Yang-Mills thermodynamics

Ralf Hofmann

Universität Karlsruhe (TH)

"Symmetry in Nonlinear Mathematical Physics" Institute of Mathematics, National Academy of Science, Kyiv, Ukraine June 28, 2007

Yang-Mills thermodynamics - p.1/28

plan

- brief motivation and preview on phase diagram [hep-th: 0411214, 0504064, 0609033, 0609172, 0702027]
- deconfining ground-state physics: coarse-grained, interacting calorons
- coarse-grained excitations:
 Legendre-trafos and loop expansion
- preconfinement: cond. magn. monopoles, dual Meissner effect
- Iow temperatures: Hagedorn, flip of statistics, Borel summation
 - summary, conclusions, mention of applications

Why nonpert. YMTD?

• infrared instability of PT even for $T \gg \Lambda$ in magnetic sector [Linde 1980]

► highly nonpert. ground-state physics even for $T \gg \Lambda$:

 $- \theta_{\mu\mu} \propto T$ [Miller 1998]

– spatial string tension: $\sigma \propto T^2$ [Philipsen 1998, Korthals-Altes 1998, ...]

no lattice control at low temperature:

- correlation length larger than linear lattice size
- analytical grasp \Rightarrow equilibrium violated

preview: phase diagram SU(2)

deconfining ground state

- ► coarse-grained (anti)calorons of |Q| = 1⇒ adjoint scalar field ϕ^a , $|\phi|$ spatially homogeneous
 - strategy:
 - thermodynamics $\Rightarrow \phi^a$ periodic in eucl. time in any admissible gauge \Rightarrow phase $\hat{\phi}^a$ determined by *classical* configs.
 - stable configs.: |Q| = 1 HS (anti)calorons (BPS) of trivial holonomy (only these enter!)

- compute $\hat{\phi}^a \in (\text{Kernel of } \mathcal{D})$ by respecting isotropy and $S_{\text{HS}} = \frac{8\pi^2}{g^2} \neq f(T, \Lambda)$ in *inf.*-vol. average over magnetic-magnetic correlation mediated by *single* (anti)caloron
- fixes \mathcal{D} uniquely \Rightarrow winding number
- impose BPS $\Rightarrow \hat{\phi}^a$
- average saturates rapidly
- \Rightarrow scale Λ and analyticity in ϕ^a
- \Rightarrow RHS of BPS eq. for ϕ^a
- $\Rightarrow \phi$'s potential and saturation scale $|\phi|$
- \Rightarrow inertness of $|\phi|$

technically:

(integration over $S_3^{R=\infty}$)

HS (anti)caloron

 $\hat{\phi}^a(\tau) \in \sum \operatorname{tr} \int d^3x \int d\rho \frac{\lambda^a}{2} \times$

$$F_{\mu\nu}((\tau,0)) \{(\tau,0),(\tau,\vec{x})\} \times$$

$$F_{\mu\nu}((\tau, \vec{x})) \{(\tau, \vec{x}), (\tau, 0)\}$$
.

saturation:

 $(2\pi/\beta)\tau$

$$-\mathcal{D}=\partial_{\tau}^{2}+\left(rac{2\pi}{\beta}
ight)^{2}$$

- $-\partial_{\tau}\phi = \pm i \Lambda^3 \lambda_3 \phi^{-1}$, (fixed global gauge) where $\phi^{-1} \equiv \frac{\phi}{|\phi|^2}$
- $\Rightarrow V(\phi) = \operatorname{tr} \Lambda^6 \phi^{-2}$ by squaring RHS

$$\Rightarrow |\phi| = \sqrt{\frac{\Lambda^3}{2\pi T}}$$

 \Rightarrow unique, coarse-grained action for |Q| = 1 HS (anticalorons)

 $\Rightarrow \phi$'s inertness

What about Q = 0?

perturbative renormalizability: ['t Hooft, Veltman 1971-73]

> \Rightarrow coarse-graining yields same form as fundamental action

▶ gauge invariance glues Q = 0 to $|Q| = 1 \Rightarrow$

$$S = \operatorname{tr} \, \int_0^\beta d\tau \int d^3x \left(\frac{1}{2} G_{\mu\nu} G_{\mu\nu} + D_\mu \phi D_\mu \phi + \Lambda^6 \phi^{-2} \right)$$

► subject to offshellness constraints in unitary-Coulomb gauge (coarse-graining down to resolution |φ|)

full ground state

- ▶ from $D_{\mu}G_{\mu\nu} = 2ie[\phi, D_{\nu}\phi]$: - pure gauge $a_{\mu}^{bg} = \frac{\pi}{e} T \delta_{\mu 4} \lambda_3$ \Rightarrow ground-state energy-density and pressure $\rho^{g.s} = 4\pi \Lambda^3 T = -P^{g.s} \neq 0$ \blacktriangleright rotation to unitary gauge $a_{\mu}^{bg} = 0$: - gauge transformation singular but admissible (does not affect periodicity of fluct. δa_{μ})
 - but: $\operatorname{Pol}[a^{bg}] = -\mathbf{1} \xrightarrow{GT} \operatorname{Pol}[a^{bg}] = +\mathbf{1}$
 - $\Rightarrow Z_2^{\rm el}$ degeneracy
 - \Rightarrow deconfinement

excitations and loop expansion adjoint Higgs mechanism: 2 out of 3 directions massive with $m = e \sqrt{\frac{\Lambda_E^3}{2\pi T}}$ \blacktriangleright T evolution of eff. coupl. e: requiring that P, ρ, \dots from partition function 25 $g = 4 \pi/e$ e 20 plateau: $e=8^{1/2}\pi$

counting of d.o.f.:

fundamentally:

3 species (gluons)×2 pols.+ 1 species (monop)×2 charges =8

after coarse-graining:

2 species (gluons)×3 pols.+ 1 species (gluon)×2 pols.=8

 \Rightarrow 8 (fund)=8 (coarse-grained).

same way for SU(3):

 \Rightarrow 22 (fund)=22 (coarse-grained)

loop expansion:

2-loop:

[Rohrer,Herbst,RH 2004; Schwarz,RH,Giacosa 2006]

 $(\Delta P_{ttv}^{HHM} + \Delta P_{ttc}^{HHM})/P_{1-loop}$

irreducible 3-loop: [Kaviani,RH 2007]

arguments on loop expansion in general: [RH 2006]

- resummation of 1PI diagrams \Rightarrow **no pinch singularities**
- irreducible diagrams terminate at finite loop order

(Euler characteristics for spherical polygon, constraints on loop momenta in effective theory \Rightarrow

number of constraints **exceeds** number of independent radial loop variables at **sufficiently large number of loops**)

preconfining phase

condensation of monopoles:

- phase of complex scalar = magnetic flux through $S_2^{R=\infty}$ of M-A pair at rest $(e \to \infty)$
- modulus as in dec. phase
- no change of form of action for free dual gauge modes by coarse-graining
- \Rightarrow unique effective action
- Polyakov loop always unique
- pressure exact at one loop
- evol. of magnetic coupling g by requiring der. of pressure from fund. partition function

counting of d.o.f.: fundamentally: 1 species ('photon')×2 pols.+ 1 species (center-vortex loop) =3after coarse-graining: 1 species (massive 'photon') \times 3 pols.=3 \Rightarrow 3 (fund)=3 (coarse-grained). same way for SU(3): \Rightarrow 6 (fund)=6 (coarse-grained)

low temperature

condensation of center-vortex loops (CVL's)

- discrete values of phase of complex scalar field = center flux through $S_1^{R=\infty}$ of spin-0 vortex pair at rest $(g \to \infty)$

- spectrum: single and selfintersecting CVL's

counting of d.o.f.: fundamentally: 1 species ('very massive photon')×3 pols.=3 after coarse-graining: 1 species (massless CVL)+ 1 species (massless CVL)× 2 charges=3

 \Rightarrow 3 (fund)=3 (coarse-grained).

same way for SU(3):

 \Rightarrow 6 (fund)=6 (coarse-grained)

potential unique up to inessential, U(1) invariant rescaling

- asymptotic-series representation of pressure:

$$P_{\rm as} = \frac{\Lambda^4}{2\pi^2} \hat{\beta}^{-4} \times \left(\frac{7\pi^4}{180} + \sqrt{2\pi} \,\hat{\beta}^{\frac{3}{2}} \sum_{l=0}^L a_l \sum_{n\geq 1} (32\lambda)^n \, n! \, n^{\frac{3}{2}+l} \right) \,,$$

where $\hat{\beta} \equiv \Lambda/T$ and $\lambda \equiv \exp[-\hat{\beta}]$.

- Borel transformation and analytic continuation \Rightarrow analytic dependence on Borel parameter t (polylogs) for $\lambda < 0$
- inverse Borel trafo: \Rightarrow analytic dependence for $\lambda < 0$ and **meromorphic** in entire λ -plane except for $\lambda \ge 0$

analyticity structure of physical pressure P:

– Re P continuous across cut:

- sign-ambiguous $\operatorname{Im} P$ grows slower than $\operatorname{Re} P$
- turbulences become relevant for sufficiently high T only

summary and conclusions

deconf. phase:

- magnetic-magnetic correlations in (anti)calorons generate adj. Higgs field
- rapid saturation of average
- negative ground-state pressure by microscopic holonomy shifts (annihilating M-A pairs)
- thermal quasiparticles on tree level (adj. Higgs mech.)
- very small radiative corrections, termination of expansion in terms of irreducible loops

preconf. phase:

- averaged magnetic flux of M-A pair through S_2^{∞} generates phase of complex scalar
- dual gauge field Meissner massive
- loop expansion trivial

conf. phase:

- averaged center flux of CVL pair through min. surface spanned by S_1^{∞} generates discrete values of phase of complex scalar
- excitations are single or selfintersecting CVL's of factorially growing multiplicity
- asymptotic-series representation of pressure
- Borel summability for complex values of ${\cal T}$
- analytic continuation: rapidly (slowly) rising modulus of real (imaginary) part
- interpretation: growing relevance of turbulences with increasing ${\cal T}$

– CMB

- late-time cosmology (axion + SU(2))
- electroweak symmetry breaking

Thank you.