Summary: Deconfining SU(2) Yang-Mills thermodynamics

Ralf Hofmann

ITP Universität Heidelberg

1st Symposium on **Analysis of Quantum Field Theory** 9th International Conference of Numerical Analysis and Applied Mathematics Haldiki, Greece, 19-25 September 2011

23 September 2011

Thermal ground state I

- PT hopeless even at high temperature
- short review of Euclidean FTFT
- selfdual configs. with |k| = 1: calorons
 - constr. of classical fields
 - results of semiclassical approx.
- spatial coarse-graining over selfdual configs.
 - \blacktriangleright arguments on emergence of inert, adjoint scalar field ϕ
 - unique definition of $\{\hat{\phi}\}$ via gauge-noninvariant 2-point correlator of field stength
 - evaluation of this definition (kernel of D)
 - ϕ 's second-order EOM (but: explicit T dependence)
 - ▶ φ's potential (first-order equation from compatibility of BPS and E-L, no shift ambiguity in energy density)
 - ▶ φ's modulus
- coupling coarse-grained k = 0 to ϕ
 - perturbative renormalizability (fixation of pure k = 0 part of effective action)

Thermal ground state II

- ▶ inertness of φ (fixation of interactions between k = 0 and pure φ part)
- ► a priori estimate of thermal ground state (electric Z₂ degeneracy ⇔ deconfining phase)
- adjoint Higgs mechanism: unitary gauge
- evolution of effective gauge coupling
 - ▶ Legendre transformation ⇒ evolution of mass in dependence of temperature (or vice versa)
 - fixed points of evolution equation
 - large-T behavior of e analytically \Rightarrow attractor
 - $e = \sqrt{8}\pi \Rightarrow S = \hbar$
 - prediction of critical temperature in units of Yang-Mills scale (onset of monopole condensation)
 - \blacktriangleright prediction of ${\cal T}$ evolution of pressure and energy density at accuracy < 1%
- outlook: two other phases, some physics implications

The polarization tensor of the massless mode I

Feynman rules

- vertices like in PT (without gauge-fixing contributions)
- on-shellness of massive modes
- constraints on momentum transfers in four-vertices
- application to simplest radiative correction: one-loop pol. tensor
 - decomposition into transverse and longitudinal structure
 - ► transverse part: approx. p² = 0 ⇒ explicit resolution of constraints to limit integration
 - \blacktriangleright transverse part: no approx. \Rightarrow numerical solution of gap equation
 - longitudinal part: electric charge-density waves of interesting dispersion

The polarization tensor of the massless mode II

- a particular two-loop correction to pressure
 - \blacktriangleright survival at high T
 - after Legendre: interpretation as deficit Δρ generating density of stable yet unresolvable monopole-antimonopole pairs (large caloron holonomies by absorption of soft fundamental plane waves)
 - \Rightarrow perimeter law for spatial Wilson loop at high T
 - ► resummation of pol. tensor into quasiparticle dispersion of massless mode ⇒ T⁴ correction becomes T correction
- ▶ implication of transverse dispersion: black-body spectral anomaly for $T \sim 2 \cdots 5 T_c$

Radiative corrections, loop expansion of P I

- 2-loop corrections
 - diagrams, structure of integration, constraints
 - \blacktriangleright counting of constraints versus "radial loop" variables \Rightarrow allowed regions noncompact
 - result for dominating diagram by deterministic integration
- 3-loop corrections
 - diagrams, structure of integration, constraints
 - ► counting of constraints versus "radial loop" variables ⇒ allowed regions of integration compact or empty
 - result for nonvanishing diagrams by Monte Carlo integration
- loop expansion of pressure: general arguments
 - consideration of diagrams made of three- and four-vertices separately
 - counting of constraints, counting of "radial" loop variables
 - conjecture on termination of expansion into diagrams after resummation of 1PI irreducible contributions to pol. tensor

To appear early November 2011.

Contains **applications** of $SU(2)_{CMB}$ to:

- black-body anomaly
- contradiction to SM Higgs sector derived from primordial He abundance bounds on freezeout temperature for nucleosynthesis in case SU(2)_{CMB} confirmed
- Unexplained ExtraGalactic Emission
- primordial, magnetic seed fields
- stability of cold, dilute H1 clouds in Milky Way

Thank you.