



### SU(2) Yang-Mills thermodynamics: Calorons and the deconfining thermal ground state

60 years of Yang-Mills Gauge Field Theories 27 May 2015, Nanyang Technological University, Singapore

#### R. Hofmann

ITP-Universität Heidelberg, IPS-KIT

$$S_{\beta} = \operatorname{tr} \frac{1}{2} \int_0^{\beta} d\tau \int d^3x \, F_{\mu\nu} F_{\mu\nu}$$

### motivation

- Andrei Linde (1980): "Infrared Problem in the Thermodynamics of the Yang-Mills Gas"
  - soft magnetic sector screened weakly in perturbation theory (infrared instability)
  - no "convergence" of series since kinetic and interaction energies comparable in this sector
- issue of finite-volume constraints in lattice gauge theory
  - correlations mediated by soft magnetic sector insufficiently probed by available lattice sizes

### motivation

- Andrei Linde (1980): "Infrared Problem in the Thermodynamics of the Yang-Mills Gas"
  - soft magnetic sector screened weakly in perturbation theory (infrared instability)
  - no "convergence" of series since kinetic and interaction energies comparable in this sector
- issue of finite-volume constraints in lattice gauge theory
  - correlations mediated by soft magnetic sector insufficiently probed by available lattice sizes

# nonperturbative Yang-Mills thermodynamics: SU(2)

[Herbst & RH (2004), RH (2005-2007), Giacosa & RH (2006), Schwarz, Giacosa & RH (2007), Ludescher & RH (2008), Falguez, Baumbach & RH (2010- 2011), RH (2012), Krasowski & RH (2013), Grandou & RH (2015)]

### thermal ground state at high temperature:

- Euclidean action:

$$S = \frac{\operatorname{tr}}{2} \int_0^\beta d\tau \int d^3x \, F_{\mu\nu} F_{\mu\nu} \,, \qquad (\beta \equiv 1/T)$$

[(anti)calorons]

where 
$$F_{\mu\nu}\equiv\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}-ig[A_{\mu},A_{\nu}]$$
 [Schafer et Shuryak (1996)] - (anti)selfdual gauge fields:  $F_{\mu\nu}[A]=\pm \tilde{F}_{\mu\nu}[A] \Rightarrow \theta_{\mu\nu}[A]\stackrel{?}{\equiv} 0$  . [(anti)salarons]

( $A_{\mu}$  periodic)

field configs. stabilized by gauge-field winding:  $\partial \mathbf{R}^4 = S_3 \to SU(2) = S_3$ 

- in particular: (anti)calorons of winding number unity

Calorons of top. charge unity (selfdual field configs. on  $S_1 \times \mathbf{R}_3$  ): (singular gauge) ['t Hooft, Rebbi & Jackiw (1977)]

**Harrington-Shepard (1977):** (trivial holonomy)

$$A_{\mu} = \bar{\eta}_{\mu\nu}^{a} t_{a} \partial_{\nu} \log \Pi(\tau, r)$$

with 
$$\Pi=\left\{egin{array}{ll} \left(1+rac{1}{3}rac{s}{eta}
ight)+rac{
ho^2}{x^2} & (|x|\lleta) \\ 1+rac{s}{r} & (r\ggeta) \end{array}
ight.$$
 and  $s\equivrac{\pi
ho^2}{eta}\,,\;\;eta\equivrac{1}{T}\,.$ 

[Gross, Pisarski & Yaffe (1981)]

Calorons of top. charge unity (selfdual field configs. on  $S_1 \times \mathbf{R}_3$ ): (singular gauge)

Harrington-Shepard (1977): (trivial holonomy)

$$A_{\mu} = \bar{\eta}_{\mu\nu}^{a} t_{a} \partial_{\nu} \log \Pi(\tau, r)$$

with 
$$\Pi=\left\{egin{array}{ll} \left(1+rac{1}{3}rac{s}{eta}
ight)+rac{
ho^2}{x^2} & (|x|\ll eta) \\ 1+rac{s}{r} & (r\gg eta) \end{array}
ight.$$
 and  $s\equiv rac{\pi 
ho^2}{eta}\,,\;\;eta\equiv rac{1}{T}\,.$ 

[Gross, Pisarski & Yaffe (1981)]

$$\Rightarrow$$

$$F_{\mu\nu}$$
 that of singular-gauge instanton with  ${\rho'}^2=rac{{
ho}^2}{1+rac{1}{3}rac{s}{eta}}\;(|x|\ll eta)$  .

(action: 
$$S_c=\frac{8\pi^2}{g^2}\int_{S_3^\delta}d\Sigma_\mu\,K_\mu=\frac{8\pi^2}{g^2}$$
 localised about instanton center in  $S_1\times{\bf R}_3$ )

Calorons of top. charge unity (selfdual field configs. on  $S_1 \times \mathbf{R}_3$ ): (singular gauge)

['t Hooft, Rebbi & Jackiw (1977)]

**Harrington-Shepard (1977):** (trivial holonomy)

$$A_{\mu} = \bar{\eta}_{\mu\nu}^{a} t_{a} \partial_{\nu} \log \Pi(\tau, r)$$

with 
$$\Pi=\left\{egin{array}{ll} \left(1+rac{1}{3}rac{s}{eta}
ight)+rac{
ho^2}{x^2} & (|x|\ll eta) \\ 1+rac{s}{r} & (r\gg eta) \end{array}
ight.$$
 and  $s\equiv rac{\pi
ho^2}{eta}\,,\;\;eta\equiv rac{1}{T}\,.$ 

[Gross, Pisarski & Yaffe (1981)]

 $\Rightarrow$   $F_{\mu\nu}$  that of singular-gauge instanton with  ${\rho'}^2=\frac{{\rho'}^2}{1+\frac{1}{2}\frac{s}{2}}$   $(|x|\ll\beta)$  .

(action:  $S_c=rac{8\pi^2}{g^2}\int_{S_a^\delta}d\Sigma_\mu\,K_\mu=rac{8\pi^2}{g^2}$  localised about instanton center in  $S_1 \times \mathbf{R}_3$  )

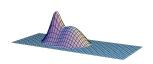
$$\Rightarrow$$

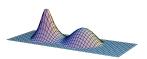
$$E_i^a = B_i^a = s \frac{\delta_i^a - 3 \,\hat{x}^a \hat{x}^i}{r^3} \quad (r \gg s) \,.$$

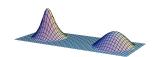
(static selfdual dipole-field with dipole moment:  $p_i^a = s \, \delta_i^a$ )

Nahm (1983), Lee-Lu-Kraan-van-Baal (1998): (nontrivial holonomy)  $_{-M}$ 

- M and A of finite mass and extent:

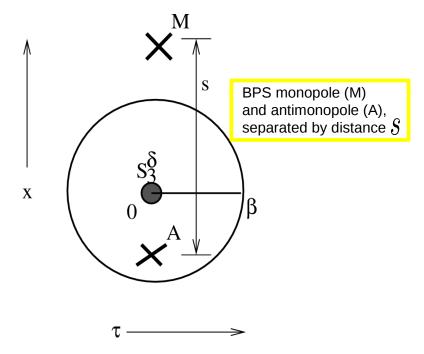






$$m_M = 4\pi u, m_A = 4\pi \left(\frac{2\pi}{\beta} - u\right)$$

(action density on spatial slice)



Nahm (1983), Lee-Lu-Kraan-van-Baal (1998):

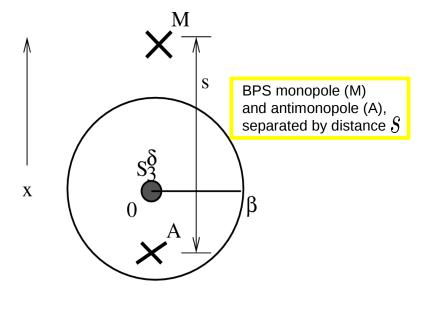
(nontrivial holonomy)

- M and A of finite mass and extent:



$$m_M = 4\pi u, m_A = 4\pi \left(\frac{2\pi}{\beta} - u\right)$$

(action density on spatial slice)



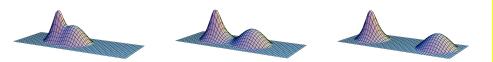
 caloron unstable under Gaussian fluctuations

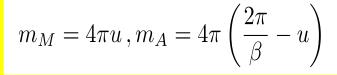
[Diakonov et al. (2004)]

Nahm (1983), Lee-Lu-Kraan-van-Baal (1998):

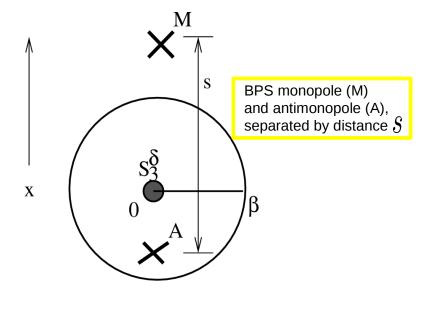
(nontrivial holonomy)

- M and A of finite mass and extent:





(action density on spatial slice)



 caloron unstable under Gaussian fluctuations
 [Diakonov et al. (2004)]

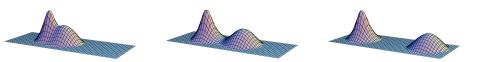
- M-A attraction (small holonomy u, likely)
- M-A repulsion (small holonomy u , unlikely)

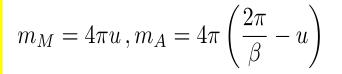
[Diakonov et al. (2004), RH (2005)]

Nahm (1983), Lee-Lu-Kraan-van-Baal (1998):

(nontrivial holonomy)







(action density on spatial slice)

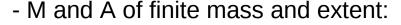
 $\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ 

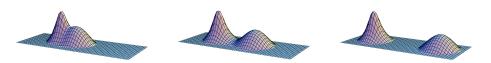
 caloron unstable under Gaussian fluctuations
 [Diakonov et al. (2004)]

- M-A attraction (small holonomy u, likely)
- M-A repulsion (small holonomy u, unlikely) [Diakonov et al. (2004), RH (2005)]
- locus of action within  $S_3^\delta \ (\delta o 0)$

Nahm (1983), Lee-Lu-Kraan-van-Baal (1998):

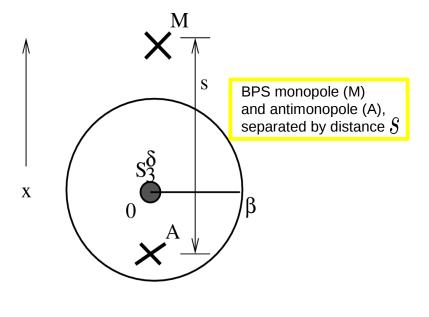
(nontrivial holonomy)





$$m_M = 4\pi u, m_A = 4\pi \left(\frac{2\pi}{\beta} - u\right)$$

(action density on spatial slice)



 caloron unstable under Gaussian fluctuations
 [Diakonov et al. (2004)]

- M-A attraction (small holonomy u, likely)
- M-A repulsion (small holonomy u , unlikely) [Diakonov et al. (2004), RH (2005)]
- locus of action within  $S_3^\delta \ (\delta o 0)$
- trivial-holonomy limit:M massless, A still massive, stable

[Herbst & RH (2004)]

$$\{\hat{\phi}^{a}\} \equiv \sum_{\pm} \operatorname{tr} \int d^{3}x \int d\rho \, t^{a} \, F_{\mu\nu}(\tau, \vec{0}) \, \left\{ (\tau, \vec{0}), (\tau, \vec{x}) \right\} \, F_{\mu\nu}(\tau, \vec{x}) \, \left\{ (\tau, \vec{x}), (\tau, \vec{0}) \right\}$$

- unique, dimensionless definition of family of phases, where

$$\begin{split} \left\{ (\tau, \vec{0}), (\tau, \vec{x}) \right\} &\equiv \mathcal{P} \exp \left[ i \int_{(\tau, \vec{0})}^{(\tau, \vec{x})} dz_{\mu} \, A_{\mu}(z) \right] \quad \text{and} \\ \left\{ (\tau, \vec{x}), (\tau, \vec{0}) \right\} &\equiv \left\{ (\tau, \vec{0}), (\tau, \vec{x}) \right\}^{\dagger} \end{split}$$

[Herbst & RH (2004)]

$$\{\hat{\phi}^{a}\} \equiv \sum_{\pm} \operatorname{tr} \int d^{3}x \int d\rho \, t^{a} \, F_{\mu\nu}(\tau, \vec{0}) \, \left\{ (\tau, \vec{0}), (\tau, \vec{x}) \right\} \, F_{\mu\nu}(\tau, \vec{x}) \, \left\{ (\tau, \vec{x}), (\tau, \vec{0}) \right\}$$

- unique, dimensionless definition of family of phases, where

$$\begin{split} \left\{ (\tau, \vec{0}), (\tau, \vec{x}) \right\} &\equiv \mathcal{P} \exp \left[ i \int_{(\tau, \vec{0})}^{(\tau, \vec{x})} dz_{\mu} \, A_{\mu}(z) \right] \quad \text{and} \\ \left\{ (\tau, \vec{x}), (\tau, \vec{0}) \right\} &\equiv \left\{ (\tau, \vec{0}), (\tau, \vec{x}) \right\}^{\dagger} \end{split}$$

- magnetic-magnetic correlations contribute only [Herbst & RH 2004]

[Herbst & RH (2004)]

$$\{\hat{\phi}^{a}\} \equiv \sum_{\pm} \operatorname{tr} \int d^{3}x \int d\rho \, t^{a} \, F_{\mu\nu}(\tau, \vec{0}) \, \left\{ (\tau, \vec{0}), (\tau, \vec{x}) \right\} \, F_{\mu\nu}(\tau, \vec{x}) \, \left\{ (\tau, \vec{x}), (\tau, \vec{0}) \right\}$$

- unique, dimensionless definition of family of phases, where

$$\begin{split} \left\{ (\tau, \vec{0}), (\tau, \vec{x}) \right\} &\equiv \mathcal{P} \exp \left[ i \int_{(\tau, \vec{0})}^{(\tau, \vec{x})} dz_{\mu} \, A_{\mu}(z) \right] \quad \text{and} \\ \left\{ (\tau, \vec{x}), (\tau, \vec{0}) \right\} &\equiv \left\{ (\tau, \vec{0}), (\tau, \vec{x}) \right\}^{\dagger} \end{split}$$

- magnetic-magnetic correlations contribute only [Herbst & RH 2004]
- uniquely determined, annihilating operator:

$$D = \partial_{\tau}^2 + \left(\frac{2\pi}{\beta}\right)^2$$

[Herbst & RH (2004)]

$$\{\hat{\phi}^{a}\} \equiv \sum_{\pm} \operatorname{tr} \int d^{3}x \int d\rho \, t^{a} \, F_{\mu\nu}(\tau, \vec{0}) \, \left\{ (\tau, \vec{0}), (\tau, \vec{x}) \right\} \, F_{\mu\nu}(\tau, \vec{x}) \, \left\{ (\tau, \vec{x}), (\tau, \vec{0}) \right\}$$

- unique, dimensionless definition of family of phases, where

$$\begin{split} \left\{ (\tau, \vec{0}), (\tau, \vec{x}) \right\} &\equiv \mathcal{P} \exp \left[ i \int_{(\tau, \vec{0})}^{(\tau, \vec{x})} dz_{\mu} \, A_{\mu}(z) \right] \quad \text{and} \\ \left\{ (\tau, \vec{x}), (\tau, \vec{0}) \right\} &\equiv \left\{ (\tau, \vec{0}), (\tau, \vec{x}) \right\}^{\dagger} \end{split}$$

- magnetic-magnetic correlations contribute only [Herbst & RH 2004]
- uniquely determined, annihilating operator:  $D = \partial_{\tau}^2 + \left(\frac{2\pi}{\beta}\right)^2$
- $-\{\phi^a\}$  sharply dominated by cut-off for  $\rho$  integration

# spatial coarse-graining over (anti-)calorons: inert, adjoint scalar field $\phi$

- no explicit eta dependence in  $\phi$  field dynamics (caloron action!)
- absorb  $\beta$  dependence of operator  $\,D\,$  into potential  $\,V\,$

$$\frac{\partial V(|\phi|^2)}{\partial |\phi|^2} = -\frac{V(|\phi|^2)}{|\phi|^2} \Longrightarrow$$

$$V(|\phi|^2) = \frac{\Lambda^6}{|\phi|^2} \qquad \text{(Yang-Mills scale constant of integr.)}$$

$$|\phi| = \sqrt{\frac{\Lambda^3 \beta}{2\pi}}$$
and

# spatial coarse-graining over (anti-)calorons: inert, adjoint scalar field $\phi$

- no explicit eta dependence in  $\phi$  field dynamics (caloron action!)
- absorb  $\beta$  dependence of operator  $\,D\,$  into potential  $\,V\,$

$$\frac{1}{\partial |\phi|^2} = -\frac{1}{|\phi|^2}$$

$$V(|\phi|^2) = \frac{\Lambda^6}{|\phi|^2}$$
(Yang-Mills scale constant of integr.)
and

$$|\phi| = \sqrt{\frac{\Lambda^3 \beta}{2\pi}}$$

- BPS equation:

$$\partial_{\tau} \phi = \pm 2i \,\Lambda^3 \,t_3 \,\phi^{-1} = \pm i \,V^{1/2}(\phi)$$



no **additive** ambiguity in  $\,V\,!\,$ 

### effective action (deconfining phase), thermal ground state

$$\mathcal{L}_{\text{eff}}[a_{\mu}] = \text{tr} \left( \frac{1}{2} G_{\mu\nu} G_{\mu\nu} + (D_{\mu}\phi)^2 + \frac{\Lambda^6}{\phi^2} \right)$$

- (i) perturbative renormalizability ( $G^2$  highest power in effect. action)
- (iil)  $\phi$  's inertness no higher dim., mixed operators to mediate 4-momentum transfer between  $\phi$  and  $a_\mu$  (iii) gauge invariance

### effective action (deconfining phase), thermal ground state

$$\mathcal{L}_{\text{eff}}[a_{\mu}] = \text{tr} \left( \frac{1}{2} G_{\mu\nu} G_{\mu\nu} + (D_{\mu}\phi)^2 + \frac{\Lambda^6}{\phi^2} \right)$$

- (i) perturbative renormalizability (  $G^2$  highest power in effect. action)
- (iil)  $\phi$  's inertness no higher dim., mixed operators to mediate 4-momentum transfer between  $\phi$  and  $a_{\mu}$  (iii) gauge invariance
- effective YM equation  $D_{\mu}G_{\mu\nu}=ie[\phi,D_{\nu}\phi]$  has ground-state solution:

$$a_{\mu}^{\rm gs} = \mp \delta_{\mu 4} \frac{2\pi}{e\beta} t_3 \qquad (D_{\nu} \phi \equiv G_{\mu\nu} \equiv 0)$$

(vanishing entropy density of ground state!)

interacting small and transient-holonomy (anti)calorons, (collapsing monopoleantimonopole pairs)

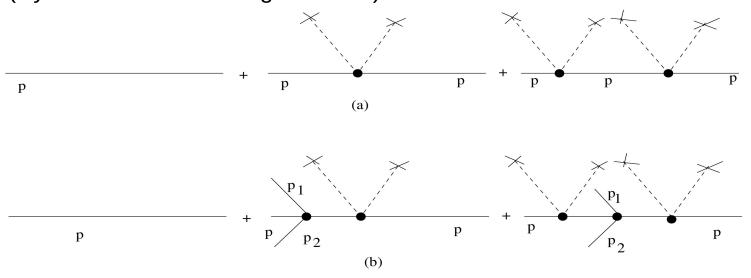
### adjoint Higgs mechanism (deconfining phase)

 $(SU(2) \rightarrow U(1))$ 

- from effective action:

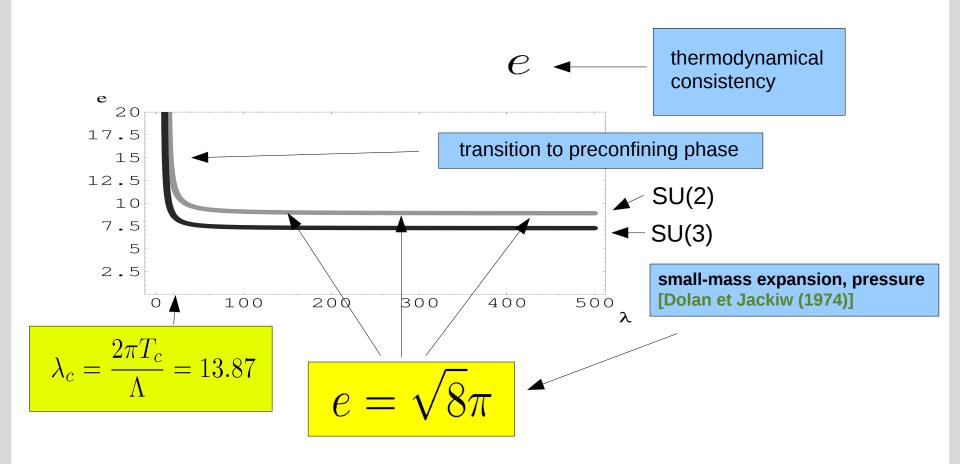
$$m_a^2 = -2e^2 {
m tr} \left[\phi, t_a\right] \left[\phi, t_a\right]$$
 unitary gauge  $m_1^2 = m_2^2 = 4e^2 \frac{\Lambda^3}{2\pi T} \,, \; m_3 = 0$ 

- no momentum transfer to  $\,\phi$  , but this infinitely often (Dyson series for mass generation):

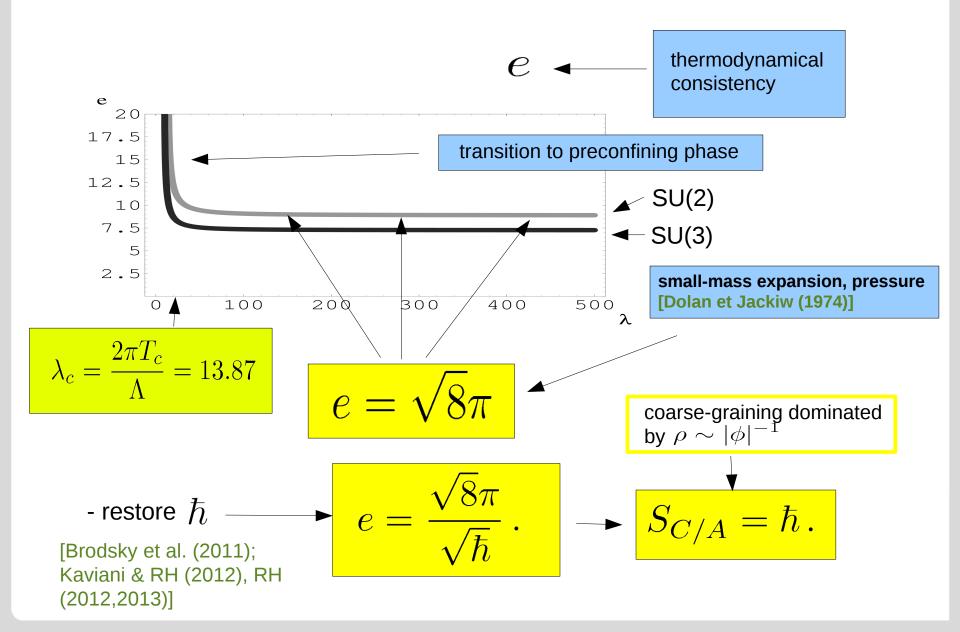


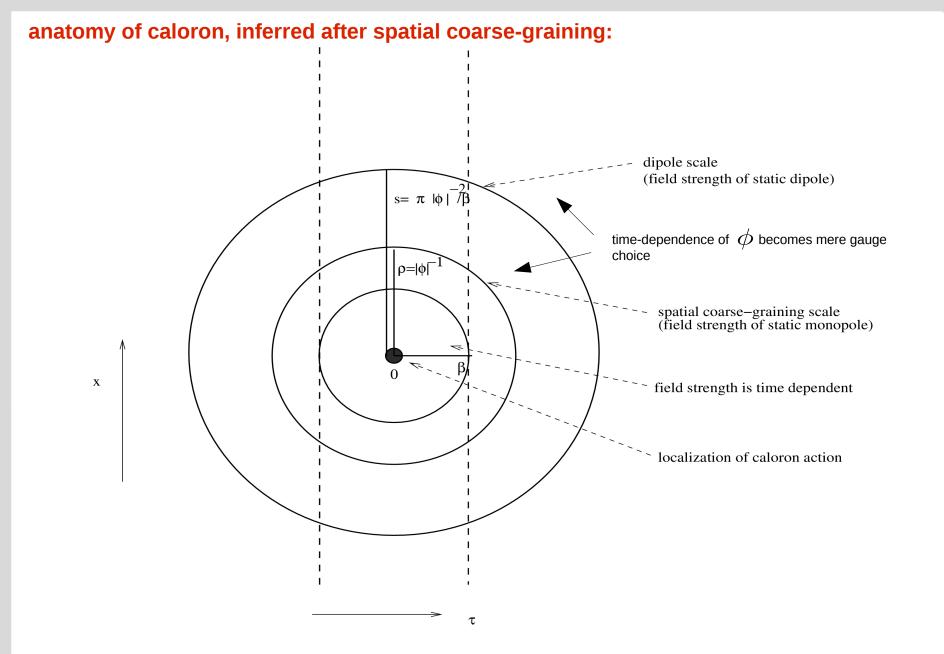
- no off-shell propagation of massive modes (otherwise: momentum transfer to  $\phi$  !)

### effective gauge coupling



### effective gauge coupling





summary: induced, effective thermal QFT

**Convergence of loop expansions** 

**defining Yang-Mills action:** classical, Euclidean gauge-field theory on  $S_1 imes \mathbf{R}_3$ 

summary: induced, effective thermal QFT Convergence of loop expansions

defining Yang-Mills action: classical, Euclidean gauge-field theory on  $S_1 \times \mathbf{R}_3$ 

small-holonomy (anti)calorons of action  $\hbar$  constitute effective thermal ground state and mediate interactions (vertices) between effectively propagating modes

[Kaviani & RH (2012), Krasowski & RH (2013)]

# summary: induced, effective thermal QFT; Convergence of loop expansions

**defining Yang-Mills action:** classical, Euclidean gauge-field theory on  $S_1 \times \mathbf{R}_3$ 

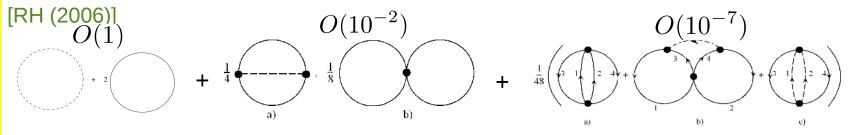
small-holonomy (anti)calorons of action  $\hbar$  constitute effective thermal ground state and mediate interactions (vertices) between effectively propagating modes

[Kaviani & RH (2012), Krasowski & RH (2013)]

kinematic constraints in (totally fixed) unitary-Coulomb gauge imply that radiative corrections are extremely well controlled

[Schwarz, Giacosa, & RH (2006), Ludescher & RH (2008)]

**expansion** of thermodyn. quantities into **1PI loops** probably **terminates** at finite order, say, pressure



## real-world implications

### electric-magnetically dual interpretation of U(1) charge:

if SU(2) something to do with photons [RH (2005), Grandou & RH (2015), etc] then **electric-magnetically dual** interpretation required: in units  $c=\epsilon_0=\mu_0=k_B=1$  fine-structure constant

$$\alpha = \frac{Q^2}{4\pi\hbar} \,,$$

### real-world implications

### electric-magnetically dual interpretation of U(1) charge:

if SU(2) something to do with photons [RH (2005), Grandou & RH (2015), etc] then **electric-magnetically dual** interpretation required:

in units  $\,c=\epsilon_0=\mu_0=k_B=1\,$  fine-structure constant

$$\alpha = \frac{Q^2}{4\pi\hbar} \,,$$

for  $\alpha$  to be unitless:

$$(e = \frac{\sqrt{8}\pi}{\sqrt{\hbar}}.)$$

$$Q \propto rac{1}{e}$$
 .

## real-world implications

### electric-magnetically dual interpretation of U(1) charge:

if SU(2) something to do with photons [RH (2005), Grandou & RH (2015), etc] then **electric-magnetically dual** interpretation required:

in units 
$$\,c=\epsilon_0=\mu_0=k_B=1\,$$
 fine-structure constant

$$\alpha = \frac{Q^2}{4\pi\hbar} \,,$$

for  $\alpha$  to be unitless:

$$(e = \frac{\sqrt{8}\pi}{\sqrt{\hbar}}.)$$

$$Q \propto \frac{1}{e}$$
.

**But:** magnetic coupling in SU(2)

$$g = \frac{4\pi}{e} \, .$$

 $\Rightarrow$  SU(2) to be interpreted in an **electric-magnetically dual way**. (e.g., magnetic monopole  $\longleftrightarrow$  electric monopole, etc.)

# electric/magnetic dipole density (permittivity/permeability of vacuum): [temperature a fictitious quantity]

$$|\mathbf{D}_e| = \frac{2s}{V_{\rm cg}} \propto T^{1/2}$$

external electric field strength (plane wave):

$$\rho_{\rm gs} = 4\pi T \Lambda^3 = \rho_{\rm EM} = \epsilon_0 \mathbf{E}_e^2 \Rightarrow |\mathbf{E}_e| \propto T^{1/2}$$

$$\Rightarrow \qquad \epsilon_0 \equiv \frac{|\mathbf{D}_e|}{|\mathbf{E}_e|} \neq f(T)$$

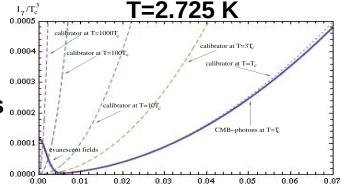
similarlyy for magnetic permeability  $\,\mu_0\,$  .

[Grandou & RH (2015)]

# evidences for $SU(2)_{\rm CMB}$ ( $\Lambda_{\rm CMB} \sim 10^{-4}\,{\rm eV}$ ): photon at tree level

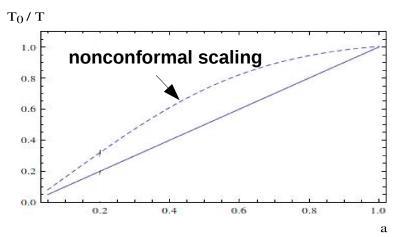
- cosmic radio background (UEGE),
onset of Meissner effect

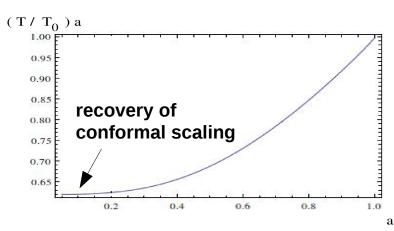
evanescent modes at low frequencies
[terrestial observ. (1981-1999),
Arcade 2 (2009), RH (2009)]



- CMB angular spectrum vs. Gunn-Peterson trough (quasars) inferred early re-ionisation of intergalactic medium (z=11 vs. z=6 discrepancy), non-conformal T-a relation at late times

[Becker et al. (2001), WMAP coll. (2004), Planck coll. (2013)]



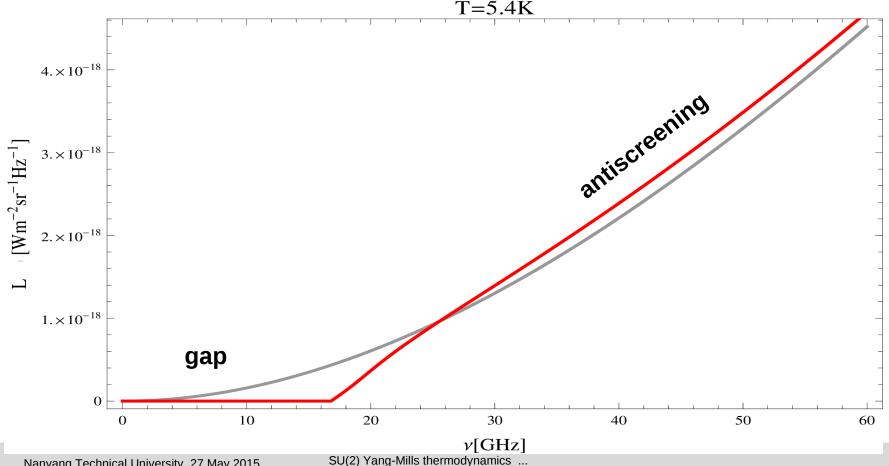


[RH (2014)]

# evidences for $SU(2)_{\rm CMB}$ ( $\Lambda_{\rm CMB}\sim 10^{-4}\,{\rm eV}$ ): one-loop polarization

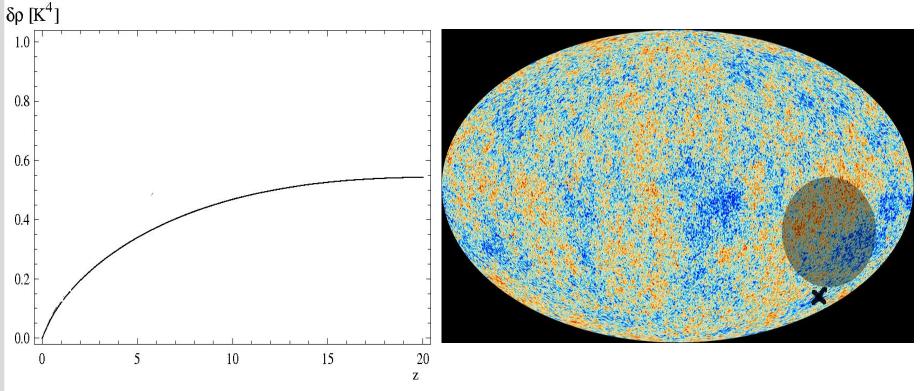
- **spectral blackbody anomaly:** max. gap in Rayleigh-Jeans reg. at  $T\sim 5\,\mathrm{K}$  , massless mode – transverse polarizations

[Schwarz, Giacosa & RH (2006), Ludescher & RH (2008), Falquez, RH & Baumbach (2010,2011)]



# evidences for $SU(2)_{\rm CMB}$ ( $\Lambda_{\rm CMB} \sim 10^{-4}\,{\rm eV}$ ): one-loop polarization

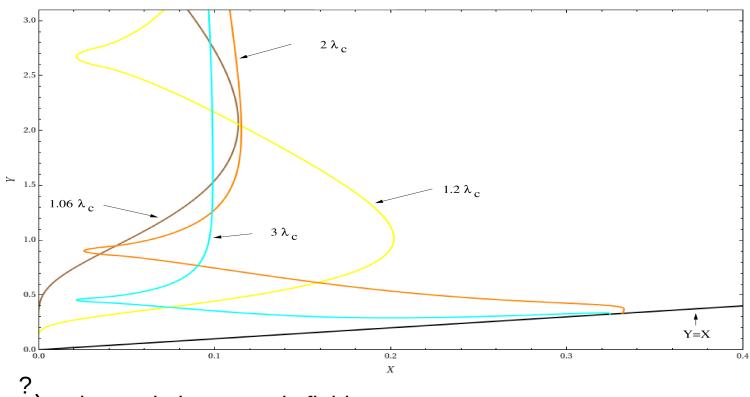
- integral blackbody anomaly: difference  $\delta \rho$  between energy density of SU(2) and U(1), massless mode – transverse polarizations



(positive slope of  $\delta \rho$  bias for negative temperature fluctuations in late-time CMB) [Szopa et al 2007, RH Nature Physics (2013)]

# evidences for $SU(2)_{\rm CMB}$ ( $\Lambda_{\rm CMB}\sim 10^{-4}\,{\rm eV}$ ): one-loop polarization

low-momentum support of magnetic branches (dual interpretation)
 massless mode – longitudinal polarization

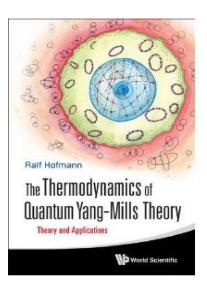


intergalatic magnetic fields [Falquez et al. (2011)]

# summary

- alternative to high-T perturbation theory:
   caloron induced dynamical gauge SB by thermal ground state
- effective theory for deconfining phase of SU(2) YM
- ullet effective coupling evolution: caloron action  $\hbar$  ,
  - caloron mediation of effective vertices,
  - e-m dual interpretation
- effective radiative corrections: extremely well controlled
- SU(2) photons: tree-level and one-loop polarization anomalies
  - → CMB anomalies
    - cosmic radiobackground
    - quasar vs CMB wrt reionization,
    - spectral & integral BB anomalies
       (CMB at large angles)
  - → extragalactic magnetic fields

### Theory:



(World Scientific 2011)

### Cosmological applications (CMB photons):

F. Giacosa and RH, Eur. Phys. J. C (2005);

F. Giacosa, RH, M. Neubert, JHEP (2008);

M. Szopa, RH, JCAP (2008);

RH, Annalen d. Physik (2009);

RH, Nature Physics (2013);

RH, Annalen d. Physik (2015);

Grandou & RH (2015)

Thank you!