$SU(2)_{CMB} \stackrel{today}{=} U(1)_{Y}$ and the nature of light

John Hopkins workshop

1 – 3 August 2005

Budapest

Ralf Hofmann

Universitäten Frankfurt/Heidelberg

hep-th/0504064 (Int. J. Mod. Phys. A 20)

Outline

motivation

nonperturbative SU(2) Yang-Mills thermodynamics:

A very brief introduction

- electric-magnetic coincidence and $U(1)_V$
- CMB fluctuations at large angles as radiative corrections
- Summary and Outlook

Motivation

$SU(2)_{CMB} \stackrel{today}{=} U(1)_{Y}$

WMAP 1-year release of temperature map

temperature-polarization cross correlation at large angles

power spectrum of TE cross correlation:

excess compared to primordial prediction !

(reionization versus mobile electric monopoles at z = 10...20)

more motivation

Universe's equation of state:

$$\Omega = \Omega_{crit}, \Omega_{\Lambda} = 0.7\Omega_{crit}, \Omega_{DM} = 0.3\Omega_{crit}$$

(slowly rolling Planck-scale axion)

 nontrivial ground state physics related to physics of photon propagation?

(invisible ether)

• intergalactic magnetic fields $B \le 10^{-9} G^{2}$

(condensed, electrically charged monopoles)

SU(2) Yang-Mills thermodynamics, nonperturbatively

SU(2) Yang-Mills thermodynamics

at large temperatures:

spatial coarse-graining over both

plane-wave fluctuations

(small quantum fluctuations,

perturbation theory)

1. induce magnetic monopole constituents in calorons

- 2. induce interactions between monopoles
- 3. after coarse-graining:

pure-gauge configuration

topological fluctuations

(large, topology changing quantum fluctuations,

calorons)

- 1. provide spatial correlations to resolve the infrared catastrophe
- 2. after coarse-graining:

inert adjoint scalar with T dependent modulus

quasiparticle masses by Higgs mechanism

[Nahm 1980, Lee & Lu 1998, Kraan & van Baal 1998, Brower et al. 1998, Diakonov et a. 2004, Ilgenfritz et al. 2005, Polyakov 1974]

SU(2) Yang-Mills thermodynamics: phase diagram

confining

ground state: CVL condensate

(spin-1/2) excitation:

single and selfintersecting CVLs

preconfining

around state:

monopole condensate $\Rightarrow P^{gs} = -\pi T \Lambda^3_M$ plus collapsing, closed magnetic flux lines (CVL)

excitation:

massive, dual mode

apparent gauge symmetry breaking:

$$U_D(1) \rightarrow 1$$

2nd

order

9

Hage-

dorn

deconfining

ground state:

short-lived (attracting) BPS monopoles and antimonopoles ($\Rightarrow P^{gs} = -4\pi T \Lambda^{3}_{E}$)

plus dilute, screened BPS monopoles and antimonopoles

(spin-1) excitations: two massive modes

$$m_{w_{\pm}} = 2e_{\sqrt{\frac{\Lambda^{3}_{E}}{2\pi T}}}$$

one massless mode apparent gauge-symmetry breaking:

$$SU(2) \rightarrow U(1)$$

microscopics of ground-state dynamics: deconfining phase

quasiparticle excitations after spatial coarse-graining

one-loop evolution of *C* with temperature

pressure at one-loop

energy density at one-loop

electric-magnetic coincidence

at $\lambda_{c,E}$:

electric coupling $e = \infty$, magnetic coupling g = 0(dynamically stabilized)

1. free photon gas (no screening, W^{\pm} decoupled)

2. (i) not yet a coupling of the photon to the monopole condensate:

(ii) photon massless,

(iii) rest-frame of heat bath not visible in single photon propagation (invisible ether),

(iv) superconductivity of ground state (intergalactic magnetic fields ?) barely visible

coincide!

(neither dynamical magnetic charges (screening) nor condensed electric charges (photon mass) measureable)

CMB fluctuations at large angles as radiative corrections

subject to compositeness constraints

(plane-wave quantum fluctuations softer than $|\phi|$, harder fluctuations integrated out into $a_{\mu}^{\ bg}$)

radiative corrections to pressure at most 0.2%

[Herbst, RH, Rohrer 2004]

dominant correction

Summary and Outlook

Universe<u>today</u> possibly <u>dynamically stabilized</u> at boundary between deconfining and preconfining phase of

SU(2) Yang-Mills theory of scale

 $\Lambda_E = 1.2 \times 10^{-4} eV$

invisible ether: structureless condensate of electric

monopoles (electric-magnetic concidence)

after jump to preconfing phase: Universe's ground state

visibly superconducting

monopole condensate: small correction to Universe's darkenergy content

 $\implies \textbf{large-angle part of CMB power spectra: radiative corrections in}$ $deconfining phase of <math>SU(2)_{CMB}$ (mobile monopoles)

Summary and Outlook

future work:

- computation of two-loop correction to pressure in an FRW background $\Longrightarrow \frac{\Delta T}{T}(l)$ at low \mathbf{Z}
- computation of various thermal two-point correlators in Minkowski space and FRW background with or without axion background
 polarization power spectra and CP violation
- rate of axion rolling necessary for jump to preconfining phase (violation of thermal equilibrium)

Typical situation in thermal perturbation theory

taken from Kajantie et al. 2002

taken from van Baal & Kraan 1998

Does ϕ fluctuate?

quantum mechanically:

$$\frac{\partial^{2} |\phi_{l}| V_{E}}{|\phi_{l}|^{2}} = 3l^{3} \lambda_{E}^{3} > 1 \quad (\lambda_{E} \equiv \frac{2\pi T}{\Lambda_{E}})$$

$$\Rightarrow \text{ No!}$$

compositeness scale

thermodynamically:

$$\frac{\partial^2 |\phi_l| V_E}{T^2} = 12\pi^2 l^2 > 1$$
$$\implies \text{No!}$$

Thermodynamical self-consistency:

pressure (one-loop):

however:

Higgs-induced masses and ground-state pressure both

T- dependent

- \Rightarrow T derivatives involve also implicit dependences
- relations between thermod.quantities violated:

$$\rho \neq T \frac{dP}{dT} - P$$

Relaxation to the minima

Figure 10: The potential $V_C = \overline{v_C(\Phi)}v_C(\Phi)$ corresponding to the definition in Eq. (97) for N=2,3,4 and $\Lambda_C = \Lambda_C^*$, $|\Phi|$ is given in units of Λ_C and V_C in units of Λ_C^4 . Notice the minima $V_C = 0$ at the Nth unit roots.