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Planck: a heroic deed (~ and BB radiation law)

Einstein and Bohr: putting A Into practice
(light-quantum and H-atom)

present experimental (observational) situation:
photon physics

SU(2) YM thermodynamics: de- and preconfining
phase

SU(2)cwme:
astrophysical and cosmological implications

summary and outlook
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Max Planck (1900,1901):

spectral intensity I of
perfect black body from:

1) N randomized resonators
2) entropy S of single resonator as

function of its internal energy U
. dS _ 1
AU — T o

3) Boltzmann’s definition of
total entropy Sy:
Sy = klog W + const.

4) implicit: total energy distributed on N resonators
In units of a smallest quantum e

5) Wien’s displacement law:
r=15F (L)
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e = hv (h a constant)
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Planck’s derivation:
h parametrizes microscopic disorder in single resonator!
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Albert Einstein (1905):

photoelectric effect

and quantum of light:

1) electron kicked out of metal
2) Kinetic electron energy K.
K=hv—-—W
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Niels Bohr (1913):

discrete transitions

and guantization of

angular momentum in H-atom:

FEy—Fs=hv, L =nh=
= explanation of Rydberg series
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photons. recent experiments

» cold and dilute HI clouds in Milky Way
[Brunt and Knee, Nature 412, 308 (2001)]

age: 5 x 107y, temperature: 5 K-10 K, density: 1cm—°
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» low multipoles in CMB (WMAP)
[Copi et al., Phys. Rev. D. 75: 023507 (2007)]

— strongly suppressed 1"1" correlations for
6 > 60 degrees

low multipoles statistically correlated
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» PVLAS experiment
[E. Zavattini et al., Phys. Rev. Lett. 96, 110406 (2006)]
— measurement at
B =5.5T, A ~ 10° nm (lin. pol. laser)
— rotation of polarization axis ~ 10*
times larger than QED prediction
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Cobe (FIRAS): temperature calibration
[Mather et a., APJ 420, 439 (1994)]

radiation temp. versus calibrator temp.

FESA APP_C_FIG1.GIF (GIF Image, 616x426 pixels) http://lambda.gsfc.nasa.gov/data/cobe/firas/doc/FESA_APP_C_FIG1.GIF
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Fic. 1—Simplified optical layout of FIRAS, showing the positions of the
horns, Xcal, Ical, mirrors, grids, MTM, and detectors. The drawing is not to

scale; the sky horn is 2 m long and the other parts fit in a box ~50 cm on a
side.
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extreme supercooling

(increase of effective number of photon polarizations?)
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Fig. 5.3.— Photometric XCAL temperature adjustments — The values for RHSS (top

plots) and LLSS (bottom plots) calibrations are shown here. The left hand plots are the
adjustments (in mK), plotted as a function of XCAL temperature (in K). The symbol —+
indicates a positive correction, and the symbol ¢ indicates a negative correction. Temper-
atures greater than 7K are not used in LLLSS. On the right are histograms of temperature
adjustments for cold nulls (i.e. all controllables ~2.7K).
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What happens when postulating photon
PROPAGATION dueto SU(2) gauge
principle?
— needs analytical approach to SU(2) Yang-Mills theory

— presently possible thermodynamically
[RH, IIMPA20, 4123 (2005), ...]

— among others relying on work by ...
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Formulation of SU(2) gauge theory (1955).
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— pert. renormalizability of YM
— magnetic monopole
— selfdual, singular-gauge constructions =

— trivial-holonomy calorons
[Harrington and Shepard, 1977/]

— center-vortex, 't Hooft loop
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— calorons of nontrivial holonomy
(magnetic dipole constituents, (1983)) =

— explicit construction using Nahm trafo and ADHM
[Lee and Lu, Kraan and van Baal 1998]
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phasediagram: SU(2) YM TD

confining

ground state:

Cooper—pair condensaté!

of single center-

vortex loops, pressure 11

precisely zero

excitations:

massless (single)
and massive (self-

intersecting) center— 11

vortex loops

(spin-1/2 fermions)

preconfining

ground state:

condensate of
magnetic
monopoles,

collapsing center-

vortex loops,

negative pressure

excitations:

massive dual
gauge modes
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ground state: interacting calorons and anticalorons, negative pressure

excitations. massless and massive gauge modes

power-like approach to Stefan Boltzmann limit
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a thermal ground state:

deconfining phase:

caloron antical oron

@ /\ (trivial holonomy)

caloron anticaloron

(nontrivial holonomy)
-

caloron antical oron

(nontrivial holonomy,
quantum corrected)

©

attraction extremely likely == negative pressure macroscopically
repulsion extremely unlikely == isolated and screened magnetic monopol es
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technically:

spatial coarse-graining, infinite volume
= phase of emergent adjoint scalar ¢“:

o) ~ > tr/d3 /dp—x

HS (anti)caloron

Fuw ((7,0)) 1(7,0), (7,7) } X
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Infinite-volume average saturates at

. B 27T
P, |T] < |P] 1:\/T

= coarse-graining sufficiently local to include only
Q| = 1 (anti)calorons

= ground state described by (inert) field p anda ) = 0
(coarse-grained) pure-gauge config. ad®

= show electric Z, degeneracy (Polyakov loop)

= deconfining phase
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emer gent mass

deconfining phase, adjoint Higgs mechanism:

@)
MmMicroscopic situation

(o)

>

after spatial coarse—graining

= T" dependent mass for two out of three directions

= quasiparticles on tree level in effective theory
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Inter actions
quantum fluctuations constrained by |¢|:

= two-loop versus one-loop: < 107
[Schwarz, RH, Giacosa, | IMPA22, 1213 (2007)]

= three-loop versus one-loop: < 10~
[Kaviani, RH, arXiv:0704.3326 [th]]

= mod. 1-PI res. rapidly conver. loop expan.
[RH, hep-th/0609033]

= running of effective coupling e entirely sufficient
at one-loop level
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running effective coupling

de - and preconfining phases:

25
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scale of SU(2).,..
If photon propagation described by SU(2) YM

=2 poundary between de- and preconfining phase

— ACMB i 10_4 eV
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phasetransition:

rather independently of cosmological model

=2 duration At,, _, of supercooled situation:

Atmvzo — (2.2 T 0.15) Gy

|Glacosa and RH, EPJC50, 635 (2007)]
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photon screening:
polarization tensor in effective theory:

modification of dispersion law:
w2 — 252 -+ G(Ta ‘ﬁ‘)

=2

log .o | S 7T
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mod. black-body spectrum (1):

[Schwarz, RH, Giacosa; IIMPA, JHEP 2007]
(T: 1OK, ]{B:h:C: 1)
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mod. black-body spectrum (2):
(T = 10 K, low frequencies)
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mod. black-body spectrum (3):

(T = 4,5,6 K, low frequencies)

0.05 0.1 0.15 0.2 0.25 v
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Implications of SU(2),. (1)

cosmologically:

= dynamic contr. to CMB dipole
[Szopa, RH, hep-ph/0703119]

= TT supression at large angles?
[Szopa, RH, work in progress]

= BB nucleosynthesis:
12% enhancementof Gr at T = 1 MeV,
ew SSB by fundamental Higgs?
[Schwarz, RH, Giacosa, JHEP 2007]
astrophysically:
= stability of innergalactic HI clouds
[Brunt, Knee, Nature 2001; Schwarz, RH, Giacosa, JHEP 2007]
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Implications of SU(2).,. (2)

”table-top” experiment:
= PVLAS

® allorders e
® ®

Y _ _ ]
rotation of polarization

A= 1050 nm
My — 1 me\Vv/

[ Glacosa, RH, work In progress]
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summary

» historic situation: microsc. disorder < A

» questions posed by experiment and observation
» deconfining SU(2) YM thermodynamics

» SU(2)cums: (anti)screening, BB anomaly

» SU(2)cws: Implications in nature

Thank you.
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