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The two other phases



Yang-Mills action

> (thermal) Yang-Mills
[Pauli, Barker, and Gulmanelli (1953); Yang and Mills (1954)]

tr [P 3
525 ; dr dXFWFW,

where g is (dimensionless) coupling, 8 =1/T,

Fu = 04A, — 0,A, — ig[Au, Al], and

Ay = At — QAQ1 400,07 (Q(x) € G) is gauge field
such that F,, — QFWQT and thus S is gauge invariant.

» at 7 > 0: admissible changes of gauge respect periodicity
of A,

> in evaluating partition function Z = Z{Au} e > in
fundamental fields: Additional gauge fixing required =
1) Faddeev-Popov in PT
2) restriction to Gribov region (or better) otherwise



Propagating modes

> loop expansion of N-point functions in momentum space,
propagator D
= 1
D ~—_———s,
(P,wn) wr% T p2 T m?

where w, =27 nT (n € Z) nth Matsubara frequency.

» re-expressing (but not changing the contour for 7 integration
in Euclid. action) summation over n by Cauchy’s theorem =

27
eﬁ|P0‘ —1 ’

1 i

- N 52_2
Ziprm o TP m)

where Y, [ d®p — [ d*p.



Real-time interpretation of loop integrals

Remarks:

» A more elaborate 7 integration contour in the action was
considered in [Umezawa, Matsumoto, and Tachiki (1982), Niemi
and Semenoff (1984)]. This doubles real-time DOEs to avoid
pinch singularities in PT.

> In Yang-Mills, where selfdual (nonpropagating) field
configurations contribute to ground-state physics, such a
change of contour for physics of propagating excitations is
inconsistent.



Trivial-holonomy calorons
» in singular gauge (winding number |k| = 1 is localized in a
point) there is a superposition principle of instanton centers
in prepotential N ['t Hooft (1976), Jackiw and Rebbi (1976)]:
A:’a(x) = _ﬁZV 81/ |Og M )
AP(x) = —np, 0y logl.

> can be used to satisfy at |k| = 1 periodic b.c. in strip
(0<7<p)x R3 [Harrington and Shepard (1978)]:

|=00 p2
I ; =1 e
(T’vaa/BaXO) + :Z_: (X _ XI)2
2
2 sinh (%)

where r = |x|.



Trivial-holonomy calorons, cntd.

> holonomy of AZ*(x) at r — oo trivial:

2 - 1
N 21+ & jim A « lim = =0=
IBr r—o0 r—oo r2

s _
P exp [// dTAit:| =1,.
0

» Gaussian quantum weight [Gross, Pisarski, and Yaffe (1981)]:

87r2 42

S = 72 +§ +16A(0) (oc=77),

S S

A(o) — —é logo (00— o0) A(o)— _0_2

6 (c = 0).

Conclusion of semiclassical approx.:
Trivial-holonomy-caloron weight exponentially suppressed at
high T.



Nontrivial holonomy: Magnetic dipoles

> construction based on [Ward 1977, Atiyah and Ward 1977,
ADHM 1978, Drinfeld and Manin 1978, Manton 1978, Adler 1978,

Rossi 1979, Nahm 1980-1983]

> explicitly carried out in [Lee and Lu 1998, Kraan and Van Baal

1998]: Ag(7,r — 00) = —iut}(0 < u < ).

action density of nontrivial-holonomy caloron with
k =1 plotted on 2D spatial slice

exact cancellation
between Az;-mediated
repulsion and
A;-mediated
attraction;

caloron radius p and
thus monopole-core
separation D = %p2
increase from left to
right (T and
holonomy fixed)



Nontrivial holonomy, cntd.

computation of functional determinant about nontrivial holonomy
carried out in [Gross, Pisarski, and Yaffe (1981), Diakonov et al. 2004],

2
in latter paper for (relevant) limit % =7 (%) > 1

conclusions:

» total suppression for nontrivial static holonomy in limit
V = o0

» attraction of monop. and antimonop. for small holonomy
0<u<jzl-5) 50+ 5)<u<2])

» repulsion of monop. and antimonop. for large holonomy
(50— %) <us<5i+k)

» Instability of classical configuration under quantum noise =

Nontrivial holonomy does not enter a priori estimate of
thermal ground state!



Inert field ¢: A priori estimate of thermal ground state

Observations and principles constraining construction of ¢:

> Fu = :l:I:_W = vanishing energy-momentum:

0, = —2tr{5uy <¢E-Bi%(2E-B—|—2B-E)>

F(0u40ui + 6,i0,4) (E x E);
:|:5“,'5,/(j7é,-) (E,'BJ' — E;Bj) + 5#(,1'75")61”' (EJ'B,' — E_,'B,')} =0.

> spatial isotropy and homogeneity of effective local field not
associated with propagation of energy-momentum by
coarse-grained (anti)calorons = inert scalar ¢

» modulo admissible gauge transformations ¢ does not depend
on time

» relevance of ¢ (BPS) by gauge-invariant coupling to
coarse-grained k = 0 sector (perturbative renormalizability) =
¢ adjoint scalar



Inert field ¢

Observations and principles constraining construction of ¢, cntd:

> Fu = ilN-_W = any local “power” of F,, with an insertion of
t? vanishes

» only trivial holonomy in F,, = j:l:'w, allowed

> |¢| is spacetime homogeneous = information on ¢'s EOM is
encoded in phase ¢ = %

» definition of possible phases {qg} due to BPS of Af no
explicit T dependence, flat measure for admissible
integration over moduli (excluding temporal shifts and
global gauge rotations), Wilson lines between spatial points
along straight lines



Inert field ¢

Unique definition of {gg} [Herbst and Hofmann 2004]:

) = r | d&®x [ dpt®F(7,0) {(7,0),(r,x
(3= 3 [ @x [ 40t Fulr0) 1.0 5:x)

X Fuu(7,x) {(7,x),(7,0)} ,

(%)
/'/ dz, Au(2)] ,
(1,0)

{(7.%), (1, 0)} = {(r,0), (r.x)}" ,

and sum is over Harrington-Shepard (trivial-holonomy) caloron
and anticaloron of scale p.

where

{(7,0),(7,x)} = Pexp

Higher n-point functions, higher topol. charge k7 No.

(Would introduce mass dimension d =3 — n — m of object, m > 1
number of dimension-length caloron moduli at kK > 1, but d needs to
vanish.)



Inert field ¢

Some observations, conventions:

> quS indeed transforms as an adjoint scalar:
$(1) = R*(7)$"(7),
where R?P is 7 dependent matrix of adjoint rep.

R3b(1)tP = Q(7,0)t°Q(, 0).

» What about shift of spatial center 0 — 2.7

XV\

o -l

(a) (b)
(a) graphical representation of definition
(b) only possible generalization to zy # 0

Shift of center amounts to
spatially global gauge
rotation induced by the
group element

Q;t = {(7—7 0)) (Ta Zi)}'



Inert field ¢

Some observations, conventions, cntd:
» one has

(7:x) 1
/ dz,Au(2)], = i/ ds x;Ai(T, sx)
0

(7,0)
1
= dtpxp 87/ ds logN(r,sr,p) =
0

integrand in the exponent of {(7,0), (7,x)} varies along a
fixed direction in su(2) (a hedge hog); Path-ordering can be
ignored.
> temporal shift freedom in Aff: set 7 = 0 and re-instate later
» parity: F(7,%x)+ = Fu(7,—x)— and

{(770)7(7-7)()}4- = ({(Tvx)>(7_>0)}+)T:{(770)7(77 —X)}_
= ({0 (r.op )" =

— contribution to the integrand in definition obtained by
X — —Xx in + contribution



Inert field ¢

Some observations, conventions, cntd:

after tedious computation [Herbst and Hofmann 2004]
+ contribution to integrand in definition reads:
, 32" x? 72p* + p?(2 + cos(277))

— i B
P (272p2 + 1 — cos(277))?

x F[g,N],

where p = %, = é 7= % and functional F is

Lo.mo,n) 0.0,
M2 n

i 0,N]? o0,M? 02N 62N
+S|n(2g)<2[n2] —2[ I'I2] + TR >,

b
{(7,0),(7,x)}, =cos g £ 2ith— sing .
r

and

One shows that g saturates exponentially fast for 7 > 1.



Inert field ¢

discussion:

>

angular integration would yield zero if radial integration was

regular

but: radial integration diverges logarithmically due to term
85_,”; this term arises from the magnetic-magnetic correlation
(no convergence in PT due to weakly screened magnetic
sector!)

zeroxinfinity yields undetermined, multiplicative, and real
constants =

without restriction of generality (global choice of gauge),
angular integration regularized by defect azimuthal angle in
1-2 plane of su(2) for both + and — contributions =
Members of {¢} all move in hyperplane of su(2)!

re-instate 7 =+ 7+ 74 =



Inert field ¢

discussion, cntd:
result:
{0} = {=4(6% cosay + 0% sinay) A(2n (7 +74))
+=_ (0t cosa_ + 6 sina_) A(2n(7 +7_))}, where

A
300 2000f /P 3
wof [} €51 [\ F\€=2
wllf A 1000
100 p b
oo Y/ i 1000
-300 4 Y 2000 J J 2mt
05 1 T15 ¢ o5 1 15 2 g
a —
5000
4000 £=3 200000 £=10
2000 100000)
o o

-100000)

- 5000) -200000

T dependence of function A(227)

saturation property (cutoff independence) for j integration.



( dependence of =,

Pmax = (P
/dp—>/0wdp, (¢ >0).

» =1 = 272(3 x unknown, fixed real, (¢ > 5)

> integral over p is strongly dominated by contributions just
below upper limit

» since upper limit set by |¢|~! (yet to be determined), only
(anti)calorons with p ~ ||~ contribute to effective theory

» since (, = (|¢|8)~! > 8.22 (later) semiclassical discussion of
nontrivial-holonomy calorons in limit

2
Dy (g) > (8.22)2 x 1 > 1 [Diakonov et al. 2004] is
justified.



Kernel of a differential operator D and potential for ¢

> set {gg} contains two real parameters for each “polarization”:
=4 and 74; {¢} is annihilated by linear, second-order

2
differential operator D = 92 + (%’T) =

{®} coincides with kernel of D and determines D uniquely
> linearity = also D¢ =0
» but: D depends on 3 explicitly, not allowed
(BPS, caloron action given by topolog. charge)
» therefore seek potential V/(|¢|?) such that (Euclidean) action
principle applied to

Ly =tr((0-0) + V(8?)) .

yields solutions annihilated by D, where L, does not depend
on 3 explicitly; demand that energy density ©44 = 0 on those
solutions



Potential V/(¢?) and modulus of ¢

» pick motion in 1-2 plane of su(2) (gauge invariance = V
central potential = cons. angular momentum); ansatz:

6 =2]6/n exp(i%’m).

(circular motion in 1-2 plane, |¢| time independent!)
» apply E-L to Ly =

2
0297 = %gf)a (in components) <
2
2% oV(s) ¢ (in matrix form).

52

> O44 = 0 on ansatz ¢ = |2 (%ﬂ)z — V(|6[2) = 0 but also:
826 + <%>2¢:0 -

oV(oP) _ V(6?)

ool el?




Potential V/(¢?) and modulus of ¢, cntd

2y _ A°
> = V([¢l°) = g
where A integration constant of mass dim. unity.

> = |p| = \/% (power-like decay of field ¢ with increasing T)

The field ¢ describes coarse-grained effect of noninteracting
trivial-holonomy calorons and anticalorons. It does not propagate,
and its modulus |¢| sets the scale of maximal off-shellness of
intermediates in effective theory.

» Indeed: cutting off p and r integrations at |¢|~!, T
dependence of .A(2”) is perfect sine
(Error at level smaller than 10722 if knowledge about

T. = CW with Ac = 13.87 is used, later.)




BPS equation for ¢

In addition to E-L equation ¢ satisfies first-order, BPS equation:

Orp =22 N3 t3¢7 1 = +i V2(g).

Because ¢ satisfies both, second-order E-L and first-order BPS
equation, usual shift ambiguity in ground-state energy density, as
allowed by E-L equation, absent in SU(2) Yang-Mills
thermodynamics.



Effective action for deconfining phase

Coupling the coarse-grained k = 0 sector to ¢, following
constraints:
> perturbative renormalizability
['t Hooft, Veltman, Lee, and Zinn-Justin 1971-1973]
= form invariance of action for effective k = 0 gauge field a,
from integrating fundamental k = 0 fields only, no higher dim.
ops. constr. from a, only
> no energy-momentum transfer to ¢ = absence of higher dim.
ops. involving a, and ¢
» gauge invariance = 0,0 — D, ¢ = 0,0 — ielay, @]
(e effective coupling); no momentum transfer to ¢ (unitary
gauge ¢ = 2|¢| t3), massive 1,2 modes propagate on-shell only

> o > ok s

hr R I} i

X o * xR =

N WA
+ 5 -
[ J 4 P
P2 Py




Effective action and ground-state estimate
unique effective action density:
1 N®
Eeff[ap,] =tr <§ G,uzz G,uz/ + (Dp¢)2 + ?> )
where G, = 0,a, — Oya,, — ie[a,,a,] = G, ta
ground-state estimate:
» E-L EOM from L.:{a,]

DuG;w = ie[gb, qub] :

> solved by zero-curvature (pure-gauge) config. a%:

2w
EES :F5u4£ ts (Dyp=G,=0) =

P = —P®*=47N3T.
Unresolvable interaction between k = 0 to |k| = 1 sector lifts p& from
zero (BPS). EOS of a cosmological constant; pressure negative.
(Short-lived, attracting magnetic (anti)monopoles by temporary shifts of
(anti)caloron holonomies from trivial to small through absorption of
unresolved plane-wave fluctuations.)



Winding to unitary gauge: Z, degeneracy
» consider gauge rotation Q(7) = Q, Z(7) Q(7) where
Q(r) = exp[+2mijts], Z(7) = (2@(7‘ — g) — 1) 1,, and
Q, = exp[i5 ta]
» Q(7) transforms a% to a5 = 0 and ¢ to ¢ = 2t3|¢|

> Q(T) is admissible because respects periodicity of day:
ay — Q(a% + 02, )0 + éflaﬂfﬂ
=Q, (Q(afj +62,)Q + é (Q@HQT + zauz)> af

o
=Q, (QdaHQT + éé(r — g)z> I =Q,Q06a, (2.Q)".

» Q(7) transforms Polyakov loop from —1, to 1, =
ground-state estimate is (electric) Z, degenerate =
deconfining phase



Mass spectrum; outlook resummed radiative corrections

» computation in physical and completely fixed unitary,
Coulomb gauge (¢ = 2t3|¢|, 9;a3 = 0)

3
> mass spectrum: m?> = m? = m3 = 4e22/7\r—7_ ,m3=0.

» resummation of polarization tensor of massless mode as
= small linear-in-T correction to tree-level ground-state
estimate [Falquez, Hofmann, Baumbach 2010]

_ e -3
tree-level: Tz = 3117.09\,
Ap=
one-loop resummed: r-_ 3.95 273

» large hierarchy between loop orders (conjecture about
termination at finite irreducible order [Hofmann 2006]), so
one-loop correction practically exact



T dependence of e: selfconsistent thermal quasiparticles
P and p at one loop:

P(\) = —/\4{ 2\

(2m)°

[2P(0) + 6P(2a)] + 2)\} :

o) = n {2 (o) + spt2a)] + 20

where

P(y) = /000 dx x? log [1 —exp(—v/x? +y2)] ,

ly) = /wdxxz VX2t
—Jo exp(v/x2+y2) -1’

and a = /2 = 2reA3/2. For later use introduce function D(2a) as

0,2P L / Td i L L D(2a)
= — X E _ .
v y=2a 472 0 \/X2 + (23)2 e\/X2+(2a)2 _1 472




Legendre transformation and evolution equation
» for m(T) to respect Legendre trafo (fundamental partition
function) between P and p < 0P =0

» = first-order evolution equation

24)\%3 D(2a)

(2m)° 14 2852 D(2a)

0.\ = —

or

_24)\3 ( da

L )‘ﬁ + a> aD(2a).

> :a()\)oc)\_% for A = oo
= for A > 1 a must fall below unity

» fixed points of evolution equation:

repulsive at a =0 (A — o0)
attractive at a =00 (A = A.)



Solution to evolution equation

» a < 1 [Dolan, Jackiw 1974] = 1 = —(2’%4 ()\% + a) a;
solution (a(\;) = a; < 1):

A a?\3 1/2
— 2y-3/2 o 9
a(\) = 4212\ (1 x [1 —32#&) .

= attractor a(\) = 4v/272A"3/2 as long as a < 1

= e = /87 as long as a < 1 (importantly: S = 86%2 =1=

interpretation of & in terms of caloron winding number, later)
» full solution for e(\) = A\, = 13.87:

e
20

17.5
15
12.5
10
7.5
5
2.5

0 100 200 300 400 500



T dependence of P and p

P ot
20 7
1 1 1 !
O l 6/
1 [ !
o—A si
1 / 1 :
-1 ! 4, |
1 1 1 :
-2l l 3h
1 1 1 !
I l | l
-3 I 2h !
10 15 20 25 30 35 40 10 15 20 25 30 35 40

> notice negativity of P shortly above A,

> relative correction to one-loop quasiparticle P and p by
radiative effects: < 1%



Counting powers of h

> re-instating h but keeping c = kg =1
= (dimensionless) exponential (fluctuating fields only) in
effective partition function

Jy drdPx Ll
h )

is re-cast as
B 1 -
—/ drd®xtr (E(auéy—ayéu—ie\/ﬁ[éu,éy])2—e2h[au,¢]2) ,
0

3, = a“/\/i_i, ® = ¢/v/h assumed not to depend on &
(see for example [Brodsky and Hoyer 2011; lliopoulos, Itzykson,
and Martin 1975, Holstein and Donoghue 2004])

» This re-formulation of (effective) action implies that loop
expansion is expansion in ascending powers of A.

> [3,] is length~ = [e] = [1/V/A]



Action of just-not-resolved (anti)caloron
_ Veér
» Thus e = NG almost everywhere.
» Since only (anti)calorons of p ~ |¢|~! contribute to ¢ in
effective theory = effective coupling e admissible in
calculation of fundamental (anti)caloron action:

872
Scia= - = h  (almost everywhere) .



Implications: Planck’'s quantum=caloron action

1) universality, constancy (quantization) of &: no dependence on
YM scale A, associated with one unit of topological charge
2) pointlike vertices between effective plane waves induced by
just-not-resolved, Euclidean nonpropagating field configuration
= irreconcilability of Euclidean and Minkowskian signatures
as source of indeterminism in scattering event
(nonthermal behavior)

= resolution of paradox: Pgs = —pgs <0
3) because effective vertices are dominated by (anti)calorons
with p ~ [¢] 1

= no interaction between (fundamental) plane waves if
potential momentum transfer >> |¢|

= absence of plane-wave offshellness > |9

= adds justification to renormalization programme of PT



hypothetically resolving an effective vertex:

resolution fixed (here by T through ¢(T)):
= no plane-wave interactions beyond that resolution
(UV finiteness)

N

A

/

(@ (b)

radiative corrections in eff. th. caloron mediation of vertex

(zero-mode induced fermionic vertex on (anti)instanton: ['t Hooft 1976])



Constraints of momentum transfers in effective 4-vertex

P3 P4=P1*P 2 ~P3

sum over nontrivial s-, t-, and u-channel contributions in
physical unitary-Coulomb gauge constrained as

» s-channel: |(p1 + p2)?| < |¢]?
+ tchannel: [(ps — p1)?] < |02
- u-channel: |(ps — p2)?] < |62



Real-world implications

» postulate that photon propagation described by SU(2)
rather than U(1) gauge principles:
[Hofmann 2005; Giacosa and Hofmann 2005] = black-body
anomaly, magnetic charge-density waves
[Schwarz, Hofmann, and Giacosa 2006; Ludescher and Hofmann
2008; Falquez, Hofmann, and Baumbach 2010, 2011]

> in units ¢ = ¢g = g = kg = 1 QED fine-structure constant «

is
Q2
“= arh
= to be unitless: Q o 1/e.

Is realized if Q taken  electric-magnetically dual of e:

Q = 4% xVh, Q =NQ (mixing of SU(2)’s).



Real-world implications, cntd.

= magnetic monopoles of SU(2) are electric monopoles
in real world [Hofmann 2005]

= magnetic-monopole condensate of SU(2) is condensate of
electric monopoles in real world (no dual Meissner effect)
[Giacosa and Hofmann 2005]

= electric charge density waves in SU(2) are longitudinally
propagating magnetic field modes in real world
[Falquez, Hofmann, and Baumbach 2011]

= magnetic Z, charge of an SU(2) center-vortex selfintersection
is electric charge in real world
[Moosmann and Hofmann 2008]



Negligible photon-photon scattering

» diagrams excluded by overall on-shellness:

<

» coherent channel superposition in remaining diagram:




Details on photon-photon scattering

> investigate 27 combinations of s,t,u in 3 overall channels
S, T,U with 4 energy-sign combinations each subject to:
— on-shellness constraint on massive modes and
— 4-vertex constraints
» distinguish cases for signs of loop energy iy and y:
g >0;, >0 | 1p>0; <O
g <0; >0 0g<0; Vg<O0 |
» example of overall S:

Vertex 1
Vertex 2

‘ s ch. ‘I [ X ] [X]IX] [X][X]
(X[ ] X1 X] [(X]X]
‘ tch. ‘IXIXIIXI | X1 ]
(X[ X] [ X[ X] [X]X]
X1 x] [XT 1 [X] ]

u-ch. |
‘ ‘IXIXIIXIXIIXIXI




Exclusion of Sss

» from on-shellness and momentum conservation:

ﬁ’l2

N

(1 — cos(«£ab)) > ——,
aobo

» from momentum transfer constraints:

(1 — cos(£Lab)) < ~1~ ,
aobo

= upper bound smaller than lower bound

= no Sss contribution!

= Stt+—, Stu+—, Sut+—, Suu+— remain.
(4 out of 36 combinations)



What about T and U?

» for both channels:

‘ Vertex 2 Vertex 1 ‘ s-ch. ‘ ‘ t-ch. ‘ ‘ u-ch. ‘

‘ s ch. ‘IXIXIIXIXIIXIXI
(X[ xX] [XIX] [(X]T ]
X1 [X[X] [X]TX]

t-ch. | |
‘ ‘IXIXIIXIXIIXI |
‘ u-ch. ‘I [ X ] [X]IX] [X][X]
(X[ X] [ X[ X] [X]X]

» again: 4 out of 36 combinations remain in each case.



MC sampling of nonexcluded cases: Total hits

» 2 x 10 test shots into region
30 =2, by =2 <100, A\ = 13.867 < \ < 100
(noncompact arguments) and nonconstrained ang. domain.

> histogram of hits:
Hits
00
150
100

50

0 o- = - 2
20 30 40 50 60 70

» in Sss analysis of Bose suppression yields factor < 107 for
Ac = 13.867 < )\ < 30.



MC sampling of nonexcluded cases: Distribution of photon
energies

> for 2 X 1011 test shots we obtain

100
80 -
60 -

40 -

r—g-_zo :g"—v
Hits [

, ] , Hits
I 0 1
...........
400 300 200 100 0 0 100 200 300 400

» Hard photons do not scatter at all.

» Very feeble participation of soft photons.



Filamented algebraic varieties

Stt; _Softening Factor: 150

Stt;_Softening Factor: 30




Summary and outlook

» Low-order radiative corrections:
Hofmann 2006; Schwarz, Hofmann, Giacosa 2007; Ludescher,
Hofmann 2008; Falquez, Hofmann, Baumbach 2010, 2011

» Loop expansions:
Hofmann 2006

» Stable but unresolved monopoles:
Keller et al. 2008

» The two other phases:
Hofmann 2005, 2007, 2011; Moosmann, Hofmann 2008



Summary

» mini review on (thermal) Yang-Mills action

» mini review on calorons: trivial vs. nontrivial holonomy for
|k| = 1 plus semiclassical approx.

» construction of thermal ground-state estimate: inert field ¢;
BPS and E-L; potential

» discussion of constraints on effective action: pert.
renormalizability plus inertness of ¢ = unique answer

» full ground-state estimate, deconfining nature, tree-level
quasiparticles

» evolution of effective coupling
» T dependence pressure and energy density
> interpretation of i in terms of caloron action

» photon-photon scattering



Physics

Some physics implications:

postulate: SU(2) (10~%eV) describes photon propagation

= black-body spectral anomaly at T ~ 5 — 20K and
low frequencies; low frequency magnetic charge-density waves
(cold H1 clouds, CMB large-angle anomalies (PLANCK),
UEGE, cosmological magnetic fields)

= Planck-scale axion plus such an SU(2) yield Dark Energy

Thank you.
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