(\mathbf{p}_l) = \mathbf{p}_l^2 + \operatorname{Re} F(\omega_L(\mathbf{p}_l), \mathbf{p}_l) \\ \gamma(\mathbf{p}_t) &= -\operatorname{Im} G(\omega(\mathbf{p}_t), \mathbf{p}_t)/2\omega & \gamma_l(\mathbf{p}_l) = -\operatorname{Im} F(\omega_l(\mathbf{p}_l), \mathbf{p}_l)/2\omega_l \end{split}$$

Diagrams for G and F

Chosing $\mathbf{p} \parallel e_3$:

$$G(p_0, \mathbf{p}) = \Sigma^{11} = \Sigma^{22}$$

 $F(p_0, \mathbf{p}) = \left(1 - \frac{p_0^2}{p^2}\right)^{-1} \Sigma^{00}$

 $\Sigma^{\mu
u}$ sum of two diagrams:

Purely imaginary: \Rightarrow yields γ One-loop level sufficient (see talk by Dariush)!

Table of Contents

Review of YMT

Polarization Tensor and Momentum Constraints

Approximate Calculation

Selfconsistent Calculation

Transverse Dispersion Relation Longitudinal Dispersion Relation

Monopole Properties from a 2-Loop Correction to the Pressure

Summary and Outlook

Approximation $p^2 = 0$

Applying Feynman rules to $\operatorname{Re} G = \operatorname{Re} \Sigma^{11} = \sqrt{2}$ yields gap equation:

$$\operatorname{Re}G(p_{0},\mathbf{p}) = \Sigma_{B}^{11}(p) = 8\pi e^{2} \int_{|(p+k)^{2}| \le |\phi|^{2}} \left[-\left(3 - \frac{k^{2}}{m^{2}}\right) + \frac{k^{1}k^{1}}{m^{2}} \right] \times n_{B} \left(|k_{0}|/T\right) \delta\left(k^{2} - m^{2}\right) \frac{\mathrm{d}^{4}k}{(2\pi)^{4}} \bigg|_{p^{2} = \mathbf{G}}$$
(1)

4 vertex imposes constraint $\left|(p+k)^2
ight|\leq |\phi|^2$

Difficulty

Equation (1) is a transzendental equation for G.

Approximation

Use $p^2 = 0$ in constraint [Schwarz,Giacosa,Hofmann '06]. Valid if $G \ll \mathbf{p}^2$. Check later!

Consequences of $p^2 = 0$

- 1. For finite Σ^{00} , $F(p_0, \mathbf{p}) = \left(1 \frac{p_0^2}{p^2}\right)^{-1} \Sigma^{00}$ vanishes. Hence, no propagation of longitudinal modes.
- 2. Diagram A vanishes:

Momentum conservation at vertex vorbids TLM mode with $p^2 = 0$ to split into two on-shell particles with mass *m*.

3. Diagram A = 0, hence no imaginary part of G, hence $\gamma = 0$ and assumption $\gamma \ll \omega$ satisfied trivially. Calculation of diagram B, $p^2 = 0$

With
$$p^2 = 0$$
:
 $G(|\mathbf{p}|, \mathbf{p}) = 8\pi e^2 \int_{|2pk+k^2| \le |\phi|^2} \left[g^{11} \left(3 - \frac{k^2}{m^2} \right) + \frac{k^1 k^1}{m^2} \right]$
 $\times n_{\rm B} \left(|k_0| / T \right) \delta \left(k^2 - m^2 \right) \frac{\mathrm{d}^4 k}{(2\pi)^4}$

Via δ -function, integration over k_0 yields $k_0 \rightarrow \pm \sqrt{\mathbf{k}^2 + m^2}$. Using $p_0 \ge 0$, $p^2 = 0$, $k^2 = m^2 = 4e^2 |\phi|^2$, $\theta \equiv \angle(\mathbf{p}, \mathbf{k})$, and $k_0 = \pm \sqrt{\mathbf{k}^2 + m^2}$ constraint reads:

$$\left|2|\mathbf{p}|\left(\pm\sqrt{\mathbf{k}^2+4e^2|\phi|^2}-|\mathbf{k}|\cos\theta\right)+4e^2|\phi|^2\right|\leq |\phi|^2$$

Integrand symmetric under $k_0 \rightarrow -k_0$, but constraint is not!

Consider + sign and observe:

$$\left|2|\mathbf{p}|\left(+\sqrt{\mathbf{k}^2+4e^2|\phi|^2}-|\mathbf{k}|\cos\theta\right)+4e^2|\phi|^2\right|\leq |\phi|^2$$

- 1. Term in parentheses always positive.
- 2. $e\gtrsim\sqrt{8}\pi\sim 8.8$

Hence, constraint never satisfied.

Using $X \equiv |\mathbf{p}|/T$, $\mathbf{y} \equiv \mathbf{k}/|\phi|$, $|\phi|/T = 2\pi\lambda^{-3/2}$, and $\lambda \equiv 2\pi T/\Lambda$ constraint reads

$$-1 \leq -\lambda^{3/2} \frac{X}{\pi} \left(\sqrt{\mathbf{y}^2 + 4e^2} + y_3 \right) + 4e^2 \leq 1$$

Convenient to use polar coordinates $y_1 = \rho \cos \varphi$, $y_2 = \rho \sin \varphi$. Constraint then reads

$$\frac{4e^2 - 1}{\lambda^{3/2}} \frac{\pi}{X} \le \sqrt{\rho^2 + y_3^2 + 4e^2} + y_3 \le \frac{4e^2 + 1}{\lambda^{3/2}} \frac{\pi}{X}$$

Integration over φ not constraint!

$$\frac{4e^2 - 1}{\lambda^{3/2}} \frac{\pi}{X} \le \sqrt{\rho^2 + y_3^2 + 4e^2} + y_3 \le \frac{4e^2 + 1}{\lambda^{3/2}} \frac{\pi}{X}$$

1. y_3, ρ plane

$$\frac{4e^2 - 1}{\lambda^{3/2}} \frac{\pi}{X} \le \sqrt{\rho^2 + y_3^2 + 4e^2} + y_3 \le \frac{4e^2 + 1}{\lambda^{3/2}} \frac{\pi}{X}$$

1.
$$y_3, \rho$$
 plane
2. $y_3 < y_{\max} \equiv \frac{4e^2 + 1}{\lambda^{3/2}} \frac{\pi}{X}$

$$\frac{4e^2 - 1}{\lambda^{3/2}} \frac{\pi}{X} \le \sqrt{\rho^2 + y_3^2 + 4e^2} + y_3 \le \frac{4e^2 + 1}{\lambda^{3/2}} \frac{\pi}{X}$$

1.
$$y_3, \rho$$
 plane
2. $y_3 < y_{max} \equiv \frac{4e^2 + 1}{\lambda^{3/2}} \frac{\pi}{X}$
3. $\rho \le \rho_{max}(y_3) \equiv \sqrt{\left(\frac{\pi}{X}\right)^2 \frac{(4e^2 + 1)^2}{\lambda^3} - \frac{2\pi}{X} \frac{4e^2 + 1}{\lambda^{3/2}y_3 - 4e^2}}$
for
 $y_3 \le y_3^{\mathsf{M}} \equiv \frac{\pi}{2X} \frac{4e^2 + 1}{\lambda^{3/2}} - \frac{2\lambda^{3/2}X}{\pi} \frac{e^2}{4e^2 + 1}$

$$\frac{4e^2 - 1}{\lambda^{3/2}} \frac{\pi}{X} \le \sqrt{\rho^2 + y_3^2 + 4e^2} + y_3 \le \frac{4e^2 + 1}{\lambda^{3/2}} \frac{\pi}{X}$$

1.
$$y_{3}, \rho$$
 plane
2. $y_{3} < y_{max} \equiv \frac{4e^{2}+1}{\lambda^{3/2}} \frac{\pi}{X}$
3. $\rho \le \rho_{max}(y_{3}) \equiv \sqrt{\left(\frac{\pi}{X}\right)^{2} \frac{(4e^{2}+1)^{2}}{\lambda^{3}} - \frac{2\pi}{X} \frac{4e^{2}+1}{\lambda^{3/2}y_{3}-4e^{2}}}{for}}{for}$
 $y_{3} \le y_{3}^{M} \equiv \frac{\pi}{2X} \frac{4e^{2}+1}{\lambda^{3/2}} - \frac{2\lambda^{3/2}X}{\pi} \frac{e^{2}}{4e^{2}+1}$
4. $\rho \ge \rho_{min}(y_{3}) \equiv \sqrt{\left(\frac{\pi}{X}\right)^{2} \frac{(4e^{2}-1)^{2}}{\lambda^{3}} - \frac{2\pi}{X} \frac{4e^{2}-1}{\lambda^{3/2}y_{3}-4e^{2}}}{for}}{for}$
 $y_{3} \le y_{3}^{m} \equiv \frac{\pi}{2X} \frac{4e^{2}-1}{\lambda^{3/2}} - \frac{2\lambda^{3/2}X}{\pi} \frac{e^{2}}{4e^{2}-1}$

Expression for *G*, $p^2 = 0$

Constraint in terms of boundaries for (y_3, ρ) integration:

$$\frac{G(X,T)}{T^2} = \left[\int_{-\infty}^{y_3^{m}} \mathrm{d}y_3 \int_{\rho_{\min}}^{\rho_{\max}} \mathrm{d}\rho + \int_{y_3^{m}}^{y_3^{M}} \mathrm{d}y_3 \int_{0}^{\rho_{\max}} \mathrm{d}\rho \right]$$
$$\frac{e^2 \rho}{\lambda^3} \left(\frac{\rho^2}{4e^2} - 4 \right) \frac{n_{\mathrm{B}} \left(2\pi \lambda^{-3/2} \sqrt{\rho^2 + y_3^2 + 4e^2} \right)}{\sqrt{\rho^2 + y_3^2 + 4e^2}}$$

 $X = |\mathbf{p}|/T$ momentum of external TLM mode in units of temperature,

 $\lambda \equiv 2\pi T/\Lambda$ temperature in units of YM scale Λ . Integration performed numerically via Gaussian quadrature (unlike Monte-Carlo for 3-loop, comp. talk by Dariush). Result for G, $p^2 = 0$

Result for *G*, $p^2 = 0$

All results based on $|G/T^2| \ll X^2!$

- $X \gtrsim 0.2$: G < 0(anti-screening)
- ▶ Dip: *G* = 0
- X ≤ 0.2: G > 0 (screening)

• $G \ll \mathbf{p}^2$ for $X \gtrsim 0.2$

• G = 0 at $X \sim 0.2$, dispersion relation solved selfconsistently

• $G \ge \mathbf{p}^2$ for $X \lesssim 0.1$, approximation breaks down

Table of Contents

Review of YMT

Polarization Tensor and Momentum Constraints

Approximate Calculation

Selfconsistent Calculation

Transverse Dispersion Relation Longitudinal Dispersion Relation

Monopole Properties from a 2-Loop Correction to the Pressure

Summary and Outlook

Table of Contents

Review of YMT

Polarization Tensor and Momentum Constraints

Approximate Calculation

Selfconsistent Calculation Transverse Dispersion Relation Longitudinal Dispersion Relation

Monopole Properties from a 2-Loop Correction to the Pressure

Summary and Outlook

Full calculation of G

Gap equation:

$$\operatorname{Re} G(p_0, \mathbf{p}) = 8\pi e^2 \int_{|(p+k)^2| \le |\phi|^2} \left[-\left(3 - \frac{k^2}{m^2}\right) + \frac{k^1 k^1}{m^2} \right] \\ \times n_{\mathrm{B}} \left(|k_0| / T \right) \delta \left(k^2 - m^2 \right) \left. \frac{\mathrm{d}^4 k}{(2\pi)^4} \right|_{p^2 = G} \\ \equiv H(T, \mathbf{p}, G)$$

Via δ -function, integration over k_0 yields $k_0 \to \pm \sqrt{\mathbf{k}^2 + m^2}$. With $p_0 = \pm \sqrt{\mathbf{p}^2 + G(p_0, \mathbf{p})}$ and $\mathbf{p} \parallel \mathbf{e}_3$ constraint reads

$$\left|G+2\left(\pm\sqrt{\mathbf{p}^2+G}\sqrt{\mathbf{k}^2+m^2}-pk_3\right)+m^2\right|\leq |\phi|^2$$

Full calculation of G

Strategy to solve $\operatorname{Re} G(p_0, \mathbf{p}) = H[T, \mathbf{p}, G(p_0, \mathbf{p})]$ [Ludescher,Hofmann '08]:

- 1. fix T and **p** (integrand in H independent of $p_0 \Rightarrow G = G(\mathbf{p})$)
- 2. prescribe any value of G_1
- 3. calculate $H(T, \mathbf{p}, G_1)$ using Monte-Carlo integration
- 4. repeat steps 2 and 3 to obtain $H(T, \mathbf{p}, G)$
- 5. solve $G = H(T, \mathbf{p}, G)$ numerically using Newton's method

Selfconsistent result for G, real part

Selfconsistent result for G, real part

- X ≥ 0.2: G < 0 (anti-screening)
- ▶ Dip: *G* = 0
- X ≤ 0.2: G > 0 (screening)

- Zeros of G agree (must be)
- ► For X ≥ 0.2, approximate agrees with selfconsistent result (expected)
- Results different when $G \gtrsim X^2$ (not suprising)

Selfconsistent result for G, imaginary part

Imaginary part: $\text{Im}G \propto \sqrt{-6}$ At left vertex: particle with mass \sqrt{G} decaying into two on-shell particles with mass *m* only possible if

$$\frac{G}{T^2} \ge 4\frac{m^2}{T^2} = 64\pi^2 \frac{e^2}{\lambda^3}$$
(2)

$$rac{G(X=0,T)}{T^2} \propto rac{1}{\lambda^3} \ll 64\pi^2 rac{e^2}{\lambda^3} \sim 5 imes 10^4/\lambda^3$$

condition (2) never satisfied

Diagram A = 0, hence no imaginary part of G, hence $\gamma = 0$ and assumption $\gamma \ll \omega$ satisfied trivially.

Table of Contents

Review of YMT

Polarization Tensor and Momentum Constraints

Approximate Calculation

Selfconsistent Calculation

Transverse Dispersion Relation Longitudinal Dispersion Relation

Monopole Properties from a 2-Loop Correction to the Pressure

Summary and Outlook

Full Calculation of F

Assume $F \in \mathbb{R}$ (turns out to be selfconsistent)

Apply Feynman rules to $p^2 = {\rm Re}\Sigma^{00} = \overbrace{}^{B} \overbrace{}^{(k)}$, yields gap equation:

$$\mathbf{p}^{2} = \Sigma_{\rm B}^{00}(p) = 8\pi e^{2} \int_{|(p+k)^{2}| \le |\phi|^{2}} \left[\left(3 - \frac{k^{2}}{m^{2}} \right) + \frac{k^{0}k^{0}}{m^{2}} \right] \\ \times n_{\rm B} \left(|k_{0}| / T \right) \delta \left(k^{2} - m^{2} \right) \left. \frac{\mathrm{d}^{4}k}{(2\pi)^{4}} \right|_{p^{2} = F}$$
(3)

Strategy to find F similar to that of finding G [Falquez,Hofmann,Baumbach '11].

Selfconsitent Result for F

Selfconsitent Result for F

$$Y_l \equiv rac{\omega_l(\mathbf{p}_l,T)}{T} = \sqrt{rac{F(p_l^2,T)}{T^2} + rac{\mathbf{p}_l^2}{T^2}}, \ X \equiv |\mathbf{p}_l|/T$$

- 3 branches
- Y_L defined only for $X \lesssim 0.34$
- superluminal group velocity

Selfconsistent Result for F, Interpretation

Interpretation in terms of magnetic monopoles [Falquez,Hofmann,Baumbach '11]

- Iongitudinal modes due to charge density waves
- light like propagation:
 - stable (yet unresolved) monopoles released by large holonomy caloron dissociation [Diakonov et al. '04]
 - density disturbance can only be propagated by radiation field, which propagates at the speed of light

- superluminal propagation:
 - unstable monopoles contained in small holonomy caloron
 - extended calorons provide instantaneous correlation between monopoles, leading to superluminal propagation

Table of Contents

Review of YMT

Polarization Tensor and Momentum Constraints

Approximate Calculation

Selfconsistent Calculation

Transverse Dispersion Relation Longitudinal Dispersion Relation

Monopole Properties from a 2-Loop Correction to the Pressure

Summary and Outlook

2-Loop Corrections

- "Bubble diagrams" yield pressure (cmp. talk by Dariush)
- For $T \gg T_c$ only relevant diagram:

Monopole Properties

Explanation

Energy used to break up calorons, creating monopole anti-monopole pairs [Schwarz,Giacosa,Hofmann '06].

Detailed analysis shows [Ludescher,Keller,Giacosa,Hofmann '08]:

- ▶ average monopole-antimonopole distance $\bar{d} < |\phi|^{-1}$ ⇒ monopoles unresolved in effective theory
- ▶ screening length l_s due to small-holonomy calorons: $l_s = 3.3\overline{d}$ ⇒ magnetic flux of monopole and antimonopole cancel (no area law for spatial Wilson loop)

Table of Contents

Review of YMT

Polarization Tensor and Momentum Constraints

Approximate Calculation

Selfconsistent Calculation

Transverse Dispersion Relation Longitudinal Dispersion Relation

Monopole Properties from a 2-Loop Correction to the Pressure

Summary and Outlook

Summary and Outlook

- ► Coarsegrained YMT ground state described by scalar field $\phi(T)$, $SU(2) \xrightarrow{\phi} U(1)$
- $|\phi|$ constrains loop momenta
- Calculated polarization tensor $\Sigma^{\mu\nu}$ for TLM mode on 1-loop level
- Approximation $p^2 = 0$ in constraint
 - Constraint solvable analytically
 - Dispersion relation for transverse mode; no propagating longitudinal mode
- Selfconsistent calculation
 - Constraint implemented numerically
 - Dispersion relation for transverse- and longitudinal mode
- In YMT monopoles are unresolvable and screened

Question

Is 1-loop calculation sufficient?

Answer

See talk by Dariush!

Thank you.

References I

U. Herbst, R. Hofmann,

Asymptotic freedom and compositeness [hep-th/0411214].

🔋 R. Hofmann

"Nonperturbative approach to Yang-Mills thermodynamics" Int. J. Mod. Phys. **A20**, 4123-4216 (2005) [hep-th/0504064].

🔋 F. Giacosa, R. Hofmann,

"Thermal ground state in deconfining Yang-Mills thermodynamics"

Prog. Theor. Phys. ${\bf 118},\,759\text{-}767$ (2007) [hep-th/0609172].

📡 J. Kapusta, G. Charles

"Finite-temperature field theory : principles and applications" Cambridge Univ. Press, 2.ed., 2006.

References II

M. Le Bellac

"Thermal field theory" Cambridge Univ. Press, 1996.

M. Schwarz, R. Hofmann, F. Giacosa,

"Radiative corrections to the pressure and the one-loop polarization tensor of massless modes in SU(2) Yang-Mills thermodynamics"

Int. J. Mod. Phys. A22, 1213-1238 (2007) [hep-th/0603078].

J. Ludescher, R. Hofmann,

"Thermal photon dispersion law and modified black-body spectra"

Annalen Phys. 18, 271-280 (2009) [arXiv:0806.0972 [hep-th]].

References III

- D. Diakonov, N. Gromov, V. Petrov, S. Slizovskiy, "Quantum weights of dyons and of instantons with nontrivial holonomy"
 Phys. Rev. D70, 036003 (2004) [hep-th/0404042].
- C. Falquez, R. Hofmann, T. Baumbach, "Charge-density waves in deconfining SU(2) Yang-Mills thermodynamics" [arXiv:1106.1353 [hep-th]].
- J. Ludescher, J. Keller, F. Giacosa, R. Hofmann,
 "Spatial Wilson loop in continuum, deconfining SU(2)
 Yang-Mills thermodynamics"
 Annalen Phys. 19, 102-120 (2010) [arXiv:0812.1858 [here.

Annalen Phys. 19, 102-120 (2010) [arXiv:0812.1858 [hep-th]].