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Abstract

Strong correlations are important for the understanding of many phenomena in modern condensed matter phys-
ics. Examples are high temperature superconductivity (Nobel prize 1987 http://www.nobel.se/physics/
laureates/1987/index.html), the fractional quantum Hall effect (Nobel prize 1998 http://www.nobel.
se/physics/laureates/1998/index.html) or quite recently topological phase transitions in two dimen-
sions (Nobel prize 2016 http://www.nobel.se/physics/laureates/2015/index.html). The theory for
strong correlations needs new concepts and methods to describe such phenomena and to solve the corresponding
models. The aim of this course is to provide these methods, to introduce the models, and to help understanding
the phenomena in strongly correlated systems. Not the only one but the most important model to describe
strongly correlated Fermions is the Hubbard model. In the modern theory of strong correlations it plays the
same role as the Ising model in statistical physics: It serves as a standard model to describe and understand most
of the phenomena in strongly correlated systems. The Hubbard model was initially introduced to describe the
physical behaviour of transition metals, to understand magnetic phenomena in itinerant electron systems (fer-
romagnetism, anti-ferromagnetism, ferrimagnetism), to describe the Mott transition, and to describe π-electron
systems in quantum chemistry. In one space dimension it describes a Luttinger liquid. Although the model has
a very simple structure, the behaviour depends strongly on the parameters, the interaction strength, the density,
and the underlying lattice. In this course we try to give an overview over the physics of strongly correlated
electrons and the Hubbard model.

The students are expected to know quantum mechanics and statistical physics. Some knowledge in condensed
matter physics is helpful as well.
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1 Interacting Fermions and Bosons

1.1 The Hubbard model

As mentioned in the abstract, the Hubbard model serves as a standard model for strongly correlated electrons.
The Hamiltonian of the Hubbard model is given by

H = Hkin +HWW = ∑
x,y,σ

tx,yc†
x,σ cy,σ +U ∑

x
c†

x↑c
†
x↓cx↓cx↑ (1.1)

The model describes electrons in a tight binding approximation on a lattice. x,y denote the lattice sites. σ ∈ {↑
,↓} denotes the spin of the electron. c†

xσ is a creation operator for an electron with spin σ on lattice site x, cxσ

is the corresponding annihilation operator. The first part of the Hamiltonian describes the hopping of electrons
on the lattice, txy is the hopping amplitude. The second part describes the interaction between the electrons.
Usually we assume the interaction to be repulsive, i.e. U > 0.

The model was proposed independently by J. Hubbard [25] for the description of transition metals, by J.
Kanamori [28] for the description of itinerant ferromagnetism, and by M.C. Gutzwiller [19] for the description
of the metal-insulator transition. In Quantum Chemistry, the model is popular as well, and was introduced
ten years earlier [58, ?, 60]. Under the name Pariser-Parr-Pople model it has been used to describe extended
π-electron systems. Recently, it has been used to describe high temperature superconductors.

Today, the bosonic Hubbard model is of some interest as well. Its Hamiltonian is

H = Hkin +HWW = ∑
x,y

tx,yc†
xcy +

U
2 ∑

x
nx(nx−1) (1.2)

where now c†
x, cx are creation and annihilation operators for bosons.

For students who are not familiar with the notation used in (1.1,1.2), we introduce creation and annihilation
operators in the next section. Students who are familiar with this notation may skip that and may continue
reading from section 1.3.

1.2 Quantum Systems with many Particles

In reality, almost any system contains many particles interacting with each other. A single particle can be
described by a wave function, which is an element of the single particle Hilbert space. The Hilbert space of two
or more distinguishable particles is a product of the Hilbert spaces for single particles. For identical particles,
the situation is different. Here, the type of the particles is essential, they may be either fermions or bosons.
The multi particle wave function for bosons has to be symmetric, for fermions it has to be anti-symmetric
against permutations of particles. The goal of the subsequent sections is to obtain a compact notation for such
multi particle states using creation or annihilation operators for particles. We introduce them first separately for
bosons and fermions.

Many of the concepts in this chapter may be found in standard text books like [56].

1.2.1 Creation and Annihilation Operators for Fermions

Let {φi(~r,σ)} be an orthonormal basis of single particle states. We denote the coordinate and the spin by
q = (~r,σ). In the case of fermions, a basis of N-particle states can be build out of Slater determinants of the
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1 Interacting Fermions and Bosons

single particle states:

|i1, i2, ..., iN〉=
1√
N!

∣∣∣∣∣∣∣∣∣
φi1(q1) φi1(q2) ... φi1(qN)
φi2(q1) φi2(q2) ... φi2(qN)

...
...

...
φiN (q1) φiN (q2) ... φiN (qN)

∣∣∣∣∣∣∣∣∣ (1.3)

This state can be written in the form

|i1, i2, ..., iN〉=
1√
N! ∑

P∈SN

(−1)P
N

∏
j=1

φi j(qP( j)) (1.4)

Because of the construction as a determinant, the state is anti-symmetric if one permutes a pair of indices, as it
should be for fermions.

|i1, ..., iα , ..., iβ , ..., iN〉=−|i1, ..., iβ , ..., iα , ..., iN〉 (1.5)

Normalisation:
〈i1, i2, ..., iN |i1, i2, ..., iN〉= 1 (1.6)

Orthogonality

〈 j1, j2, ..., jN |i1, i2, ..., iM〉=
{

∑P(−1)P
∏k δ jk,iP(k) ifN = M

0 ifN 6= M.
(1.7)

We now define the creation operator of a particle in the state i by

c†
i |i1, i2, ..., iN〉= |i, i1, i2, ..., iN〉 (1.8)

c†
i maps states with N onto states with N+1 particles. The right-hand side may vanish, this happens if and only

if one of the indices ik = i. One has

c†
i c

†
j|i1, i2, ..., iN〉 = |i, j, i1, i2, ..., iN〉

= −| j, i, i1, i2, ..., iN〉
= −c†

jc
†
i |i1, i2, ..., iN〉 (1.9)

This holds for all states, so we have
c†

i c
†
j =−c†

jc
†
i (1.10)

Therefore we have c†
i c

†
i = 0. Furthermore one may write

|i1, i2, ..., iN〉= c†
i1c†

i2 ...c
†
iN |vak.〉 (1.11)

For each operator c†
i we introduce the hermitian conjugate operator ci:

〈 j1, ..., jM|ci|i1, ..., iN〉= 〈i1, ..., iN |c†
i | j1, ..., jM〉∗

= 〈i1, ..., iN |i, j1, ..., jM〉∗

=

{
δi1,iδi2, j1 ...−δi1, j1δi2,i± ... alltogether N! permutations, if N = M+1
0 if N 6= M+1.

= δi1,i〈i2, ..., iN | j1, ..., jM〉∗−δi2,i〈i1, i3, ..., iN | j1, ..., jM〉∗+ ...(N terms). (1.12)

and therefore
ci|i1, ..., iN〉= δi1,i|i2, ..., iN〉−δi2,i|i1, i3, ..., iN〉+ ...(N terms). (1.13)

and
ci|vak.〉= 0 (1.14)
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1 Interacting Fermions and Bosons

The commutation relations for the creation operators c†
i can be carried over onto the annihilation operators ci:

cic j =−c jci (1.15)

We now introduce the anti-commutator [A,B]+ = AB+BA for arbitrary operators A and B. Then we may write

[c†
i ,c

†
j]+ = 0, [ci,c j]+ = 0 (1.16)

Because of
c†

i c j|i1, ..., iN〉= δi1, j|i, i2, ..., iN〉−δi2, j|i, i1, i3, ..., iN〉+ ... (1.17)

c jc†
i |i1, ..., iN〉= δi, j|i1, ..., iN〉−δi1, j|i, i2, ..., iN〉+δi2, j|i, i1, i3, ..., iN〉+ ... (1.18)

we obtain
(c jc†

i + c†
i c j)|i1, ..., iN〉= δi, j|i1, ..., iN〉 (1.19)

and since this holds for any state, we have
[c†

i ,c j]+ = δi, j (1.20)

1.2.2 Creation and Annihilation Operators for Bosons

Bosonic wave functions are symmetric. Therefore we could make the ansatz, in analogy to the fermions

|i1, i2, ..., iN〉=
1√
N! ∑

P
∏

j
φi j(qP( j)) (1.21)

But this state is not normalised. Since these wave functions are symmetric against permutations of two indices,
they do not vanish if two indices are identical. Let ni be the number of particles in the state i. Then we have

〈i1, i2, ..., iN |i1, i2, ..., iN〉= ∏
i∈{i1,...,iN}

ni! (1.22)

Therefore, the correct normalisation is

|i1, i2, ..., iN〉=
1√

N!∏i∈{i1,...,iN} ni!
∑
P

∏
j

φi j(qP( j)) (1.23)

and therefore

〈 j1, j2, ..., jN |i1, i2, ..., iM〉=

{
1

∏i∈{i1 ,...,iM} ni! ∑P ∏k δ jk,iP(k) if N = M

0 if N 6= M.
(1.24)

For bosons, the creation operators can be defined as

c†
i |i1, i2, ..., iN〉=

√
ni +1|i, i1, i2, ..., iN〉 (1.25)

Here, ni is the number of particles in the single particle state i contained in |i1, i2, ..., iN〉. This is in complete
analogy to the operators one introduces in the typical text-book treatment of the harmonic oscillator.

The hermitian conjugate operators to c†
i are ci and we obtain:

〈 j1, ..., jM|ci|i1, ..., iN〉= 〈i1, ..., iN |c†
i | j1, ..., jM〉∗

=
√

ni +1〈i1, ..., iN |i, j1, ..., jM〉∗

=

√
ni +1

∏i′∈{i1,...,iN} ni′!

{
δi1,iδi2, j1 ...+δi1, j1δi2,i + ... alltogether N! permutations, if N = M+1
0 if N 6= M+1.

=
1√

ni +1
(δi1,i〈i2, ..., iN | j1, ..., jM〉∗+δi2,i〈i1, i3, ..., iN | j1, ..., jM〉∗+ ...) (N terms). (1.26)
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1 Interacting Fermions and Bosons

Here again ni is the number of particles in the single particle state i contained in | j1, ..., jM〉. This means

ci|i1, ..., iN〉=
1
√

ni
(δi1,i|i2, ..., iN〉+δi2,i|i1, i3, ..., iN〉+ ...) (N terms) (1.27)

where now ni is the number of particles in the single particle state i contained in |i1, ..., iN〉 (one particle more
than in | j1, ..., jM〉). In complete analogy to the fermionic case treated before, we obtain

[c†
i ,c

†
j]− = 0 (1.28)

[ci,c j]− = 0 (1.29)

[ci,c†
j]− = δi, j (1.30)

where now [., .]− is the usual commutator. The creation operators can be used to form the multi particle states:

|i1, i2, ..., iN〉=
1√

∏i∈{i1,...,iN} ni!
c†

i1c†
i2 ...c

†
iN |vak.〉 (1.31)

Summary: Creation and Annihilation Operators

We introduce the variable ζ , which is −1 for fermions, +1 for bosons. With the help of this variable, we may
write the formula for both types of particles in the compact form

|i1, i2, ..., iN〉=
1√

N!∏i∈{i1,...,iN} ni!
∑
P

ζ
P
∏

j
φi j(qP( j)) (1.32)

〈 j1, j2, ..., jN |i1, i2, ..., iM〉=

{
1

∏i∈{i1 ,...,iM} ni! ∑P ζ P
∏k δ jk,iP(k) if N = M

0 if N 6= M.
(1.33)

c†
i |i1, i2, ..., iN〉=

√
ni +1|i, i1, i2, ..., iN〉 (1.34)

ci|i1, ..., iN〉=
1
√

ni
(δi1,i|i2, ..., iN〉+ζ δi2,i|i1, i3, ..., iN〉+ ...) (N terms) (1.35)

[c†
i ,c

†
j]−ζ = 0 (1.36)

[ci,c j]−ζ = 0 (1.37)

[ci,c†
j]−ζ = δi, j (1.38)

|i1, i2, ..., iN〉=
1√

∏i∈{i1,...,iN} ni!
c†

i1c†
i2 ...c

†
iN |vak.〉 (1.39)
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1 Interacting Fermions and Bosons

1.2.3 Single particle operators

Let us now discuss the operator

N̂ =
N

∑
i=1

c†
i ci (1.40)

One has
c†

i ci|i1, ..., iN〉= (δi1,i +δi2,i + ...+δiN ,i)|i1, ..., iN〉 (1.41)

and therefore
N̂|i1, ..., iN〉= N|i1, ..., iN〉 (1.42)

N̂ is the particle number operator. It is a single particle operator, since it may operate on single particle states.
Any single particle operator T (for instance the kinetic energy or a potential) operates on the single particle
basis. One has

T |i1〉=
N

∑
i=1

ti,i1 |i〉 (1.43)

We consider first operators which are diagonal in the chosen basis

T |i〉= ti|i〉 (1.44)

For N-particle states we have similarly

T |i1, ..., iN〉= ∑
j

ti j |i1, ..., iN〉 (1.45)

The operator acts on each particle independently. We now want to show that T can be written as

T = ∑
i

tic†
i ci (1.46)

With this form of T we calculate

T |i1, i2, ..., iN〉= T
1√

ni1 +1
c†

i1 |i2, ..., iN〉=
1√

ni1 +1
[T,c†

i1 ]|i2, ..., iN〉+
1√

ni1 +1
c†

i1T |i2, ..., iN〉 (1.47)

and further on
[T,c†

i1 ] = ∑
i

ti[c†
i ci,c†

i1 ] = ti1c†
i1 (1.48)

T |i1, i2, ..., iN〉 = ti1 |i1, i2, ..., iN〉+ c†
i1T |i2, ..., iN〉

= ∑
j

ti j |i1, ..., iN〉 (1.49)

which shows that the representation (1.46) of T is correct.
We will deal with single particle operators which are non diagonal. Since any hermitian operator can be

diagonalised with the help of a unitary transformation, we have to know how a unitary transformation acts on
the creation and annihilation operators. Let us introduce a new basis |α〉 = ∑i uαi|i〉 where U = (uαi) with
uαi = 〈i|α〉 is a unitary matrix. Let c†

α be the new creation operators. We have

c†
α |vak.〉 = |α〉

= ∑
i

uαi|i〉

= ∑
i

uαic†
i |vak.〉

= ∑
i
〈α|i〉∗ c†

i |vak.〉 (1.50)
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1 Interacting Fermions and Bosons

and therefore we let
c†

α = ∑
i
〈i|α〉c†

i (1.51)

c†
i = ∑

i
〈α|i〉c†

α (1.52)

cα = ∑
i
〈α|i〉ci (1.53)

ci = ∑
i
〈i|α〉cα (1.54)

Then we have

T = ∑
i

tic†
i ci

= ∑
i,α,β

ti 〈α|i〉〈i|β 〉c†
αcβ

= ∑
α,β

tα,β c†
αcβ (1.55)

This is the general form of a single particle operator.

Examples:

• Potential: V (~r)

ti, j =
∫

d3r φ
∗
i (~r)V (~r)φ j(~r) (1.56)

• Kinetic energy:

ti, j =
∫

d3rφ
∗
i (~r)

(
− h̄2

2m

)
φ j(~r) (1.57)

In the orthonormal basis φ~k,σ = 1√
V

exp(i~k ·~r)χσ one obtains

T = ∑
~k,σ

h̄2~k2

2m
c†
~k,σ

c~k,σ (1.58)

1.2.4 Interactions

The aim of this course is to treat interacting systems. Almost any interaction is an interaction between two
particles. Such interactions can be described as two particle operators. Generically, we cannot expect that
interactions are diagonal in the multi particle states constructed out of a given single particle basis. But, for
simplicity, we will start with this case. Let V be the operator of the interactions, then, in this basis, we have

V |i, j〉=Vi j|i, j〉. (1.59)

|i, j〉 is a two particle state. For matrix elements of states with N particles, we obtain

〈 j1 . . . jN |V |i1 . . . iN〉 = ∑
P

ζ
P 1

2 ∑
k 6=k′
〈 jPk , jPk′ |V |ik, ik′〉 ∏

l 6=k,k′
〈 jPl |il〉

=

(
1
2 ∑

k 6=k′
Vik,ik′

)
〈 j1 . . . jN |i1 . . . iN〉 (1.60)

10



1 Interacting Fermions and Bosons

Here 1
2 ∑k 6=k′ is the sum over all pairs of particles in the states |i1 . . . iN〉. For i 6= i′, the number of pairs of

particles in the states i and i′ is nini′ . For i = i′, it is ni(ni−1). The number of pairs therefore is

nin j−δi, jni = c†
i cic†

jc j−δi, jc†
i ci

= ζ c†
i c

†
jcic j

= c†
i c

†
jc jci (1.61)

Therefore we have
V =

1
2 ∑

i, j
Vi, jc†

i c
†
jc jci =

1
2 ∑

i, j
〈i, j|V |i, j〉c†

i c
†
jc jci (1.62)

Transforming this into a general basis, we obtain

V =
1
2 ∑

i, j,k,l
〈i, j|V |k, l〉c†

i c
†
jclck (1.63)

This is the general form of any two particle operator. Each two particle interaction can be written in that form.
The representation of any operator, e.g. the Hamiltonian of a given model, with the help of creation and

annihilation operators is thus a simple short form of writing down the matrix elements of that operator in a
multi particle basis that has been constructed from a single particle basis by either forming completely anti-
symmetric states, Slater determinants, in the case of fermions or completely symmetric states in the case of
bosons. The advantage of this representation is the simple algebraic relation ship between the creation and
annihilation operators in the form of commutation relations (bosons) or anti-commutation relations (fermions).
Many calculations are much easier in this representation.

1.3 Coherent States

Creation and annihilation operators map states of one Hilbert space onto states of another Hilbert space. A state
with N particles is mapped to a state with N±1 particles. Successive application of creation and annihilation
operators yields states out of Hilbert spaces with an arbitrary number of particles. The direct sum of all Hilbert
spaces with N particles, N = 0, . . . ,∞ is called Fock space. The entire Fock space can be spanned by applying
creation operators onto the vacuum. In many cases it is useful to work in the Fock space instead of a Hilbert
space with a fixed number of particles. This is esp. the case, if the number of particles is not a good quantum
number, as e.g. in the case of phonons, or if one treats a problem in a grand canonical ensemble.

Up to now we used the N-particle states built out of single particle states as a basis of the Fock space. There
is another, actually over-complete set of states which proved to be useful, coherent states. These are eigenstates
of the annihilation operators.

First of all, it is easy to see that a creation operator cannot have an eigenstate. Suppose that such an eigenstate
exists. It would be a sum of states of a different number of particles. Within this sum, there would be necessarily
a state with the lowest number of particles. The creation operator acting on this state would increase the lowest
number of particles by one. Therefore this sum of states cannot be an eigenstate.

A corresponding argument does not exist for the annihilation operator, since in the Fock space, there is no
state with a maximal number of particles. Suppose that we have got an eigenstate of the annihilation operator,
i.e.

ci|φ〉= φi|φ〉. (1.64)

For bosons, annihilation operators commute. Therefore their eigenvalues are usual complex numbers. We shall
see later that for fermions, this is not the case.

11



1 Interacting Fermions and Bosons

1.3.1 Coherent States for Bosons

A state with ni bosons in the single particle states |i〉, i = 1, . . . ,N can be written in the form

|n1,n2, . . . ,nN〉=
N

∏
i=1

(
1√
ni!

(c†
i)

ni

)
|vak.〉 (1.65)

One has
ci|n1,n2, . . . ,nN〉=

√
ni|n1,n2, . . . ,ni−1, . . . ,nN〉 (1.66)

For the coherent state |φ〉, we make the ansatz

|φ〉= ∑
n1,n2,...,nN

φn1,n2,...,nN |n1,n2, . . . ,nN〉 (1.67)

The condition ci|φ〉= φi|φ〉 yields

φiφn1,...,ni,...,nN =
√

ni +1φn1,...,ni+1,...,nN (1.68)

and therefore

φn1,n2,...,nN =
N

∏
i=1

φ
ni
i√
ni!

(1.69)

Finally we obtain

|φ〉 = ∑
n1,n2,...,nN

N

∏
i=1

(
φ

ni
i

ni!
(c†

i)
ni

)
|vak.〉

= exp(
N

∑
i=1

φic†
i)|vak.〉 (1.70)

A creation operator acting on this state yields

c†
i |φ〉 = c†

i exp(∑
i

φic†
i)|vak.〉

=
∂

∂φi
|φ〉 (1.71)

Now we calculate the scalar product of two coherent states:

〈ψ|φ〉 = ∑
n1,...,nN

∑
m1...mN

∏
i

(
ψ
∗mi
i φ

ni
i√

mi!ni!

)
〈m1, . . . ,mN |n1, . . . ,nN〉

= ∑
n1,...,nN

∏
i

(
ψ
∗ni
i φ

ni
i

ni!

)
= exp(∑

i
ψ
∗
i φi) (1.72)

One can show that coherent states are overcomplete. This property is very important. We now show that∫
D[φ ]exp(−∑

i
φ
∗
i φi)|φ〉〈φ |= 1 (1.73)

where we use the notation

D[φ ] = ∏
i

d(ℜφi)d(ℑφi)

π
(1.74)

12
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To show this, we calculate the commutator

[ci, |φ〉〈φ |] = (φi−
∂

∂φ ∗i
)|φ〉〈φ | (1.75)

One obtains

[ci,
∫

D[φ ]exp(−∑
i

φ
∗
i φi)|φ〉〈φ |] =

∫
D[φ ]exp(−∑

i
φ
∗
i φi)(φi−

∂

∂φ ∗i
)|φ〉〈φ | (1.76)

Partiell integration of the second term on the right hand side shows, that the commutator vanishes. Therefore,
the operator

∫
D[φ ]exp(−∑i φ ∗i φi)|φ〉〈φ | commutes with all annihilation operators ci. Therefore, it must be a

number. To calculate that number, we take it’s expectation value in the vacuum. We obtain∫
D[φ ]exp(−∑

i
φ
∗
i φi)〈vac.|φ〉〈φ |vac.〉=

∫
D[φ ]exp(−∑

i
φ
∗
i φi) = 1 (1.77)

This shows the completeness.
A trace of an arbitrary operator A can be expressed as

TrA =
∫

D[φ ]exp(−∑
i

φ
∗
i φi)〈φ |A|φ〉 (1.78)

Similarly, we can expand an arbitrary state | f 〉 in terms of coherent states

| f 〉=
∫

D[φ ]exp(−∑
i

φ
∗
i φi)〈φ | f 〉|φ〉 (1.79)

The expression
f (φ ∗) := 〈φ | f 〉 (1.80)

is the representation of | f 〉 in terms of coherent states, like f (x) = 〈x| f 〉 is called coordinate representation of
| f 〉. In this representation, the annihilation operator is simply the derivative

〈φ |ci| f 〉= 〈 f |c†
i |φ〉

∗ =

(
∂

∂φi
〈 f |φ〉

)∗
=

∂ f (φ ∗)
∂φ ∗i

(1.81)

and the creation operator is the multiplication operator

〈φ |c†
i | f 〉= 〈 f |ci|φ〉∗ = (φi〈 f |φ〉)∗ = φ

∗
i f (φ ∗) (1.82)

so that we write

ci =
∂

∂φ ∗i
, c†

i = φ
∗
i (1.83)

This representation fulfils the usual commutation relations. As a consequence, the Hamiltonian, which is usu-
ally expressed by creation and annihilation operators in some form H({c†

i ,ci}) can be written as H({φ ∗i , ∂

∂φ∗i
})

in the coherent state representation and the eigenvalue equation is

H({φ ∗i ,
∂

∂φ ∗i
}) f (φ ∗) = E f (φ ∗) (1.84)

Matrix elements of an operator A({c†
i ,ci}) are

〈φ |A({c†
i ,ci})|ψ〉= A({φ ∗i ,ψi})exp(∑

i
φ
∗
i ψi) (1.85)

where one has to take into account that all creation operators must be placed left of all annihilation operators
(normal ordering).

The expectation value of the number operator ni = c†
i ci is therefore φ ∗i φi and the expectation value of the

number of particles is N̄ = ∑i φ ∗i φi. Furthermore

〈φ |(N̂− N̄)2|φ〉
〈φ |φ〉

= ∑
i

φ
∗
i φi = N̄ (1.86)

so that the relative deviation of the particle number from it’s expectation value is ∝ N̄−1/2.
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1.3.2 Grassmann Algebra

We saw that coherent states for bosons may be useful. In the following we will often make use of coherent
states. The goal of the present section is to introduce coherent states for fermions. To do this we need to
deal with objects which anti-commute. Such objects are called Grassmann variables. One can define usual
operations for them, they form a so called Grassmann algebra. The goal of this subsection is to introduce the
main ideas behind this concept. An excellent introduction (in German) on Grassmann variables is the script by
Franz Wegner [76].

A Grassman algebra is built up from a set of generating elements {ξi, i = 1, . . . ,N}. It contains all polynomi-
als of these generating elements with complex coefficients. The fundamental rule is

ξiξ j +ξ jξi = 0 (1.87)

and therefore
ξ

2
i = 0 (1.88)

In the following, we use an enlarged Grassmann algebra, that is formed by the generators {ξi,ξ
∗
i , i = 1, . . . ,N}.

The symbolic operation ∗ obeys the following rules

(ξi)
∗ = ξ

∗
i (1.89)

(ξ ∗i )
∗ = ξi (1.90)

(ξiξ j)
∗ = ξ

∗
j ξ
∗
i (1.91)

We now consider functions of the variables ξi and ξ ∗i . These are polynomials of ξi and ξ ∗i , where in each
monom, a factor ξi occurs only once, since its square vanishes. Known functions are defined by their Taylor
expansion, which terminates automatically. E.g. one has exp(ξi) = 1+ξi.

Having defined functions, the next point is to define derivatives. One has

∂

∂ξi
ξi = 1 (1.92)

For a product of variables, one has first to interchange the variables so that the variable and the derivative are
close to each other. For example, one has

∂

∂ξi
ξ
∗
j ξkξlξi =

∂

∂ξi
(−ξiξ

∗
j ξkξl) =−ξ

∗
j ξkξl (1.93)

The derivative of an expression with respect to a variable vanishes, if the expression does not contain the
variable. Similarly, all other known rules like the product rule hold, except for additional signs which occur
due to the exchanging of variables. Like variables, derivatives anti-commute:

∂

∂ξi

∂

∂ξ j
=− ∂

∂ξ j

∂

∂ξi
(1.94)

Next we define integrals. Clearly, there is no integral which is analogue to the usual Riemann integral for real
numbers. The idea is to define the integral as a linear mapping of functions to real numbers, which behaves
similar to integrals of usual integrable functions which vanish at infinity. Furthermore we need that the integral
of a total differential vanishes. There are various possibilities to define the integral, a typical convention is∫

dξ 1 = 0 (1.95)

∫
dξ ξ = 1 (1.96)
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The same must be true for the ξ ∗i . But one has to pay attention concerning anti-commutation and signs. For
instance, we have for

f (ξ1,ξ2) = a0 +a1ξ1 +a2ξ2 +a12ξ1ξ2 (1.97)

∫
dξ2 f (ξ1,ξ2) = a2−a12ξ1 (1.98)

and ∫
dξ1dξ2 f (ξ1,ξ2) =−a12 (1.99)

but ∫
dξ2dξ1 f (ξ1,ξ2) = a12 (1.100)

The expressions dξi anti-commute like the variables ξi itself. With these definitions, arbitrary integrals can be
calculated, for instance one obtains∫

dξ
∗dξ exp(−ξ

∗
ξ ) =

∫
dξ
∗dξ (1−ξ

∗
ξ ) = 1 (1.101)

We now define a scalar product for functions of Grassmann variables. Let f and g be functions of ξ1, . . . ,ξN ,
then we define

〈 f |g〉=
∫

D[ξ ]exp(−∑
i

ξ
∗
i ξi) f ∗(ξ1, . . . ,ξN)g(ξ ∗1 , . . . ,ξ

∗
N) (1.102)

where
D[ξ ] = ∏

i
(dξ

∗
i dξi) (1.103)

Using Grassmann variables we can now construct coherent states for fermions.

1.3.3 Coherent states for fermions

First, we need a convention about the behaviour of a product of Grassmann variables and creation and annihil-
ation operators for fermions. It is natural to choose

[ci,ξ j]+ = [c†
i ,ξ j]+ = [ci,ξ

∗
j ]+ = [c†

i ,ξ
∗
j ]+ = 0 (1.104)

for all i, j. As an ansatz for the coherent state we take

|ξ 〉= exp(−∑
i

ξic†
i)|vak.〉= ∏

i
(1−ξic†

i)|vak.〉 (1.105)

The second expression can be obtained from the first by taking into account that all the expressions ξic†
i com-

mute with each other so that the exponential of the sum is a product of exponentials. Furthermore each annihil-
ation operator c j commutes with ξic†

i if i 6= j. For i = j we have

ciξic†
i =−ξicic†

i =−ξi(1− c†
i ci) (1.106)

This now yields
ci|ξ 〉= ξi|ξ 〉 (1.107)

which is indeed the defining property for coherent states.
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Let us now calculate, how a creation operator acts on a coherent state.

c†
i |ξ 〉 = c†

i(1−ξic†
i)∏

j 6=i
(1−ξ jc†

j)|vak.〉

= c†
i ∏

j 6=i
(1−ξ jc†

j)|vak.〉

= − ∂

∂ξi
(1−ξic†

i)∏
j 6=i

(1−ξ jc†
j)|vak.〉

= − ∂

∂ξi
|ξ 〉 (1.108)

For the scalar product of two coherent states we obtain

〈ξ |χ〉= 〈vak.|∏
i
(1− ciξ

∗
i )(1−χic†

i)|vak.〉= ∏
i
(1+ξ

∗
i χi) = exp(∑

i
ξ
∗
i χi) (1.109)

Next we want to show the completeness relation∫
D[ξ ]exp(−∑

i
ξ
∗
i ξi)|ξ 〉〈ξ |= 1 (1.110)

To do this, we define
E =

∫
D[ξ ]exp(−∑

i
ξ
∗
i ξi)|ξ 〉〈ξ | (1.111)

and show that
〈i1, . . . , in|E| j1, . . . , jm〉= 〈i1, . . . , in| j1, . . . , jm〉 (1.112)

holds. First, one obtains
〈i1, . . . , in|ξ 〉= 〈vak.|cin . . .ci1 |ξ 〉= ξin . . .ξi1 (1.113)

and therefore
〈i1, . . . , in|E| j1, . . . , jm〉=

∫
D[ξ ]∏

i
(1−ξ

∗
i ξi)ξin . . .ξi1ξ

∗
j1 . . .ξ

∗
jm (1.114)

Furthermore, we have ∫
dξ
∗
i dξi(1−ξ

∗
i ξi)ξiξ

∗
i = 1 (1.115)∫

dξ
∗
i dξi(1−ξ

∗
i ξi)ξi = 0 (1.116)∫

dξ
∗
i dξi(1−ξ

∗
i ξi)ξ

∗
i = 0 (1.117)∫

dξ
∗
i dξi(1−ξ

∗
i ξi) = 1 (1.118)

This first of all means that one gets a non-vanishing contribution only if n = m and {i1, . . . , in}= { j1, . . . , jm}.
If this condition is fulfilled, the only thing that remains is to permute the ξik so that they occur in the same order
as the ξ ∗jk . The result is simply the sign, one gets, if one calculates the scalar product in (1.112). This shows the
completeness relation. Using it, we directly obtain

TrA =
∫

D[ξ ]exp(−∑
i

ξ
∗
i ξi)〈−ξ |A|ξ 〉 (1.119)

where the additional minus sign in 〈−ξ | occurs because we have to exchange |ξ 〉 with 〈ξ |, so that each Grass-
mann variable gets an additional minus sign. Due to the completeness relation one has also

| f 〉=
∫

D[ξ ]exp(−∑
i

ξ
∗
i ξi)〈−ξ | f 〉|ξ 〉 (1.120)
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and we can define the expression
f (ξ ∗) := 〈−ξ | f 〉 (1.121)

like in the bosonic case as the coherent representation of a state | f 〉. One obtains directly

〈−ξ |ci| f 〉 = (〈 f |c†
i |−ξ 〉)∗

=
∂

∂ξ ∗i
〈 f |−ξ 〉∗

=
∂

∂ξ ∗i
f (ξ ∗) (1.122)

and similarly
〈−ξ |c†

i | f 〉=−ξ
∗
i f (ξ ∗) (1.123)

The creation operators c†
i and the annihilation operators ci for fermions in the coherent representation are

therefore simply −ξ ∗i and ∂

∂ξ ∗i
. The anticommuation relations are clearly fulfilled. Like in the bosonic case, we

obtain for a normal ordered (creation operators left of all annihilation operators) operator A({c†
i ,ci})

〈ξ |A({c†
i ,ci})|χ〉= A({ξ ∗i ,χi})〈ξ |χ〉 (1.124)

An important point is that these are not real numbers. For instance, the expectation value of the number
operator is ∑i ξ ∗i ξi and this is not a real number. In contrast to the bosonic case, fermionic coherent states are
not elements of the usual Fock space. Nevertheless they are useful.

Summary: Coherent States

Let |φ〉 be a coherent state for bosons or fermions. Like above, we introduce ζ = 1 for bosons and ζ =−1 for
fermions. Then we have

ci|φ〉= φi|φ〉. (1.125)

c†
i |φ〉= ζ

∂

∂φi
|φ〉 (1.126)

〈ψ|φ〉= exp(∑
i

ψ
∗
i φi) (1.127)

∫
D[φ ]exp(−∑

i
φ
∗
i φi)|φ〉〈φ |= 1 (1.128)

TrA =
∫

D[φ ]exp(−∑
i

φ
∗
i φi)〈ζ φ |A|φ〉 (1.129)

| f 〉=
∫

D[φ ]exp(−∑
i

φ
∗
i φi)〈ζ φ | f 〉|φ〉 (1.130)

f (φ ∗) := 〈ζ φ | f 〉 (1.131)

ci =
∂

∂φ ∗i
, c†

i = ζ φ
∗
i (1.132)

〈φ |A({c†
i ,ci})|ψ〉= A({φ ∗i ,ψi})exp(∑

i
φ
∗
i ψi) (1.133)

The last expression is true for normal ordered operators only.
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1.4 Gaussian Integrals

In the following we will often need to compute Gaussian integrals for complex variables or for Grassmann
variables. For complex variables, one has∫

D[φ ]exp(−∑
i, j

φ
∗
i hi jφ j +∑

i
z∗i φi +∑

i
ziφ
∗
i ) = [detH]−1 exp(∑

i, j
z∗i (H

−1)i jz j) (1.134)

where H = (hi j) is a matrix with a positive hermitian part. For Grassmann variables we have similarly∫
D[ξ ]exp(−∑

i, j
ξ
∗
i hi jξ j +∑

i
χ
∗
i ξi +∑

i
χiξ
∗
i ) = [detH]exp(∑

i, j
χ
∗
i (H

−1)i jχ j) (1.135)

Let us derive these two relations.
First for complex variables: If H has a positive hermitian part, the inverse H−1 is defined. Completing the

square as usual, we can introduce a new integration variable ψi = φi−∑ j(H−1)i jz j. The left hand side of
(1.134) becomes ∫

D[ψ]exp(−∑
i, j

ψ
∗
i hi jψ j +∑

i, j
z∗i (H

−1)i jz j) (1.136)

Next we diagonalise H using a unitary transformation. Let U be this unitary transformation. The we introduce
ϕi = ∑ j(U−1)i jψ j. We obtain

∑
i, j

ψ
∗
i hi jψ j = ∑

i
hiϕ
∗
i ϕi (1.137)

where hi are the eigenvalues of H. Furthermore, we have∫ dℜφidℑφi

π
exp(−hiφ

∗
i φi) =

1
hi

(1.138)

which finally yields the desired result.
For Grassmann variables, one can do the same. The problem is, that up to now we have not introduced

substitutions of variables in integrals. Let us therefore treat a general integral∫
D[ξ ] f (ξ1 . . .ξN ,ξ

∗
1 . . .ξ

∗
N) (1.139)

and let us introduce a transformation of the form ξi = ∑ j ui jη j, ξ ∗i = ∑ j u∗i jη
∗
j . The only non-vanishing contri-

bution in the integral over ξ comes from the term in f which contains each variable exactly once as a factor.
Let us denote this last term f0 ∏i ξiξ

∗
i . Then, f0 is the integral. Let us now calculate∫

D[η ] f (ξ1(η)...ξN(η),ξ ∗1 (η
∗) . . .ξN(η

∗)) = f0

∫
D[η ]∏

i
(∑

j
ui jη j ∑

k
u∗ikη

∗
k ) (1.140)

The polynomial expansion of the right hand side can be calculated. This yields

f0

∫
D[η ]∑

P,P′
∏

i
uiPiηPiu

∗
iP′i

η
∗
P′i

(1.141)

where the sum runs over all permutations. Now we can calculate the integral. We obtain

f0 ∑
P
(−1)P

∏
i

uiPi ∑
P′
(−1)P′

∏
i

u∗iP′i = f0 detU detU † = f0 (1.142)

This means that substitutions in integrals over Grassmann variables can be done as usual. For the Gaussian
integral, one obtains in the end ∫

dη
∗
i dηi exp(−hiη

∗
i ηi) = hi (1.143)

This finally yields (1.135).
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1.5 Functional-Integral Representaion

In the following we want to deal with a system of interacting particles. We consider first systems where the
particle number is a good quantum number. Let us assume that we have a usual two-particle interaction. Then,
the Hamiltonian is of the form

Ĥ = ∑
i

εic†
i ci + ∑

i, j,k,l
Vi, j,k,lc†

i c
†
jclck (1.144)

The single particle contribution contains typically the kinetic energy and some single particle potential. We
assume, that this contribution can be diagonalised, and we chose the basis for the representation of the Hamilto-
nian such that it is diagonal. Furthermore, we assume that we have a finite system where the single particle
energies εi are discrete. Eventually, we may take the thermodynamic limit in the end.

Having such a system, one typically wants to calculate expectation values of some operators A = A({c†
i ,ci}).

At finite temperatures, they are

〈A({c†
i ,ci})〉= Z−1Tr[A({c†

i ,ci})exp(−β (Ĥ−µN̂))] (1.145)

where β = 1/T is the inverse temperature, µ is the chemical potential and

Z = Trexp(−β (Ĥ−µN̂)) (1.146)

is the grand canonical partition function of the system. The traces are calculated over the entire Fock space. We
shall calculate the traces using coherent states. We calculate first the partition function, which yields directly
some of the important thermodynamical quantities. We have

Z =
∫

D[φ ]exp(−∑
i

φ
∗
i φi)〈ζ φ |exp(−β (Ĥ−µN̂))|φ〉 (1.147)

The first problem now is that Ĥ and N̂ are normal ordered, but exp(−β (Ĥ−µN̂)) is not. For small values of ε

we have
exp(−ε(Ĥ−µN̂)) =: exp(−ε(Ĥ−µN̂)) : +O(ε2) (1.148)

where : . : means that the expression is normal ordered. To see this, simply expand the exponential on both
sides. Next we write

exp(−β (Ĥ−µN̂)) =

[
exp(− β

M
(Ĥ−µN̂))

]M

(1.149)

We will choose M sufficiently large so that β/M is small. Then, the term in the parentheses on right hand side
is normal ordered up to a small error. We now obtain

Z =
∫

D[φ ]exp(−∑
i

φ
∗
i φi)〈ζ φ |exp(− β

M
(Ĥ−µN̂)) . . .exp(− β

M
(Ĥ−µN̂))|φ〉 (1.150)

where the expectation value contains M factors. Between each pair of factors we put a 1 which we write as∫
D[φ ]exp(−∑

i
φ
∗
i φi)|φ〉〈φ |= 1 (1.151)

Doing this, we have to change our notation a little bit. Since there are M factors,we need M coherent states.
The states are denoted by |φk〉, k = 1, . . . ,M. The variables |φk〉 depends on are denoted by φi,k. The first index
denotes the single particle states, the second the coherent states. D[φ ] is now the integral over all variables φi,k
and φ ∗i,k. Furthermore, I introduce φ0 = ζ φM. Then we obtain

Z =
∫

D[φ ]exp(−∑
i,k

φ
∗
i,kφi,k)

M

∏
k=1
〈φk|exp(− β

M
(Ĥ−µN̂))|φk−1〉 (1.152)

19



1 Interacting Fermions and Bosons

Up to an error of the order O(M−2) we can use the formula (1.133). This yields

Z = lim
M→∞

ZM = lim
M→∞

∫
D[φ ]exp(−SM[φ ]) (1.153)

SM[φ ] = ε

M

∑
k=1

[
∑

i
φ
∗
i,k

(
φi,k−φi,k−1

ε
−µφi,k−1

)
+H({φ ∗i,k,φi,k−1})

]
(1.154)

where ε = β/M. Typically one introduces in the limit M→∞ the function φi(τ), where φi,k = φi(εk). Then we
may write

φi,k−φi,k−1

ε
=

φi(εk)−φi(εk− ε)

ε
→ ∂φi(τ−0+)

∂τ
(1.155)

ε

M

∑
k=1
→
∫

β

0
dτ (1.156)

and

S[φ ] =
∫

β

0
dτ

(
∑

i
φ
∗
i (τ)(

∂

∂τ
−µ)φi(τ−0+)+H({φ ∗i (τ),φi(τ−0+)})

)
(1.157)

Z =
∫

φi(β )=ζ φi(0)
D[φ ]exp(−S[φ ]) (1.158)

These expressions are called functional integrals. We obtained a functional integral representation of the ori-
ginal model Hamiltonian. Often, it is easy to perform calculations using these expressions. But one should
always keep in mind that (1.158), (1.157) are meant as limits of the expressions (1.153), (1.154).

The problem is now to solve these integrals. We will do it first for the non-interacting system.

1.6 The non-interacting system

In a system without interaction one has
Ĥ = ∑

i
εic†

i ci (1.159)

Therefore

SM[φ ] = ε

M

∑
k=1

∑
i

φ
∗
i,k

(
φi,k−φi,k−1

ε
+(εi−µ)φi,k−1

)
(1.160)

and the integral in (1.153) is a Gaussian integral. We obtain

Z = lim
M→∞

∫
D[φ ]exp

(
−ε

M

∑
k=1

∑
i

φ
∗
i,k

(
φi,k−φi,k−1

ε
+(εi−µ)φi,k−1

))

= lim
M→∞

∏
i

∫
D[φi]exp

(
−ε

M

∑
k=1

φ
∗
i,k

(
φi,k−φi,k−1

ε
+(εi−µ)φi,k−1

))
= lim

M→∞
∏

i
[detS(i)]−ζ (1.161)

where S(i) is the M×M-matrix

S(i) =



1 0 · · · 0 −ζ a
−a 1 0 0

0 −a 1
. . .

...

0 −a
. . . 0

... 0
. . . 1 0

0 · · · −a 1


(1.162)
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with

a = 1− β

M
(εi−µ) (1.163)

The entry −ζ a in the upper right corner stems from the condition φi,0 = ζ φi,M. We expand the determinant and
perform the limit M→ ∞. This yields

lim
M→∞

detS(i) = lim
M→∞

[1+(−1)M
ζ (−a)M]

= lim
M→∞

[
1−ζ

(
1− β (εi−µ)

M

)M
]

= 1−ζ exp(−β (εi−µ)) (1.164)

The partition function therefore is

Z = ∏
i
[1−ζ exp(−β (εi−µ))]−ζ (1.165)

This is the well known result for free fermions or bosons. We obtain the corresponding expressions for the
occupation numbers as

〈c†
i ci〉= ni =−

1
β

∂ lnZ
∂εi

=
1

exp(β (εi−µ))−ζ
(1.166)

and any further well known results for the free system can be obtained as well (see e.g. L.D. Landau, E.M.
Lifschitz, Theoretical Physics, Volume V, Statistical Physics, Chapter V).

For later purposes it is interesting to take a closer look on the last result. We obtain the identity

〈c†
i ci〉=−

1
β

∂ lnZ
∂εi

(1.167)

by taking a derivative of the partition function Trexp(−β (Ĥ − µN̂)), expressed by creation and annihilation
operators. The derivative can as well be written as calculated from

Z = lim
M→∞

∫
D[φ ]exp

(
−ε

M

∑
k=1

∑
i

φ
∗
i,k

(
φi,k−φi,k−1

ε
+(εi−µ)φi,k−1

))
(1.168)

This yields

∂Z
∂εi

= lim
M→∞

∫
D[φ ]

[
−ε

M

∑
k=1

φ
∗
i,kφi,k−1

]
exp

(
−ε

M

∑
k=1

∑
i

φ
∗
i,k

(
φi,k−φi,k−1

ε
+(εi−µ)φi,k−1

))
(1.169)

− 1
β

∂ lnZ
∂εi

=
1
β

∫
β

0
dτ〈φ ∗i (τ)φi(τ−0+)〉 (1.170)

Here,−0+ in the argument of φ denotes that the argument of φ has to be infinitesimally smaller than that of φ ∗.
This will be important later. We shall see that the expectation value 〈φ ∗i (τ)φi(τ

′)〉 has a discontinuity at τ = τ ′.
There is another important point to mention here: The expectation value of the particle number for fermions

in a coherent state is φ ∗i φi, which is no real number. Nevertheless, we can calculate it using the above expression
and coherent states.

Later, we need expectation values of the form

〈φ ∗i (τ)φ j(τ
′)〉 (1.171)

and other expressions containing several fields as well. To calculate such an expression, we define a generating
function for them:

ZM(J∗,J) =
∫

D[φ ]exp

(
−ε

M

∑
k=1

∑
i

φ
∗
i,k

(
φi,k−φi,k−1

ε
+(εi−µ)φi,k−1

)
+

M

∑
k=1

∑
i
(J∗i,kφi,k + Ji,kφ

∗
i,k)

)
(1.172)
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Using the generating function one gets

〈φ ∗i,kφ j,l〉=
1

ZM

∂ 2ZM(J∗,J)
∂J∗j,l∂Ji,k

∣∣∣∣∣
J=J∗=0

(1.173)

and in the limit M→ ∞

〈φ ∗i (τ)φ j(τ
′)〉= 1

Z
δ 2Z(J∗,J)

δJ∗j (τ ′)δJi(τ)

∣∣∣∣∣
J=J∗=0

=
δ 2 lnZ(J∗,J)
δJ∗j (τ ′)δJi(τ)

∣∣∣∣∣
J=J∗=0

(1.174)

Z(J∗,J) = lim
M→∞

ZM(J∗,J) (1.175)

It is clear that the generating function can as well be used if one wants to calculate expectation values of
expressions containing more than two fields.

For the free system, it is not difficult to calculate ZM(J∗,J). It is a simple Gaussian integral. First of all we
have for the free system

Z(J∗,J) = ∏
i

Z(i)(J∗i ,Ji) (1.176)

where

Z(i)(J∗i ,Ji) = lim
M→∞

∫
D[φ ]exp

(
−ε

M

∑
k=1

φ
∗
i,k

(
φi,k−φi,k−1

ε
+(εi−µ)φi,k−1

)
+

M

∑
k=1

(J∗i,kφi,k + Ji,kφ
∗
i,k)

)
(1.177)

This integral is of the form

∫
D[φ ]exp

(
−

M

∑
k,l=1

φ
∗
i,kS(i)k,lφi,l +

M

∑
k=1

(J∗i,kφi,k + Ji,kφ
∗
i,k)

)
(1.178)

and yields

[detS(i)]−ζ exp(
M

∑
k,l=1

J∗i,k(S
(i)−1)k,lJi,l) (1.179)

Therefore we obtain

ZM(J∗,J) = ZM ∏
i

exp(
M

∑
k,l=1

J∗i,k(S
(i)−1)k,lJi,l) (1.180)

and furthermore

〈φ ∗i,kφ j,l〉 =
1

ZM

∂ 2ZM(J∗,J)
∂J∗j,l∂Ji,k

∣∣∣∣∣
J=J∗=0

= δi, j(S(i)−1)l,k (1.181)

The inverse is

S(i)−1 =
1

1−ζ aM



1 ζ aM−1 ζ aM−2 · · · ζ a
a 1 ζ aM−1 ζ a2

a2 a 1 ζ a3

... a2 a
...

... a2 . . .

aM−3 ...
. . . ζ aM−2

aM−2 aM−3 1 ζ aM−1

aM−1 aM−2 aM−3 · · · a 1


(1.182)
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where a = 1− β

M (εi−µ). Therefore we obtain

〈φ ∗i,kφ j,l〉= δi, j
al−k

1−ζ aM (1.183)

for l ≥ k and

〈φ ∗i,kφ j,l〉= δi, j
aM+l−k

1−ζ aM (1.184)

for l < k. Let l = τM/β , k = τ ′M/β and use as before that in the limit M→ ∞ (1− x/M)M → exp(−x). The
we obtain in that limit

〈φ ∗i (τ)φ j(τ
′)〉= δi, j exp(−(εi−µ)(τ− τ

′))(θ(τ ′− τ)+ζ ni) (1.185)

The above expression

ni =
1
β

∫
β

0
dτ〈φ ∗i (τ)φi(τ−0+)〉 (1.186)

can be calculated as before. The expression

gi(τ− τ
′) = exp(−(εi−µ)(τ− τ

′))(θ(τ ′− τ)+ζ ni) (1.187)

is called the single particle propagator.
Expectation values with more than two fields can be calculated similarly. We need such expressions below.

An expression of the form

〈φ ∗i1(τ1)φ
∗
i2(τ2) . . .φ

∗
in(τn)φ jn(τ

′
n)φ jn−1(τ

′
n−1) . . .φ j1(τ

′
1)〉 (1.188)

can be calculated using the derivative

δ 2n lnZ(J∗,J)
δJ∗i1(τ1) . . .δJ∗in(τn)δJ jn(τ

′
n) . . .δJ j1(τ

′
1)

∣∣∣∣∣
J=J∗=0

(1.189)

As before, the calculation is done for finite M and at the end we perform the limit M → ∞. Taking first the
derivatives with respect to all J j,l(τ

′), we get for each derivative a factor ∑k J∗j,k(S
( j)−1)k,l . The derivatives with

respect to J∗i,k act on these factors, since all other contributions vanish at the end when we let J = J∗ = 0. This
means that in all these expression we may connect always a variable J j,l with a variable J∗i,k and replace them
by a contribution δi, j(S(i)−1)k,l . This holds as well for the variables φ ∗i,k and φ j,l . Therefore, we obtain

〈φ ∗i1(τ1)φ
∗
i2(τ2) . . .φ

∗
in(τn)φ jn(τ

′
n)φ jn−1(τ

′
n−1) . . .φ j1(τ

′
1)〉

= ∑
P

ζ
P
∏

k
〈φ ∗ik(τk)φ jP(k)(τ

′
P(k))〉 (1.190)

This result is often called Wick’s Theorem. In the present calculation, it is a direct consequence of the fact that
Z(J∗,J) is a Gaussian integral.

1.7 Perturbation Theory

The results for the non-interacting system can be used to obtain structured perturbative expressions for the in-
teracting system. We first discuss the perturbation expansion for the partition function. Perturbative expressions
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for correlation functions can be obtained in a similar way. The partition function of the interacting system can
be written as

Z = lim
M→∞

∫
D[φ ]exp

(
−ε

M

∑
k=1

φ
∗
i,k

(
φi,k−φi,k−1

ε
+(εi−µ)φi,k−1

)
− ε

M

∑
k=1

V ({φ ∗i,k,φi,k−1})

)

= lim
M→∞

Z0,M

〈
exp

(
−ε

M

∑
k=1

V ({φ ∗i,k,φi,k−1})

)〉
0,M

= Z0

〈
exp
(
−
∫

β

0
dτ V ({φ ∗i (τ),φi(τ−0+)})

)〉
0

(1.191)

where the index 0 at Z0 and 〈.〉0 denotes the non-interacting system. V ({φ ∗i (τ),φi(τ − 0+)}) is a general
interaction. A meaningful physical ansatz for the interaction is the Coulomb interaction or similar two-particle
interactions. The exponential function in the last term can be written as a series; this yields the perturbation
expansion:〈

exp
(
−
∫

β

0
dτ V ({φ ∗i (τ),φi(τ−0+)})

)〉
0

=
∞

∑
n=0

(−1)n

n!

∫
β

0
dτ1 . . .

∫
β

0
dτn〈

V ({φ ∗i (τ1),φi(τ1−0+)}) . . .V ({φ ∗i (τn),φi(τn−0+)})
〉

0(1.192)

For a concrete form of the interaction the right hand side becomes a sum of expectation values for products of
variables, which can be calculated using Wick’s Theorem.

In principle, the perturbation expansion can be calculated for any many-body interaction. In the following,
we restrict ourselves to two-particle interactions, which have the general form

V ({φ ∗i (τ),φi(τ−0+)}) = 1
2 ∑

i, j,k,l
Vi, j,k,lφ

∗
i (τ)φ

∗
j (τ)φl(τ−0+)φk(τ−0+) (1.193)

I assume that Vi, j,k,l is either symmetric (for bosons) or antisymmetric (for fermions) in the first two and in the
last two indices. The n-th term in the expansion is then of the form

(−1)n

2nn! ∑
i1 j1k1l1

. . . ∑
in jnknln

∏
m

Vim jmkmlm

∫
β

0
dτ1 . . .

∫
β

0
dτn
〈
φ
∗
i1(τ1)φ

∗
j1(τ1−0+)φl1(τ1)φk1(τ1−0+) . . .

φ
∗
in(τn)φ

∗
jn(τn)φln(τn−0+)φkn(τn−0+)

〉
(1.194)

The expectation value can be written as a sum of products of the form 〈φ ∗φ〉. Exactly one φ ∗ and one φ belong
to a pair. The expectation value of the pair is called a contraction. The sum runs over all possible combinations
of contractions. Each contraction 〈φ ∗i (τ)φ j(τ

′)〉 yields a factor δi, jgi(τ− τ ′). The total sum can be represented
in a graphical form. This representation goes back to Feynman, the diagrams are called Feynman diagrams.
There are various ways to introduce Feynman diagrams. We choose one to show the main principles, for others
we refer to the text books.

A matrix element Vi, j,k,l is represented as a point with four lines, two incoming and two outgoing lines.
Each line gets an index i, j, k, or l. The lines belonging to i and j belong to creation operators, these are
the outgoing lines. The incoming lines have indices k or l, they belong to annihilation operators. A term
of n-th order contains n such points. The lines of these points are now connected in such a way, that each
outgoing line meets an incoming line. Each point gets an index τ . Each line now corresponds to a factor
〈φ ∗i (τ)φi(τ

′)〉 = gi(τ− τ ′), where τ and τ ′ belong to the indices of the two points connected by that line. The
line has one index i, the original two indices of the incoming and outgoing lines are identical due to the factor
δi j in the expectation value above. Now, an important point is that different combinations of contractions can
belong to the same diagram. These combinations of contractions differ only in the order of the indices τ at the
vertices. But, in the above expression, we perform the integral over all τ . Therefore all the combinations of
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contractions belonging to the same diagram yield the same contribution. The number of different combinations
is called the symmetry factor of the diagram. The rules for the diagrams and their contributions to the sum are
thus:

1. Draw all diagrams with m points and lines between them so that each line is oriented from one point
to another. A point can be connected with itself. At each point, we must have two incoming and two
outgoing lines. Two diagrams are different if they cannot be obtained from each other by permuting the
points. Mathematically, these diagrams are directed graphs.

2. Calculate the symmetry factor S of the diagram. To do that, each point gets an index τ . S is the number
of permutations of the indices which map the diagram to itself.

3. Each line gets an index i. For each line write down a factor gi(τ − τ ′), where τ is the index of the end
point of the line and τ ′ is the index of the starting point.

4. For each point write done a factor Vi, j,k,l where i and j are the indices of the outgoing and k and l are the
indices of the incoming lines.

5. Sum over all indices of all lines and integrate over all indices τ of the vertices from 0 to β .

6. Multiply the result with a factor.
(−1)mζ nL

2neS
(1.195)

Here, S is the symmetry factor. ne is the number of equivalent lines. Two lines are equivalent, if they
have the same starting point and the same end point. nL is the number of loops in the diagram.

7. Adding up all these contributions yields the m-th order of Z/Z0.

It is instructive to calculate several examples using these rules. Doing that, one notices that many calculations
are easier if one calculates ln(Z/Z0). The perturbation series for this expression contains only connected dia-
grams. This fact is often called Linked Cluster Theorem. There are several possibilities to prove it. The direct
proof is to show that exp(sum of all connected diagrams) yields the sum of all diagrams, thus Z/Z0.

1.8 Frequency and momentum representation

In most cases it is possible to calculate the above at least partially in frequency and momentum space. If
the system is translationally invariant, the single particle Hamiltonian is diagonal in momentum space and the
eigenfunctions are plane waves V−1/2 exp(ikx). Here V is the volume of the system. For simplicity we will
use periodic boundary conditions. The single particle energies are denoted as εk. In a system where the single
particle Hamiltonian contains only the kinetic energy, one has εk = k2/(2m). In a solid, we can start with a
lattice model, in that case εk is given by the dispersion relation of the lattice.

For the interaction, one has due to momentum conservation

Vk1k2k3k4 ∝ V−1
δk1+k2,k3+k4 (1.196)

The functions φ and φ ∗ are either periodic (bosons) or anti-periodic (fermions) functions of τ . Therefore we
may write

gk(τ− τ
′) =

1
β

∑
ωn

exp(−iωn(τ− τ
′))g̃k(ωn) (1.197)

where

g̃k(ωn) =
∫

β

0
dτ exp((iωn− (εk−µ))τ)[θ(τ)(1+ζ nk)+ζ θ(−τ)nk]

=
1

(εk−µ)− iωn
(1.198)
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For bosons one has ωn = 2πn
β

, for fermions ωn = (2n+1)π
β

. They obey exp(iβωn) = ζ . Due to the (anti-)
periodicity, each vertex contains a factor δωn1+ωn2 ,ωn3+ωn4

, where ωn1 and ωn2 belong to the two φ ∗ and ωn3 and
ωn4 belong to the two φ . The rules above may now be rewritten. One obtains:

1. as above.

2. as above.

3. To each line associate an index k. Momentum conservation at each vertex restricts the possible values.
In a diagram with m vertices, we can choose m+ 1 values k for the lines independently, the others are
fixed due to momentum conservation. To each line we associate a frequency. Here as well, in diagrams
with m vertices we may choose m+1 values for ω , the rest is fixed due to the factors δωn1+ωn2 ,ωn3+ωn4

for
each vertex. Each line yields a factor g̃k(ωn). For lines which connect one vertex with itself, we need an
additional factor exp(iωnη). At the end, we take the limit η → 0+.

4. For each vertex, we add a factor Vk1k2k3k4 . Since momentum conservation has already been taken into
account, the factor δk1+k2,k3+k4 can be dropped.

5. Take the sum over all k (or V (2π)−d ∫ ddk) and the sum over all ωn.

6. Multiply the result with an additional factor β−m, where m is the number of vertices.

Since each vertex contains a factor 1/V and each sum over k yields a factor V , the final result contains a
factor V nc , where nc the number of connected components of the diagram. Due to the Linked Cluster Theorem,
ln(Z/Z0) is the sum of all connected diagrams and therefore ∝ V . It is an extensive quantity as it should be since
the logarithm of the grand canonical partition function is up to a factor −1/β the grand canonical potential.

1.9 Calculating Greens Functions

Greens functions can be calculated using a generating function. This is similar to the non-interacting system.
The generating function can be defined in a similar way. It is

G(J∗,J) =
1
Z

∫
D[φ ]exp

(
−
∫

β

0
dτ

[
∑

i
φ
∗
i (τ)(

∂

∂τ
−µ)φi(τ−0+)+H({φ ∗i (τ),φi(τ−0+)})

])

×exp

(
−
∫

β

0
dτ ∑

i
[J∗i (τ)φi(τ−0+)+φ

∗
i (τ)Ji(τ−0+)]

)

=

〈
exp

(
−
∫

β

0
dτ ∑

i
[J∗i (τ)φi(τ−0+)+φ

∗
i (τ)Ji(τ−0+)]

)〉
(1.199)

Here 〈A〉 is the expectation value of A in the interacting system. The Greens functions are derivatives of
G(J∗,J). The calculation can be done again using perturbation theory.

Single particle propagators

Let us now calculate expressions like
〈φ ∗i (τ)φ j(τ

′)〉 (1.200)

The corresponding perturbational series contains diagrams with two outer lines, one incoming and one outgoing
corresponding to the two φ (∗) in the propagator. Since this expression contains a division by Z, only connected
diagrams occur. The rules are similar to the ones above:
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1. Draw all different connected diagrams with 2 outer lines and m vertices. One outer line corresponds to
φ ∗, it ends at a vertex. The other one corresponds to φ and starts at a vertex. Two diagrams are different
if they cannot be mapped onto each other by a permutation of inner lines and vertices. For each diagram
we do the following calculations:

2. Each vertex gets an inner index τk. Each line gets an index l. For each inner line we write a factor
gl(τk−τ ′k), if it runs from τk to τ ′k. The incoming line yields a factor gi(τ−τk), the outgoing line yields a
factor g j(τk−τ ′), where τk is the corresponding inner vertex. For m = 0 one has only a factor g j(τ−τ ′).

3. For each vertex write down a factor Vl1l2l3l4 where l1 and l2 are indices of the outgoing, l3 and l4 are
indices of the incoming lines.

4. Now take the sum over all l, the integral over all τi.

5. Multiply the result with a factor (−1)mζ nL where nL is the number of loops.

Since the outer lines are fixed, there is no symmetry factor S.

Generating function for connected Greens functions

Next, one may want to calculate higher order Greens functions like

〈φ ∗i1(τ1)φ
∗
i2(τ2)φ j2(τ

′
2)φ j1(τ

′
1)〉 (1.201)

In 0-th order Wick’s Theorem yields

〈φ ∗i1(τ1)φ
∗
i2(τ2)φ j2(τ

′
2)φ j1(τ

′
1)〉0 = 〈φ ∗i1(τ1)φ j1(τ

′
1)〉0〈φ ∗i2(τ2)φ j2(τ

′
2)〉0

− 〈φ ∗i1(τ1)φ j2(τ
′
2)〉0〈φ ∗i2(τ2)φ j1(τ

′
1)〉0 (1.202)

The perturbative expansion contains contributions where the interaction occurs only in one of the factors 〈φ ∗φ〉.
Clearly, there are also terms where the interaction is between two factors. This can easily be seen if one draws
the corresponding diagrams. One finally obtains

〈φ ∗i1(τ1)φ
∗
i2(τ2)φ j2(τ

′
2)φ j1(τ

′
1)〉 = 〈φ ∗i1(τ1)φ j1(τ

′
1)〉〈φ ∗i2(τ2)φ j2(τ

′
2)〉

− 〈φ ∗i1(τ1)φ j2(τ
′
2)〉〈φ ∗i2(τ2)φ j1(τ

′
1)〉

+ 〈φ ∗i1(τ1)φ
∗
i2(τ2)φ j2(τ

′
2)φ j1(τ

′
1)〉c (1.203)

Here, the contribution 〈φ ∗i1(τ1)φ
∗
i2(τ2)φ j2(τ

′
2)φ j1(τ

′
1)〉c is the sum of all connected diagrams. The other contri-

butions have already been calculated.
Similarly, all higher Greens functions with more than 4 fields can be decomposed into a connected part and

unconnected parts that are in turn composed of lower ordered connected diagrams. It is therefore suitable to
calculate a generating function for the connected parts only. Similarly to the series for ln(Z/Z0) which contains
only connected diagrams, we can show that

W (J∗,J) = lnG(J∗,J) (1.204)

contains only connected diagrams. An easy way (but not rigorous) to show that is the replica trick. Here, one
first looks at the diagrams contributing to G(J∗,J)n for natural numbers n. To do that, one introduces n copies
φα and φ ∗α of the original fields φ and φ ∗. A connected component contains only fields with the same index α

since there is no interaction of fields with different indices α . Therefore, each diagram contains simply a factor
nnC , where nc is the number of connected components of that diagram. Let us now perform the continuation to
real n and calculate

W (J∗,J) = lim
n→0

∂

∂n
G(J∗,J)n (1.205)

Because of the limit n→ 0 all contributions vanish where the power of n is larger than 1. Therefore W (J∗,J)
contains only diagrams with nC = 1, i.e. only connected diagrams.

27



1 Interacting Fermions and Bosons

Effective potential, effective action...

There are several generating functions similar to W (J∗,J) which contain essentially the same information and
are better for one or another reason. I will only mention two of them, the construction of others is similar.

In W (J∗,J) the arguments J∗ and J play the role of sources. They can be compared to the role of the magnetic
field as an external source in the case of a spin system. The free energy depends on the external source. It is
defined as

F(h) =− 1
β

Trexp(−βH({Si})−h ·∑
i

Si) (1.206)

The magnetisation is given by

M =−∂F(h)
∂h

(1.207)

In statistical physics, one often uses instead of F(h) the Legendre transform

G(M) = inf
h
(F(h)+Mh) (1.208)

Often, one calculates G from M(h) by inversion h(M) and G(M) = F(h(M))+Mh(M). From G(M) one gets
F(h) back by a similar Legendre transform from M to h. Both contain the same information. The advantage of
G(M) compared to F(h) is the better analytical behaviour. In the case of a ferromagnetic phase transition for
instance, M(h) jumps as a function of h at h = 0. F(h) has no first derivative at h = 0. In contrast, G(M) is a
smooth function of M, for the ferromagnet it is simply a double well potential.

Similarly, we can calculate the Legendre transform of W (J∗,J). For finite values of J, J∗ the expectation
values

ϕ j(τ) = 〈φ j(τ)〉J,J∗ , ϕ
∗
j (τ) = 〈φ ∗j (τ)〉J,J∗ (1.209)

are finite. The Legendre transform is

Γ(ϕ∗,ϕ) =−W (J∗,J)−∑
j

∫
dτ[ϕ∗j (τ)J j(τ)+ J∗j (τ)ϕ j(τ)] (1.210)

where on the right hand side J and J∗ are functions of ϕ and ϕ∗. This quantity is often called the effective
potential.

A second function, which is useful as well, is the effective action. It is defined as

Geff(ψ
∗,ψ) = ln

〈
exp(−

∫
dτV [φ ∗(τ)+ψ

∗(τ),φ(τ−0+)+ψ(τ−0+)])
〉

0
(1.211)

It plays an important role in renormalisation theory of interacting Fermi systems.
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2 Fermi Liquids

The theory of Fermi liquids goes back to Landau. This theory was developed without any connection to the
field theoretic methods. Instead, it uses the concept of quasi particles. This concept has been proven to be
useful in many different areas of many-particle physics.

In this chapter we first introduce the concept of Fermi liquid theory and derive several physical properties of
Fermi liquids. Then we use the methods from the last chapter to show, how Fermi liquid theory can be derived
from a microscopic model. Furthermore, we shall see, which instabilities may lead to a breakdown of the Fermi
liquid.

The book of Pines and Nozières [59] is an excellent introduction to the theory of Fermi liquids.

2.1 Quasi Particles

Starting point is a gas of non-interacting spin- 1
2 fermions with N particles in the volume V . The kinetic energy

of a particle is ~k2

2m . Due to Pauli’s principle, there are only two fermions in a single particle state described by a
wave vector~k. The states are filled starting from~k = 0. The system is isotropic, the states are filled if |~k|< kF .
Here, kF is the Fermi wave vector, given implicitly by

N = ∑
|~k|<kF

2 (2.1)

The total energy is

E = ∑
~k,σ

~k2

2m
n(~k,σ) (2.2)

where
n(~k,σ) = θ(kF −|~k|) (2.3)

Let us now assume that we perturb the system a little bit. If the perturbation is small, it leads to a small variation
of the occupation numbers δn(~k) and therefore to a small change in energy

δE = ∑
~k,σ

~k2

2m
δn(~k,σ) (2.4)

If |~k| is far from kF , the cost in energy is large. Therefore we may assume that δn(~k) is small or vanishes for
|~k| far away from kF .

Now the interaction is turned on. A Fermi liquid is a Fermi system in which the low lying excitations are
similar and evolve from the low lying excitations of the free system adiabatically if the interaction is turned
on adiabatically. It may happen, that this concept even fails for arbitrarily small interactions. This happens
for instance, if the interaction is attractive, in which case the system becomes superconducting and the ground
state is a BCS-state or something similar. Although Fermi liquid theory leads to some stability criteria, it is not
possible to derive such an instability from the theory itself. This can be done only via a microscopic derivation
of the theory. In the following we assume, that such an instability does not occur.

Typical excitations in a non-interacting Fermi system are particle-, hole-, or particle-hole excitations. Fol-
lowing the general idea of a Fermi liquid, we assume that in the interacting system, the elementary excitations
can be described as in the non-interacting case. They can be described by changes δn(~k,σ) of the occupa-
tion numbers. This leads to the concept of quasi particles. It is clear that the interaction yields an interaction
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2 Fermi Liquids

between the quasi particles as well and that therefore these quasi particles have a finite life time. We assume
that close to the Fermi surface the life time is long enough so that the concept of the quasi particle is applicable.

Following this reasoning, originally Landau’s, we therefore make the ansatz

δE = ∑
~k,σ

ε
0
~k

δn(~k,σ)+
1

2V ∑
~k,~k′,σ ,σ ′

f (~k,σ ,~k′,σ ′)δn(~k,σ)δn(~k′,σ ′)+O((δn)3) (2.5)

for a small change in energy. The higher order terms will be neglected in the following. We assume that there is
no external magnetic field so that the energies ε0

~k
do not depend on the spin. The interaction shall be symmetric

with respect to spin, so that it depends only on σ ·σ ′. Let us now consider elementary excitations which do not
depend on σ . The energy of an elementary excitation is

ε(~k) =
δE

δn(~k)
= ε

0
~k
+

1
V ∑

~k′,σ ′
f (~k,σ ,~k′,σ ′)δn(~k′). (2.6)

∑σ ′ f (~k,σ ,~k′,σ ′) does not depend on σ . Since the quasiparticles evolve adiabatically from the original particles,
the quasiparticle energy has a step for |~k|= kF . For finite temperatures one has

n(~k) =
1

exp(β (ε(~k)−µ))+1
(2.7)

This equation is a self consistency equation for n(~k), since ε(~k) depends on n(~k).
Since the interaction depends on σ ·σ ′ it can be written as

f (~k,σ ,~k′,σ ′) = f (~k,~k′)+4σσ
′
φ(~k,~k′) (2.8)

or
f (~k,σ ,~k′,σ ′) = fo(~k,~k′)+δσ ,σ ′ fe(~k,~k′) (2.9)

where
fo = f −φ (2.10)

fe = 2φ (2.11)

We use the standard notation where the general interaction coefficient, the spin-symmetric part and further
below also the projection of both to the Fermi surface are denoted by f . They can be discriminated by the
different arguments. σ and σ ′ assume the values ±1

2 . In most cases it is sufficient to know the interaction for
values~k and~k′ close to the Fermi surface. In the isotropic case, we may assume that the interaction depends
only on the angle θ between~k and~k′. Then we have

f (~k,σ ,~k′,σ ′)
∣∣∣
|~k|=|~k′|=kF

= f (θ ,σ ,σ ′)

= f (θ)+4σσ
′
φ(θ)

=
∞

∑
L=0

( fL +4σσ
′
φL)PL(cosθ) (2.12)

The orthogonality of the Legendre polynomials

2L+1
2

∫ 1

−1
PL(cosθ)PL′(cosθ)d(cosθ) = δL,L′ (2.13)

yields {
fL

φL

}
=

2L+1
4π

∫
dΩPL(cosθ)

{
f (~k,~k′)
φ(~k,~k′)

}∣∣∣∣∣
|~k|=|~k′|=kF

(2.14)

In many cases it is sufficient to know the coefficients fL and φL for small values of L. It is then possible to reduce
the theory to a theory with very few parameters. In contrast, in metals, one has a lattice and isotropy breaks
down. In that case one needs to know f (~k,~k′) and φ(~k,~k′) on the Fermi surface. The theory then becomes more
complicated.
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2 Fermi Liquids

2.2 Equilibrium Properties of the normal Fermi Liquid

A fundamental parameter of the theory is the effective mass, defined as usual
kF

m∗
≡
∣∣∣∇~kε

0
~k

∣∣∣
|~k|=kF

= vF (2.15)

Close to the Fermi surface we have
ε

0
k = µ +(k− kF)

kF

m∗
(2.16)

Experimentally the effective mass can be obtained through the specific heat.

Specific heat

Starting from

cV =
1
V

∂E
∂T

∣∣∣∣
V

(2.17)

we obtain for a small change in temperature

cV =
1
V ∑

~k,σ

δE

δn(~k,σ)

δn(~k,σ)

δT

=
1
V ∑

~k,σ

ε~k
δn(~k,σ)

δT

=
1
V ∑

~k,σ

ε~k
∂n(~k,σ)

∂ε~k

(
−

ε~k−µ

T
+

∂ (ε~k−µ)

∂T

)
(2.18)

The term ∑~k′ f (~k,~k′)δn(~k) in ε~k is O(T 2) and can be neglected. Therefore we may set ε~k = ε0
~k

. As for the
non-interacting Fermi system we obtain

cV =
1
3

m∗kFk2
BT (2.19)

Typically m∗ is larger than m. For liquid 3He at normal pressure one has m∗ = 3m. But there are as well so
called heavy fermion systems, materials like CeCu2Si2, UPt3, CeAl3, where m∗/m is of the order 102 to 103.

Effective mass and interaction

The fact that the effective mass is not equal to m occurs due to the interaction. m∗ must therefore depend on
the interaction. There are various ways to derive this relationship. We shall use Galilean invariance. To do that,
consider a system that moves with a small velocity δ~v = δ~k/m. The energy of the entire system of Ne particles
due to this motion is δE = (Nem)(δ~v)2/2. This energy can be calculated as well using

δE = ∑
~k,σ

ε
0
~k

δn(~k,σ)+
1

2V ∑
~k,~k′,σ ,σ ′

f (~k,σ ,~k′,σ ′)δn(~k,σ)δn(~k′,σ ′) (2.20)

where δn(~k,σ) = n(~k+δ~k,σ)−n(~k,σ). The first term yields

∑
~k,σ

ε
0
~k

δn(~k,σ) = ∑
~k,σ

ε
0
~k
[n(~k+δ~k,σ)−n(~k,σ)]

= ∑
~k,σ

(ε0
~k−δ~k

− ε
0
~k
)n(~k,σ)

=
δ~k2

2m∗ ∑
~k,σ

n(~k,σ)

= Ne
δk2

2m∗
(2.21)
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and the second

1
2V ∑

~k,~k′,σ ,σ ′

f (~k,σ ,~k′,σ ′)δn(~k,σ)δn(~k′,σ ′)

=
1

2V ∑
~k,~k′,σ ,σ ′

f (~k,σ ,~k′,σ ′)[n(~k+δ~k,σ)−n(~k,σ)][n(~k′+δ~k,σ ′)−n(~k′,σ)]

=
1

2V ∑
~k,~k′,σ ,σ ′

f (~k,σ ,~k′,σ ′)(δ~k · k̂)(δ~k · k̂′)δ (k− kF)δ (k′− kF)

=
V

2(2π)6 4
∫

k2dk dΩ

∫
k′2dk′ dΩ

′ f (~k,σ ,~k′,σ ′)(δ~k · k̂)(δ~k · k̂′)δ (k− kF)δ (k′− kF)

=
V δk2

8π4 k4
F

∫ 1

−1
d(cosθ)

∫ 1

−1
d(cosθ

′) f (θ −θ
′)cosθ cosθ

′

=
V k4

F

8π4 δk2 4
9

f1 (2.22)

Using the particle density ρ = (2π)−3
∑σ

∫
d3k θ(kF − k) = k3

F/(3π2), we obtain

kF

3π2 Ne
δk2

2
f1 (2.23)

Both expression must lead to the same δE so that

1
m

=
1

m∗
+

kF

3π2 f1 (2.24)

Often one uses the notation

FL = ρF fL (2.25)

ZL = ρFφL (2.26)

where ρF is the density of states at the Fermi level. Using

ρF =
1
V ∑

~k,σ

δ (ε0
~k
−µ)

=
2

(2π)3 4π

∫
k2dk δ (ε0

~k
−µ)

=
m∗kF

π2 (2.27)

we obtain
m∗

m
= 1+

F1

3
(2.28)

Compressibility

Compressibility describes the change in pressure if the volume is changed. For a fixed particle number, we have

1
χ
=−V

∂P
∂V

= ρ
∂P
∂ρ

(2.29)

Compressibility and sound velocity are related through

c2 =
1

mρχ
(2.30)
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It is natural to assume that the compressibility depends only on the isotropic average of f (~kσ ,~k′σ ′), i.e.on F0.
Since the free energy is an extensive quantity, we may write

F(T,V,N) =V f (T,ρ) (2.31)

and therefore

P =−∂F
∂V

=− f +ρ
∂ f
∂ρ

(2.32)

1
χ
= ρ

2 ∂ 2

∂ρ2 f (T,ρ) (2.33)

From

µ =
∂F
∂N

=
∂ f (T,ρ)

∂ρ
(2.34)

we obtain

1
χ
= ρ

2 ∂ µ

∂ρ
(2.35)

The right hand side can be calculated using

ε(~k) =
δE

δn(~k)
= ε

0
~k
+

1
V ∑

~k′,σ ′
f (~k,σ ,~k′,σ ′)δn(~k′) (2.36)

for values k = kF , since µ = ε(kF). For the compressibility, isotropic values of δn(~k) = δn(k) are sufficient.

∂ µ

∂ρ
=

∂ε0
kF

∂kF

∂kF

∂ρ
+∑

σ ′

∫ d3k′

(2π)3 f (kF ,~k′)
∂n(k′)
∂kF

∂kF

∂ρ
(2.37)

Using ρ = k3
F/(3π2) and ρ

∂kF
∂ρ

= kF
3 , furthermore

∂ε0
kF

∂kF
= kF

m∗ ,
∂n(k′)
∂kF

= δ (k′− kF) we obtain

ρ
∂ µ

∂ρ
=

k2
F

3m∗
+

k2
F

(2π)3
kF

3 ∑
σ ′

∫
dΩ f (θ ,σσ

′) =
k2

F

3m∗
(1+F0) (2.38)

and finally
1
χ
=

ρk2
F

3m∗
(1+F0) =

ρk2
F

m
1+F0

3+F1
(2.39)

This shows that χ depends on F0 as expected and through the effective mass as well on F1. The compressibility
becomes infinite for F0 = −1, the entire system becomes unstable. Therefore we need F0 > −1. This is a
special case for the stability criterion FL >−(2L+1), ZL >−(2L+1), which can be shown by other means.

Magnetic Susceptibility

Up to now we discussed only spin-independent perturbations. They are connected to the parameters FL. Now,
we discuss spin-dependent perturbations. The most simple case is that of a small magnetic field δH, which
yields a small magnetisation δM. The magnetic susceptibility is given by χM = ∂M

∂H . The magnetisation is
given by

δM = ρ(+
1
2
)−ρ(−1

2
) = 2∑

σ

σρ(σ) (2.40)

We calculate the magnetic susceptibility using the fact that the chemical potential does not depend on the spin
σ . Nevertheless, we introduce µ(σ) to be the chemical potential for fermions with spin σ , then we have

µ(σ) = µ0−σδH +2∑
σ ′

∂ µ(σ)

∂ρ(σ ′)
σ
′
δM (2.41)
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where the second term is the energy shift due to the external magnetic field and the third term is the energy shift
coming from the induced magnetic field. Because of µ(1

2) = µ(−1
2)

δH = 4 ∑
σ ,σ ′

∂ µ

∂ρ(σ ′)
σσ
′
δM (2.42)

1
χM

= 4 ∑
σ ,σ ′

∂ µ

∂ρ(σ ′)
σσ
′ (2.43)

The calculation is similar to what we did above. We start with

ε(~k,σ) = ε
0
~k,σ
−σδh+

1
V ∑

~k′,σ ′
f (~k,σ ,~k′,σ ′)δn(~k′,σ ′) (2.44)

For k = kF , the left hand side must be µ . Therefore

∂ µ

∂ρ(σ ′)
=

∂kF

∂ρ(σ ′)

[
∂ε0

kσ

∂kF
δσ ,σ ′+

∫ d3k′

(2π)3 f (kF ,σ ,~k′,σ ′)
∂n(~k′,σ ′)

∂kF

]

=
2π2

k2
F

[
kF

m∗
δσ ,σ ′+

kF

2m∗
(F0 +4σσ

′Z0)

]
(2.45)

1
χM

=
4π2

kFm∗
+

4π2

kFm∗
Z0 (2.46)

χM =
kFm∗

4π2(1+Z0)
(2.47)

Again we obtain a stability criterion, namely Z0 > −1. For liquid 3He typical values for Z0 are between -0.67
for normal pressure and -0.76 at 27 atm. The system is close to a ferromagnetic instability.

Stability

We mentioned already that FL,ZL >−2L−1 must hold for the Fermi liquid to be stable. Let us now show that.
The Fermi liquid is stable if E−µN assumes a minimum. We therefore calculate

δ (E−µN) = ∑
~k,σ

(ε0
~k
−µ)δn(~k,σ)+

1
2V ∑

~k,σ ,~k′,σ ′
f (~k,σ ,~k′,σ ′)δn(~k,σ)δn(~k′,σ ′) (2.48)

for general δn(~k,σ). We assume isotropy and low temperatures. Only fluctuations close to the Fermi surface
occur. They are of the form

δn(~k,σ) = δ (kF − k)δkF(θ ,σ)− 1
2

∂δ (kF − k)
∂k

δkF(θ ,σ)2 (2.49)

For first order of δ (E−µN) in δkF(θ ,σ) vanishes. The second order contribution is

δ (E−µN) =
V
8

ρFv2
F

[
∑
σ

∫
d cosθδkF(θ ,σ)2

+
1
2 ∑

σ ,σ ′

∫
d cosθ

∫
d cosθ

′( f (θ −θ
′)+4σσ

′
φ(θ −θ

′))δkF(θ ,σ)δkF(θ
′,σ ′)

]
(2.50)

Expanding
δkF(θ ,σ) = ∑

L
δkL(σ)PL(cosθ) (2.51)
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we obtain

δ (E−µN) =
V
8

ρFv2
F ∑

L

[
[δkL(+

1
2
)+δkL(−

1
2
)]2(1+

FL

2L+1
)

+[δkL(+
1
2
)−δkL(−

1
2
)]2(1+

ZL

2L+1
)

]
(2.52)

For a minimum, the right hand side must be positive definite, therefore we obtain FL,ZL >−2L−1.

2.3 Microscopic Derivation

Standard perturbation theory

Let us consider a typical, generic model of interacting fermions.

H = ∑
~k,σ

ε~kc†
~k,σ

c~k,σ +
1
2 ∑

k1...k4,σ1...σ4

V~k1,~k2,~k3,~k4
c†
~k1σ1

c†
~k2,σ2

c~k4,σ4
c~k3,σ3

(2.53)

Perturbation theory to second order yields

E = ∑
~k,σ

ε~kn(~k,σ)+
1
2 ∑
~k1σ1,~k2σ2

V~k1,~k2,~k1,~k2
n(~k1,σ1)n(~k2,σ2)

+
1
4 ∑

k1...k4,σ1...σ4

δ~k1+~k2,~k3+~k4

|V~k1,~k2,~k3,~k4
|2

1
2m(k

2
1 + k2

2− k2
3− k2

4)
n(~k1,σ1)n(~k2,σ2)(1−n(~k3,σ3))(1−n(~k4,σ4))

+O(V 3) (2.54)

For small variations of n(~k,σ) we identify

ε
0
~k,σ

= ε~k + ∑
~k1,σ1

V~k,~k1,~k,~k1
n(~k1,σ1)

+
1
2 ∑

k1...k3,σ1...σ3

δ~k+~k1,~k2+~k3

|V~k,~k1,~k2,~k3
|2

1
2m(k

2 + k2
1− k2

2− k2
3)

n(~k1,σ1)(1−n(~k2,σ2))(1−n(~k3,σ3))

−1
2 ∑

k1...k3,σ1...σ3

δ~k1+~k2,~k+~k3

|V~k1,~k2,~k,~k3
|2

1
2m(k

2
1 + k2

2− k2− k2
3)

n(~k1,σ1)n(~k2,σ2)(1−n(~k3,σ3))

+O(V 3) (2.55)

1
V

f (~k1,σ1,~k2,σ2) = V~k1,~k2,~k1,~k2

+
1
2 ∑
~k3,σ3,~k4,σ4

δ~k1+~k2,~k3+~k4

|V~k1,~k2,~k3,~k4
|2

1
2m(k

2
1 + k2

2− k2
3− k2

4)
(1−n(~k3,σ3))(1−n(~k4,σ4))

+
1
2 ∑
~k3,σ3,~k4,σ4

δ~k1+~k2,~k3+~k4

|V~k3,~k4,~k1,~k2
|2

1
2m(k

2
1 + k2

2− k2
3− k2

4)
n(~k3,σ3)n(~k4,σ4)

− ∑
~k3,σ3,~k4,σ4

δ~k1+~k3,~k2+~k4

|V~k1,~k3,~k2,~k4
|2

1
2m(k

2
1 + k2

3− k2
2− k2

4)
n(~k3,σ3)(1−n(~k4,σ4))

+O(V 3) (2.56)
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In principle, such a calculation can be done. But one has to deal with all the typical problems of standard
perturbation theory, esp. small denominators. Furthermore, one has to sum up many terms. Typically, one
takes the thermodynamic limit and thereby replaces the sums of ~k by integrals. One then derives integral
equations and solves them. A natural way to do such a calculation is to use the formalism of chapter 1. We will
not go through all the details but only sketch the main lines of what has to be done.

Self energy

In analogy to the non-interacting propagator in the translationally invariant system we let〈
φ
∗
~k,σ

(τ)φ~k,σ (τ
′)
〉
=

1
β

∑
ωn

exp(−iωn(τ− τ
′))G~k,σ (ωn). (2.57)

For G~k,σ (ωn) we may use a perturbative expansion. G~k,σ (ωn) is the sum of all closed diagrams with two

external lines. This sum can be simplified by introducing Σ( ~k, iωn) via

G~k,σ (ωn) =
1

ε~k−µ− iωn +Σ(~k, iωn)
. (2.58)

Σ(~k, iωn) is called self energy. Expanding this expression for G~k,σ (ωn) yields

G~k,σ (ωn) =
∞

∑
r=0

(−1)rg̃~k(ωn)
[
Σ(~k, iωn)g̃~k(ωn)

]r
(2.59)

This shows immediately that Σ(~k, iωn) can be expressed diagrammatically as the sum of all amputated single-
particle-irreducible (or 2-connected) diagrams with two external lines. Amputated here means that the factor
g̃~k(ωn) for the external lines is dropped. Single-particle-irreducible (or 2-connected) means that the diagram
remains connected if we cut an arbitrary line.

If we know the single particle propagator or equivalently the self energy, we are able to calculate the single
particle energies. To do that, we use a continuation of the single particle propagator onto the complex plane
and introduce real frequencies ω in both quantities:

GR/A
~k,σ

(ω) =± 1

ε~k−µ−ω +Σ(~k,ω)∓ iη
(2.60)

To do that, one typically writes

G~k,σ =
∫

∞

−∞

dω ′

2π

ρ(~k,ω ′)
ω ′− iωn

(2.61)

and replaces iωn by ω . This continuation is not unique. Since exp(iωnβ ) = ζ , we may multiply G with a
factor ζ exp(iωnβ ), without changing anything. This multiplies GR/A with a factor ζ exp(ωβ ). But GR/A are
the retarded and advanced Green’s functions. The asymptotic behaviour for large ω is well known, it should be
∝ |ω|−1. This additional condition makes the continuation to the complex plain unique.

The singularities of GR/A yield the single particle energies.

ω = ε~k +Σ(~k,ω) (2.62)

Therefore
dω

dk
=

k
m
+

∂Σ

∂k
+

∂Σ

∂ω

dω

dk
(2.63)

Since dω

dk = k
m∗ one obtains for the effective mass

m∗ = m
(

1+
m
k

∂Σ

∂k

)−1(
1− ∂Σ

∂ω

)
(2.64)
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which has to be calculated for k = kF .
Therefore we must calculate Σ. Starting point is the representation of Σ as a sum of all amputated 2-connected

diagrams with two external lines. First order yields

Σ
′
1(~k) =

1
βV ∑

~k1ωn1

V~k,~k1,~k,~k1
g̃~k1

(ωn1) = ∑
~k1

V~k,~k1,~k,~k1
n~k1

(2.65)

This contribution does not depend on ωn. It yields only a shift of the energy scale and therefore a shift of the
chemical potential. n~k1

= n(~k1) = θ(εF − ε~k1
) are here the occupation numbers and ε~k1

are the original single
particle energies of the non-interacting system. With these assumptions, we obtain first order perturbation
theory. This result can be improved if we use

Σ1(~k) =
1

βV ∑
~k1ωn1

V~k,~k1,~k,~k1
G~k1

(ωn1) = ∑
~k1

V~k,~k1,~k,~k1
n~k1

(2.66)

instead of Σ′1. The difference is that now the occupation number n~k1
is determined self-consistently. This

quantity then represents the Hartree-Fock approximation.
In second order, we obtain

Σ
′
2(~k,ωn) =

1
β 2V 2 ∑

~k1,ωn1 ,
~k2,ωn2

V~k,~k1,~k,~k1
V~k1,~k2,~k1,~k2

g̃~k2
(ωn2)g̃

2
~k1
(ωn1)

+
1

β 2V 2 ∑
~k1,ωn1 ,

~k2,ωn2

V~k,~k1+~k2−~k,~k1,~k2
V~k1,~k2,~k,~k1+~k2−~kg̃~k1

(ωn1)g̃~k2
(ωn2)

g̃~k1+~k2−~k(ωn1 +ωn2−ωn) (2.67)

The first term again does not depend on ωn, but the second does.
Instead of the propagators of the non-interacting system we may introduce here the propagators of the inter-

acting system and calculate Σ2 instead.

Quasi particle energies

Now, we try to solve the equation ω = ε~k +Σ(~k,ω), which yields the singularities of the Green’s function. In
first order we get a single solution which corresponds to the solution of the non-interacting system. In second
order, Σ2(~k,ω) has singularities. The consequence of these singularities can be understood in an artificial
model, where Σ2(~k,ω) has only two singularities:

Σ2(ω) =
A1

ω− ε1
+

A2

ω− ε2
(2.68)

The Green’s function now has the structure

G2(ω) =
1

ω− ε0−Σ2(ω)

=
(ω− ε1)(ω− ε2)

(ω− ε0)(ω− ε1)(ω− ε2)−A1(ω− ε2)−A2(ω− ε1)

For small A1, A2, which means weak interaction, we get three singularities close to ε0, ε1, and ε2. The sum
of the residua is 1, the residuum of the singularity close to ε0 is almost 1, the two others are small. In leading
order we obtain for the residua

1−
2

∑
i=1

Ai

(ε0− εi)2 (2.69)
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Ai

(ε0− εi)2 , i = 1,2 (2.70)

For the general system, something similar happens. The Greens function has singularities close to the original
single particle energies ε~k with reduced residua. The singularity close to ε~k is the energy of the quasi particle in
the Fermi liquid theory.

Interaction of quasi particles

The interaction between the quasi particles is a two-particle property of the system and cannot be calculated
from the single particle Greens functions. We therefore need the two-particle Greens functions〈

φ
∗
~k1σ1

(τ1)φ
∗
~k2σ2

(τ2)φ~k3σ3
(τ3)φ~k4σ4

(τ4)
〉

(2.71)

They can be written as

〈
φ
∗
~k1σ1

(τ1)φ
∗
~k2σ2

(τ2)φ~k3σ3
(τ3)φ~k4σ4

(τ4)
〉

=
〈

φ
∗
~k1σ1

(τ1)φ~k4σ4
(τ4)

〉〈
φ
∗
~k2σ2

(τ2)φ~k3σ3
(τ3)

〉
−

〈
φ
∗
~k1σ1

(τ1)φ~k3σ3
(τ3)

〉〈
φ
∗
~k2σ2

(τ2)φ~k4σ4
(τ4)

〉
+

〈
φ
∗
~k1σ1

(τ1)φ
∗
~k2σ2

(τ2)φ~k3σ3
(τ3)φ~k4σ4

(τ4)
〉

c
(2.72)

where the last contribution is the connected part. The first two terms contain non-interacting quasi particles.
The third term yields the effective interaction. It can be written as〈

φ
∗
~k1σ1

(τ1)φ
∗
~k2σ2

(τ2)φ~k3σ3
(τ3)φ~k4σ4

(τ4)
〉

c
= ∑

σ ′1σ ′2σ ′3σ ′4

∑
~k′1~k

′
2
~k′3~k

′
4

∫
dτ
′
1

∫
dτ
′
2

∫
dτ
′
3

∫
dτ
′
4

〈
φ
∗
~k1σ1

(τ1)φ~k′1σ ′1
(τ ′1)

〉
〈

φ
∗
~k2σ2

(τ2)φ~k′2σ ′2
(τ ′2)

〉〈
φ
∗
~k′3σ ′3

(τ3)φ~k3σ3
(τ ′3)

〉〈
φ
∗
~k′4σ ′4

(τ4)φ~k4σ4
(τ ′4)

〉
Γ
(2)
~k′1σ ′1,

~k′2σ ′2,
~k′3σ ′3,

~k′4σ ′4
(τ ′1,τ

′
2,τ
′
3,τ
′
4) (2.73)

Γ(2) is now the interaction of the quasi particles. In a perturbative expansion, Γ(2) is in first order the bare
interaction. In general, Γ(2) is the sum of all amputated, single-particle irreducible diagrams with four external
lines. In this sense it is similar to the self energy.

The above expression is general. If the system is translationally invariant, there are only contributions with
~k′i =~ki, σ ′i = σi. Furthermore, we introduce ωn. The integrals can now be calculated, but one still has to sum
over ωni . Since energy is conserved, the sums are trivial and one finally obtains

Γ
(2)
~k1σ1,~k2σ2,~k3σ3,~k4σ4

(ωn1 ,ωn2 ,ωn3 ,ωn4) = δK1+K2,K3+K4Γσ1σ2σ3σ4(K1,K2;K1−K3) (2.74)

which is also the definition of Γ. Furthermore, Ki = (ωni ,
~ki). K1−K3 is the momentum transfer due to the

interaction. Like the self energy, Γ does not depend on the frequencies ωn in first order, but only in higher
orders. This dependency can be interpreted as a retardation of the interaction.

The spin dependency can be simplified, if one takes into account the SU(2) spin symmetry. Γ can be written
as

Γσ1σ2σ3σ4(K1,K2;K) =
1
2
(δσ1σ3δσ2σ4−δσ1σ4δσ2σ3)Γs(K1,K2;K)

+
1
2
(δσ1σ3δσ2σ4 +δσ1σ4δσ2σ3)Γt(K1,K2;K) (2.75)

where Γs is the singlet part and Γt is the triplet part of Γ.
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In Fermi liquid theory, one considers only effective interactions which depend on the small changes δn(~k,σ).
This means that momentum transfer vanishes. For the quasi particle interaction it is therefore sufficient to
consider the contributions where K =(ωn,~k) vanishes. Furthermore, we consider the limit of small temperature,
which means that it is sufficient to consider the limit ωn→ 0. And finally we only need Γ where~ki are close to
the Fermi surface, i.e. ki ≈ kF . In this limit, Γ yields the effective interaction of Fermi liquid theory.

Let us take a look at the perturbation expansion of Γ. First order is the original interaction. For a momentum
transfer = 0, it yields the first order of the quasi particle interaction as obtained before using ordinary perturb-
ation theory. Similarly, the second order contribution is the same. One can improve this, if one replaces the
propagators in the perturbative series by propagators of the interacting system. Γ is then the sum over all two-
particle irreducible diagrams. One obtains an integral equation for Γ, which has to be solved. But the problem
remains: perturbative expansions contain divergences and expansions do not converge.
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3 Renormalisation

3.1 Main idea

We saw that perturbation theory leads to several divergences. A tool to deal with such divergences is renor-
malisation. Renormalisation is not a specific method but merely a collection of several, but similar methods,
either analytic or numeric. Important is to understand the main idea. We treat as an example an interacting,
translationally invariant Fermi system.

Z =
∫

D[φ ]exp(S[φ ∗,φ ]) (3.1)

S[φ ∗,φ ] = ∑
K
(iωn− ε~k +µ)φ ∗KφK−V [φ ∗,φ ] (3.2)

where K = (ωn,~k,σ) is a multi index, which contains the wave vector, the frequencies ωn, and the spin. The
interaction is a generic interaction. In the first chapter of this course we saw that the connected propagators can
be calculated using the generating function

W [J∗,J] = ln

〈
exp(−V [φ ∗,φ ]+∑

K
(J∗KφK +φ

∗
KJK))

〉
0

(3.3)

simply by taking derivatives with respect to JK and J∗K . We use the notation

〈A[φ ∗,φ ]〉0 =
∫

D[φ ]A[φ ∗,φ ]exp(∑K(iωn− ε~k +µ)φ ∗KφK)∫
D[φ ]exp(∑K(iωn− ε~k +µ)φ ∗KφK)

(3.4)

for expectation values of the non-interacting system. The single particle propagator of the non-interacting
system is

C(K) =
1

iωn− ε~k +µ
(3.5)

and has a divergence at ωn = 0 and ε~k = µ , i.e. for the case which is the interesting divergence for Fermi liquid
theory. We expect that this divergence remains, probably shifted and with a reduced residuum, and yields the
quasi particle of Fermi liquid theory.

The main idea of renormalisation is simple. We introduce a cut-off Λ and perform all integrals in the expres-
sion for W over fields φK and φ ∗K for which |iωn− ε~k + µ| > Λ. The remaining integrals can again be written
as

W [J∗,J] = ln

〈
exp(−VΛ[φ

∗,φ ,J∗,J]+ ∑
K: |iωn−ε~k+µ|<Λ

(J∗KφK +φ
∗
KJK))

〉
Λ,0

(3.6)

The non-interacting part now depends on Λ since the integration over some of the fields introduce new quad-
ratic contributions. Since the original system is translational invariant, the new quadratic contributions are
translational invariant and therefore diagonal. Therefore, the average depends on Λ. The new interaction
VΛ[φ

∗,φ ,J∗,J] depends as well explicitly on Λ and on the fields JK and J∗K with |iωn− ε~k +µ|> Λ. In the new
integral, divergences are shifted, since the single particle energies ε~k and eventually µ as well are shifted. Since
we are interested in propagators near the Fermi surface, the fields JK and J∗K in VΛ[φ

∗,φ ,J∗,J] are uninteresting.
We will never calculate derivatives with respect to these fields. Therefore we may set them to 0 explicitly.
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In a next step, we introduce a new cut-off Λ1 and perform the integral over all fields φK and φ ∗K for which
|iωn− ε~k +µ|> Λ1. This yields again a new VΛ1 and shifted single particle energies. We iterate this procedure
and finally obtain an effective theory which depends only on fields with small values of |iωn− ε~k +µ|. This is
now the effective theory we are looking for. A priori it is not clear that the procedure converges. For special
cases and for not too large interaction, one can eventually prove convergence.

Let us mention that there are various technically different variants of the procedure described above. Instead
of a discrete series of steps one can vary the cut-off continuously. Instead of a hard cut-off as described above,
one can introduce a soft cut-off (these notions will be explained later). Instead of W one can use a different
generating function.

3.2 Effective action

For Fermi systems it is often easier not to use W but

Geff[ψ
∗,ψ] = ln〈exp(−V [φ ∗+ψ

∗,φ +ψ])〉0 (3.7)

We mentioned that quantity already in the first chapter. We now discuss it in more detail. First of all, we have

Z0 〈exp(−V [φ ∗+ψ
∗,φ +ψ])〉0 =

∫
D[φ ]exp(∑

K
(iωn− ε~k +µ)φ ∗KφK−V [φ ∗+ψ

∗,φ +ψ])

=
∫

D[φ ]exp(∑
K
(iωn− ε~k +µ)(φ ∗K−ψ

∗
K)(φK−ψK)−V [φ ∗,φ ])

= exp(∑
K
(iωn− ε~k +µ)ψ∗KψK)

×
∫

D[φ ]exp(∑
K
(iωn− ε~k +µ)φ ∗KφK−V [φ ∗,φ ]

−∑
K
(iωn− ε~k +µ)(φ ∗KψK +ψ

∗
KφK))

= Z0 exp(∑
K
(iωn− ε~k +µ)ψ∗KψK +W [C(K)−1

ψ
∗
K ,C(K)−1

ψK ]) (3.8)

and therefore
Geff[ψ

∗,ψ] = ∑
K

ψ
∗
KC(K)−1

ψK +W [C(K)−1
ψ
∗
K ,C(K)−1

ψK ] (3.9)

Since W is the generating function for connected propagators, one can show that Geff is the generating function
for connected, amputated propagators. Due to the factors C(K)−1 in the argument of W one multiplies the final
result with a factor C(K)−1 = (iωn− ε~k + µ) for each derivative one takes, so that the factors C(K) for the
external lines are cancelled.

Geff is called effective action.

3.3 Renormalisation group equations for Geff

In this subsection we derive the renormalisation group equation for the effective action. In contrast to the above
description for W we will use a continuous renormalisation.

Let us introduce the modified propagator

CΛ(K) =
ΘΛ(K)

iωn− (ε~k−µ)
(3.10)

Here ΘΛ(K) is a cut-off function. The most simple case would be a hard cut-off, e.g.

ΘΛ(K) = θ(|ε~k−µ− iωn|−Λ) (3.11)
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For analytical calculations a cut-off function which is differentiable might be more suitable. Then we have a
weak cut-off. For |ε~k−µ− iωn| � Λ one has ΘΛ(K) = 1 and CΛ(K) =C(K). For |ε~k−µ− iωn| � Λ one has
ΘΛ(K) = 0 and therefore CΛ(K) = 0. I define

GΛ
eff[ψ

∗,ψ] = ln
∫

D[φ ]exp(∑K φ ∗K(C
Λ(K))−1φK−V [φ ∗+ψ∗,φ +ψ])∫

D[φ ]exp(∑K φ ∗K(CΛ(K))−1φK)
(3.12)

For values of K with ΘΛ(K) = 0 only φK = 0 contributes. GΛ
eff is then given by −V . For values of K with

ΘΛ(K) = 1, GΛ
eff is given by Geff. GΛ

eff interpolates between −V and Geff. The goal is to derive a differential
equation for GΛ

eff which has the initial condition −V and can be solved. We start with

F [ψ∗,ψ] = F
[

∂

∂η
,

∂

∂η∗

]
exp(∑

K
(η∗KψK +ηKψ

∗
K))

∣∣∣∣∣
η=η∗=0

(3.13)

∫
D[φ ]exp(∑

K
φ
∗
K(C

Λ(K))−1
φK +∑

K
(η∗KφK +ηKφ

∗
K)) = exp(∑

K
η
∗
KCΛ(K)ηK)

∫
D[φ ]exp(∑

K
φ
∗
K(C

Λ(K))−1
φK)

(3.14)
The second equation can be written as〈

exp(∑
K
(η∗KφK +ηKφ

∗
K))

〉
Λ,0

=

∫
D[φ ]exp(∑K φ ∗K(C

Λ(K))−1φK +∑K(η
∗
KφK +ηKφ ∗K))∫

D[φ ]exp(∑K φ ∗K(CΛ(K))−1φK)

= exp(∑
K

η
∗
KCΛ(K)ηK) (3.15)

This yields

exp(GΛ
eff[ψ

∗,ψ]) = 〈exp(−V [φ ∗+ψ
∗,φ +ψ])〉

Λ,0

= exp
(
−V
[

∂

∂η
,

∂

∂η∗

])〈
exp(∑

K
(η∗K(φK +ψK)+ηK(φ

∗
K +ψ

∗
K)))

〉∣∣∣∣∣
η=η∗=0

= exp
(
−V
[

∂

∂η
,

∂

∂η∗

])
exp(∑

K
η
∗
KCΛ(K)ηK +∑

K
(η∗KψK +ηKψ

∗
K))

∣∣∣∣∣
η=η∗=0

= exp
(
−V
[

∂

∂η
,

∂

∂η∗

])
exp

(
∑
K

∂

∂ψK
CΛ(K)

∂

∂ψ∗K

)
exp(∑

K
(η∗KψK +ηKψ

∗
K))

∣∣∣∣∣
η=η∗=0

= exp

(
∑
K

∂

∂ψK
CΛ(K)

∂

∂ψ∗K

)
exp
(
−V
[

∂

∂η
,

∂

∂η∗

])
exp(∑

K
(η∗KψK +ηKψ

∗
K))

∣∣∣∣∣
η=η∗=0

= exp

(
∑
K

∂

∂ψK
CΛ(K)

∂

∂ψ∗K

)
exp(−V [ψ∗K ,ψK ]) (3.16)

and
∂

∂Λ
exp(GΛ

eff[ψ
∗,ψ]) = ∑

K

∂

∂ψK

∂CΛ(K)

∂Λ

∂

∂ψ∗K
exp(GΛ

eff[ψ
∗,ψ])

finally

∂

∂Λ
GΛ

eff[ψ
∗,ψ] = ∑

K

∂

∂ψK

∂CΛ(K)

∂Λ

∂

∂ψ∗K
GΛ

eff[ψ
∗,ψ]

+∑
K

∂GΛ
eff[ψ

∗,ψ]

∂ψK

∂CΛ(K)

∂Λ

∂GΛ
eff[ψ

∗,ψ]

∂ψ∗K
(3.17)
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This is the differential equation for GΛ
eff we were looking for. It is an exact renormalisation group equation.

It is clear, that this equation cannot be solved in general. Often, a perturbative expansion is used to solve the
equation.

For a further treatment of this equation, one can expand GΛ
eff in monomials of factors ψK and ψ∗K and derive

differential equations for the expansion coefficients. In the present case it is easier to use an expansion of the
form

GΛ
eff[ψ

∗,ψ] =
∞

∑
m=0

1
(m!)2 ∑

K1,...,Km

∑
K′1,...,K

′
m

GΛ
m(K

′
1, . . . ,K

′
m;K1, . . . ,Km)

exp

(
−∑

K

∂

∂ψK
DΛ(K)

∂

∂ψ∗K

)
m

∏
j=1

ψ
∗
K j

ψK j (3.18)

where

DΛ(K) =C(K)−CΛ(K) =
1−ΘΛ(K)

iωn− ε~k +µ
(3.19)

The derivative of GΛ
eff with respect to Λ yields two contributions, one due to the derivative of the coefficient and

one due to the derivative of DΛ(K). Since

∂DΛ(K)

∂Λ
=−∂CΛ(K)

∂Λ
(3.20)

the second term yields a contribution which has the form of the first term in the renormalisation group equation
for GΛ

eff. This term does not contribute to the derivative of the coefficient. Only the second term yields a
contribution to the differential equations of the coefficients.

It is possible to write down the equations in a graphical form. This form is especially useful for perturbative
expansions. Only single-particle irreducible diagrams occur.

We now want to derive the equations to lowest order in a perturbation expansion. The lowest order which
yields a contribution to the derivative of GΛ

m is O(V 2). We start with a two-particle interaction, therefore all
coefficients GΛ

m with m > 2 vanish initially. These coefficients are at least of order O(V m) with m > 2. In O(V 2)
it is sufficient to take into account only the coefficients GΛ

2 . We obtain

∂

∂Λ
GΛ

2 (K
′
1,K

′
2;K1,K2) = − ∑

K,K′

∂ (DΛ(K)DΛ(K′))
∂Λ

[
1
2

GΛ
2 (K

′
1,K

′
2;K,K′)GΛ

2 (K,K′;K1,K2)

−GΛ
2 (K

′
1,K;K1,K′)GΛ

2 (K
′,K′2;K,K2)

+GΛ
2 (K

′
2,K;K1,K′)GΛ

2 (K
′,K′1;K,K2)

]
(3.21)

Since GΛ
2 =− 1

βV Γ(2) this can be directly written as an equation for Γ(2):

∂

∂Λ
Γ
(2)(K′1,K

′
2;K1,K2) =

1
βV ∑

K,K′

∂ (DΛ(K)DΛ(K′))
∂Λ

[
1
2

Γ
(2)(K′1,K

′
2;K,K′)Γ(2)(K,K′;K1,K2)

−Γ
(2)(K′1,K;K1,K′)Γ(2)(K′,K′2;K,K2)

+Γ
(2)(K′2,K;K1,K′)Γ(2)(K′,K′1;K,K2)

]
(3.22)

Further simplifications occur if translational invariance and spin symmetry are taken into account. We intro-
duced already the quantities

Γ
(2)
~k1σ1,~k2σ2,~k3σ3,~k4σ4

(ωn1 ,ωn2 ,ωn3 ,ωn4) = δK1+K2,K3+K4Γσ1σ2σ3σ4(K1,K2;K1−K3) (3.23)
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Γσ1σ2σ3σ4(K1,K2;K) =
1
2
(δσ1σ3δσ2σ4−δσ1σ4δσ2σ3)Γs(K1,K2;K)

+
1
2
(δσ1σ3δσ2σ4 +δσ1σ4δσ2σ3)Γt(K1,K2;K) (3.24)

where now K contains only~k and ωn. The equations for Γs and Γt are

∂

∂Λ
Γα(K1,K2;K) =

3

∑
r=1

∑
α ′,α ′′=s,t

Cr
α,α ′,α ′′β

r
α ′,α ′′(K1,K2;K) (3.25)

β
1
α ′,α ′′(K1,K2;K)=

1
2βV ∑

K′

∂ (DΛ(K1−K′)DΛ(K2 +K′))
∂Λ

Γα ′(K1,K2;K′)Γα ′′(K1−K′,K2+K′;K−K′) (3.26)

β
2
α ′,α ′′(K1,K2;K) =− 1

βV ∑
K′

∂ (DΛ(K′)DΛ(K′+K))

∂Λ
Γα ′(K1,K′;K)Γα ′′(K′+K,K2;K) (3.27)

β
3
α ′,α ′′(K1,K2;K) =

1
βV ∑

K′

∂ (DΛ(K′)DΛ(K2−K1 +K′+K))

∂Λ
Γα ′(K2,K′;K2 +K−K1)

×Γα ′′(K2−K1 +K +K′,K1;K2 +K−K1) (3.28)

C1
sss =C1

ttt = 1, C1
α,α ′,α ′′ = 0 otherwise (3.29)

C2
sss =−C3

sss =−
1
4
, C2

sαα ′ =−C3
sαα ′ =

3
4

otherwise (3.30)

C2
ttt =C3

ttt =
5
4
, C2

tαα ′ =C3
tαα ′ =

1
4

otherwise (3.31)

In general it is not possible to solve these equations analytically. Furthermore, it is not at all clear that the
results do not diverge. It is well known that for sufficiently low temperatures, a divergence occurs which leads
to a superconducting instability. The Fermi liquid becomes a super-conductor. This effect is called Kohn-
Luttinger effect. It was found by Kohn and Luttinger [31] in a second order perturbative calculation in 1965
and can be treated in a mathematically rigorous way (see a series of work by Knörrer, Trubowitz, Feldman,
Sinclair, Salmhofer [9, 62, 10, 63, 11, 12], for a mathematical and comprehensive introduction I refer to the
book by Salmhofer [64]). But one can show as well that for weak interaction and not too low temperatures the
renormalisation group equations yield a finite solution: the Fermi liquid.

3.4 The Hubbard model I, Renormalization

The Hubbard model is a lattice model for electrons with a short range interaction. The Hamiltonian is

H = ∑
x,y,σ

tx,yc†
x,σ cy,σ +U ∑

x
nx,↑nx,↓ (3.32)

For a translationally invariant lattice with a single energy band we can transform to momentum space and obtain

H = ∑
~k,σ

ε~kc†
~k,σ

c~k,σ +
U
Ns

∑
~k,~k′,~q

c†
~k,↑

c†
~k′,↓

c~k′−~q,↓c~k+~q,↑ (3.33)

where Ns is the number of lattice sites. We discuss general results for this model later. In this subsection we
show results of a renormalisation group calculation for the Hubbard model in two dimensions. The results we
show have been taken out of the work by Halboth and Metzner [20, 21]. Similar results have been obtained
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Figure 3.1: Lines of constant energy ε~k in the Brillouin zone for t ′ = 0 (a) and t ′ =−0.16 (b).
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by Wegner and coworkers using continuous unitary transformations [18, 22]. Until today, many further results,
not only on the square lattice have been obtained, see e.g. the review [45].

Starting point is the Hubbard model on a quadratic lattice with

ε~k =−2t(coskx + cosky)−4t ′(coskx cosky) (3.34)

Here −t is the nearest neighbour hopping, i.e. the value of tx,y for neighboured lattice sites x and y. −t ′ is the
matrix element for next nearest neighbours. For all other distances one has tx,y = 0. The ε~k can be drawn as
lines with constant energy in the (kx,ky)-plane, see figure 3.1.

The interaction is
V [φ ∗,φ ] =

U
Ns

∑
K,K′,Q

φ
∗
K,↑φ

∗
K′,↓φK′−Q,↓φK+Q,↑ (3.35)

Initially, the matrix elements do not depend on K, K′, and Q. In the following, the idea is to derive renorm-
alisation group equations and to solve them numerically. This is done in momentum space. We need several
assumptions and approximations. Details are discussed in the course and in the original work by Halboth and
Metzner [21, 20].

1. First we need a discretisation in~k-space. If we choose a discretisation with N points in~k-space, we obtain
equations for O(N3) couplings. N must therefore not be too large, a typical value is N = 16.

2. We neglect the dependence of Γ on ωn.

3. Since N is small and since we need precise results close to the Fermi surface, we choose the points in
k-space for the discretisation on the Fermi surface. During the calculation, we need values of Γ with
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Figure 3.2: The discretisation on the Fermi surface. The numbers are used later as indices.
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indices not on the Fermi surface. Therefore we need a projection method which maps these values to
values on the Fermi surface. For large Λ this is exact since Γ is constant anyway. For small Λ we have
only values of Γ with indices close to the Fermi surface and this approximation should be good as well.

4. Close to the edges of the Fermi surface there should be more points of our discretisation.

The approximation due to the discretisation is

Γ
Λ
α(~k1,~k2;~k′1,~k

′
2)≈ Γ

Λ
α(~kF1,~kF2;~k′F1,~kF1 +~kF2−~k′F1) (3.36)

Instead of~kF we use the angle which fixes the direction of~kF . One obtains

Γ
Λ
α(~kF1,~kF2;~k′F1,~kF1 +~kF2−~k′F1) = Γ

Λ
α(φ1,φ2;φ

′
1) (3.37)

The discretisation that has been used is shown in figure 3.2.
Numerically one calculates the effective interaction and with the help of it several susceptibilities to obtain

physically meaningful results. If one of the susceptibilities diverges, this is a sign for an instability of the Fermi
liquid. The susceptibility directly yields the type of instability. The following susceptibilities are taken into
account:

1. commensurate anti-ferromagnetic spin susceptibility χS(π,π),

2. incommensurate anti-ferromagnetic spin susceptibilities χS(~q) with~q = (π−δ ,π) or~q = (1−δ )(π,π).
Here δ = 1−Ne/Ns is the doping, the distance from a half filled band.

3. commensurate charge susceptibilityχC(π,π) ,

4. Various singlet pair susceptibilities for s wave pairing (form factor d(~k) = 1), modified s-wave pairing
(d(~k) = (coskx + cosky)/

√
2), d-wave pairing dx2−y2 (form factor d(~k) = (coskx− cosky)/

√
2) and dxy

(d(~k) = sinkx sinky).

The results we show have been calculated for U = t. The susceptibilities are divided by their values for U = 0
All results are for densities close to half filling and for small values of t ′. In the next chapter we shall see that the
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3 Renormalisation

Figure 3.3: Flow of the singlet functions ΓΛ
s for different values of~k. The values are the discretisation points

in figure 3.2. Only the most important couplings are shown. The figure below shows the suscept-
ibilities. Calculations are done for t ′ = 0 and µ =−0.005, which corresponds to a density slightly
below half filling. The system shows an anti-ferromagnetic instability.
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Figure 3.4: Parameters as in 3.3, but µ =−0.02.
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Hubbard at half filling is an anti-ferromagnet. The anti-ferromagnetic state should be stable close to half filling.
This is shown by the results in figure 3.3. But for lower densities, the anti-ferromagnet becomes unstable.
Due to the Kohn-Luttinger instability the system may become super-conducting. This is indeed the case, see
figure 3.4. On can see that the spin susceptibilities first grow but then remain constant for smaller values of
Λ. Instead, the susceptibility for d-wave super-conductivity dominates. If one performs similar calculation for
various parameter sets, one obtains a phase diagram shown in figure 3.5. Figure 3.6 finally shows the critical
Λc, where the divergence occurs.

It is possible to perform similar calculations for small t ′ 6= 0 as well. Results are similar, the area where the
system is anti-ferromagnetic is smaller.

A first impression one gets from these results is that the Hubbard model is never a Fermi liquid. It is either a
anti-ferromagnet or a super-conductor. The reason is that the results shown here hold only for low temperatures.
For higher temperatures the super-conductor becomes unstable. Only at half filling one may expect that the
anti-ferromagnet remains stable for somewhat higher temperatures.

On the other hand it should be made clear that all the calculations presented here have a systematic problem.
The renormalisation group equations have been calculated up to second order. This is justified if the interaction
is small. But here, we obtain a divergence. Close to the divergence, the interaction is no longer small.

This problem occurs in almost all approaches to the Hubbard model. Often it is not clear whether an approx-
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Figure 3.5: Phase diagram for the Hubbard model with small interaction U and close to half filling, t ′ = 0, as
obtained from the numerical renormalization group calculations.
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Figure 3.6: The critical Λc, where the divergence occurs.
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3 Renormalisation

imation is valid or not. A complete picture can only be obtained if several independent approaches are used and
if they yield consistent results. Furthermore, exact results are important land marks.
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4 The Hubbard model

This chapter is taken from [53]. The emphasis lies on rigorous results for the Hubbard model.
The Hamiltonian of the Hubbard model is given by

H = Hkin +Hint = ∑
x,y∈V,σ

txyc†
x,σ cy,σ +∑

x
Uxc†

x↑c
†
x↓cx↓cx↑ (4.1)

The model was proposed independently by J. Hubbard [25] for the description of transition metals, by J.
Kanamori [28] for the description of itinerant ferromagnetism, and by M.C. Gutzwiller [19] for the description
of the metal-insulator transition. In Chemistry, the model is popular as well, and was introduced ten years
earlier [58, 60]. Under the name Pariser-Parr-Pople model it has been used to describe extended π-electron
systems.

Typically, one assumes that the vertex set V forms a translationally invariant lattice and that Ux is independent
of x, i.e. Ux =U . But more general settings are possible. Especially in the quantum chemical context, V is just
a general graph, txy and Ux depend on the lattice sites.

On a regular lattice, one often assumes nearest neighbour hopping, i.e. txy = t for nearest neighboured sites,
|x−y|= 1, txy = 0 otherwise. Sometimes, a next nearest neighbour hopping txy = t ′ for |x−y|= 2 is introduced.
In Sect. 3.4 we saw that such a next nearest neighbour hopping may change the physical behaviour of the system
drastically.

For small U and in two or more dimensions, one expects that the Hubbard model describes a Fermi liquid.
Typically, one is interested in the case where the model describes strongly interacting electrons, i.e. correlated
electrons. In that situations, the interaction U is as large as or larger than typical values of txy.

For a general overview on the Hubbard model and on correlated Fermions in general I refer to the book of
Fulde [15]. An overview on rigorous results for the Hubbard model can be found in the article of Lieb [40], an
overview on ferromagnetism in the Hubbard model in [72].

4.1 Symmetries of the Hubbard model

The Hubbard model has several symmetries:

Gauge symmetry:
c†

xσ → exp(iα)c†
xσ , cxσ → exp(−iα)cxσ (4.2)

The Hamiltonian remains invariant if this transformation is applied. As a consequence, the particle number
Ne = ∑xσ c†

xσ cxσ is conserved. This is a generic property of almost all models in condensed matter theory
which describe fermions.

Spin symmetry: With the help of the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(4.3)

we define local
Sα,x =

1
2 ∑

σ ,σ ′
c†

xσ (σα)σ ,σ ′cxσ ′ , α = x,y,z, Sx = (Sx,x,Sy,x,Sz,x) (4.4)
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and global spin operators.
Sα = ∑

x
Sα,x, S = (Sx,Sy,Sz) (4.5)

Often one uses
S± = Sx± iSy, S+ =

1
2 ∑

~n
c†

x↑cx↓, S− = S†
+ (4.6)

These operators form an SU(2) algebra. The Hamiltonian commutes with these operators, it has a SU(2)
-symmetry. We have

[Sx,Sy] = iSz (4.7)

H, S2 and Sz can be diagnosed simultaneously. We denote the eigenvalues of S2 as S(S+1), where S is the spin
of the eigenstate. S ∝ Ne, i.e. an extensive value for S means that the state is ferro- or ferri-magnetic.

Particle-hole transformations: Using the transformation

c†
xσ → cxσ , cxσ → c†

xσ (4.8)

the Hamiltonian becomes

H→ H ′ = ∑
x,y,σ

txycxσ c†
yσ +U ∑

x
cx↑cx↓c

†
x↓c

†
x↑

= − ∑
x,y,σ

txyc†
yσ cxσ +U ∑

x
(1− c†

x↑cx↑)(1− c†
x↓cx↓)

= − ∑
x,y,σ

txyc†
xσ cyσ +U ∑

x
c†

x↑c
†
x↓cx↓cx↑+U(|V |−Ne) (4.9)

|V | is the number of vertices.
Thus, the particle hole transformation is not a symmetry, but it can be used to obtain eigenstates from other

eigenstates.
For a bipartite lattice, i.e. a lattice, which decays into two sub-lattices A and B so that txy = 0 if both x and y

belong to the same sub-lattice, it is possible to introduce the following transformation:

c†
xσ → c†

xσ if x ∈ A, c†
xσ →−c†

xσ if x ∈ B (4.10)

This transformation changes the sign of the kinetic energy. Applying this transformation together with the
particle-hole transformation at half filling (i.e. Ne = |V |) maps the Hamiltonian onto itself. Thus, we have
another symmetry for this class of lattices, a particle-hole symmetry.

The transformation (4.10) alone is of some importance since it can be used to change the sign of the hopping
matrix elements. Typically, it is assumed that txy < 0 is the natural choice of the sign, at least for nearest
neighbours. For bipartite lattices the sign can be changed. In general, the assumption txy < 0, although popular,
has no compelling reason. [37]

On bipartite lattices at half filling, one can use the particle-hole symmetry to obtain a second SU(2) sym-
metry. The generators are

Ŝz =
1
2
(Ne−|V |), Ŝ+ = ∑

x∈A
c†

x↑c
†
x↓−∑

x∈B
c†

x↑c
†
x↓, Ŝ− = Ŝ†

+ (4.11)

These generators can be obtained from the original SU(2) generators by performing a particle-hole trans-
formation together with a transformation of type (4.10) for spin down only. The model has thus a SU(2)×
SU(2) = SO(4) symmetry at half fillings. In discussions concerning high temperature superconductivity, even
an approximate SO(5)-symmetry has been proposed.

The additional symmetry of the Hubbard model on a bipartite lattice at half filling (Ne = |V |) is essential for
several of the rigorous results which are valid in this case. The two most important is Lieb’s theorem [36], see
Sect. 4.2.1, and the uniform density theorem, Sect. 4.2.5.
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Lattice symmetries: On translationally invariant lattices, the model has the symmetries of the lattice.

The one-dimensional case: The one dimensional Hubbard model has an infinite set of invariants. A
special form of the Bethe ansatz yields exact eigenstates of the Hamiltonian. This was first shown by E. Lieb
and F. Wu [39]. The ground state is part of that Bethe ansatz eigenstates. Not all the eigenstates of the one-
dimensional Hubbard model are Bethe ansatz states. But it was shown by Essler, Korepin, and Schoutens [8],
that for even |V |, where the lattice is bipartite, all other eigenstates can be obtained by applying the operators
S±, Ŝ± to the Bethe ansatz states.

For an exactly solvable model one should expect an infinite set of invariants. A first attempt to find those is
a paper by Heilmann and Lieb [23]. Later Shastry [65], Olmedilla and Wadati [57], and Grosse [17] presented
a large set of such invariants.

The one-dimensional Hubbard model has been investigated by many people, the literature is vast, and a
complete overview would be a course in its own. I will not discuss the one-dimensional Hubbard model in this
course.

4.2 Some rigorous results

Most of the rigorous results on the Hubbard model concern the magnetic behaviour in the ground state, i.e. at
T = 0. I discuss the most important rigorous result in the following subsections.

For each of the theorems mentioned below I try to explain the main idea of the proof. For the mathematical
details I refer to the original papers.

4.2.1 Lieb’s Theorem

In 1989, E. Lieb [36] proved an important theorem and an even more important corollary on the Hubbard
model. The theorem is about the attractive Hubbard model. It holds for arbitrary hoppings txy, with the only
assumption that the graph of the hopping matrix is connected. The interaction Ux may depend on x.

Theorem (Lieb 1989) Let H be the Hamiltonian in (4.1) with real txy, the graph of T = (txy) should be
connected, and negative Ux < 0. Let the particle number Ne be even. Then, the ground state is unique
and has a total spin S = 0.

For the proof, I refer to the original paper by Lieb. He uses a technique called spin reflection positivity. For
some details see the remarks below.

On a bipartite lattice, using a particle-hole transformation for spin-down only, together with a transformation
(4.10), the kinetic energy remains the same but the signs of Ux are switched. In that way, one can obtain a result
for the repulsive Hubbard model. Since Sz with the above transformation transforms to Ŝz, one obtains a result
for Ŝz = 0, i.e. Ne = |V |, i.e. half filling. Therefore, the following corollary holds

Corollary Let H be the Hamiltonian in (4.1) with real txy, the graph of txy should be connected and bipartite,
and positive Ux = U > 0. Let the particle number Ne = |V |. Then, the ground state is unique in the
subspace Sz = 0. The total spin is S = 1

2 ||A|− |B||.

The last statement S = 1
2 ||A| − |B|| does not follow directly from the theorem because the theorem makes no

statement about Ŝ. It can be understood in two ways.
The first is to look at weak interactions. For a bipartite lattice, the spectrum of T = (txy)xy∈V is symmetric

with respect to 0. For any eigenvalue ε there exists an eigenvalue −ε . Half filling now means that for arbitrary
weak interaction all single particle eigenstates with energies ε < 0 are completely filled with two electrons and
that the eigenstates with ε = 0 are filled with one electron. For the latter, Hund’s rule [50] applies which means
that all electrons have the same spin. The degeneracy of the eigenvalue 0 is ||A|− |B||, therefore we obtain the
a total spin S = 1

2 ||A|− |B||.
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The second idea is to look at strong interactions and to use a unitary transformation exp(R) to transform the
Hamiltonian to a form where the number of doubly occupied sites is conserved. The ansatz is

R = ∑
x,y,σ

sx,y,σ c†
x,σ cy,σ (4.12)

We assume that U is large and expand exp(R)H exp(−R) to obtain

H→ Hint +Hkin +[R,Hint]+ [R,Hkin]+
1
2
[R, [R,Hint]]+ · · · (4.13)

The kinetic energy Hkin can be written as

Hkin = Hkin,0 +Hkin,1 (4.14)

Hkin,0 does not change the number of doubly occupied sites, Hkin,1 changes it by ±1. We have

Hkin,1 = ∑
x,y,σ

txy(nx,−σ −ny,−σ )
2c†

x,σ cy,σ (4.15)

We choose R so that
Hkin,1 +[R,Hint] = 0 (4.16)

This yields

H→ Heff = Hint +Hkin,0−
1
2
[R, [R,Hint]]+ · · · (4.17)

We have
[R,Hint] =−U ∑

x,y,σ
rx,y,σ (nx,−σ −n~ny,−σ )c†

x,σ cy,σ (4.18)

and therefore
rx,y,σ =

txy

U
(nx,−σ −ny,−σ ) (4.19)

Let P0 be the projector onto states for which each site is occupied by one electron, which is the ground state at
half filling and U arbitrarily large. If we restrict the Hilbert space to these states, we get

Heff = P0RHRP0

= UP0R2P0

= UP0 ∑
x,y,σ

txy

U
(nx,−σ −ny,−σ )c†

x,σ cy,σ ∑
x′,y′,σ ′

tx′,y′
U

(nx′,−σ ′−ny′,−σ ′)c
†
x,σ ′cy′,σ ′P0

= − 1
U

P0 ∑
x,y,σ ,σ ′

t2
xyc†

x,σ cy,σ c†
y,σ ′cx,σ ′P0

=
1
U

P0 ∑
x,y,σ ,σ ′

t2
xyc†

x,σ cy,σ ′c
†
y,σ ′cx,σ P0−

1
U ∑

~n,~n′
t2
xy

= ∑
x,y

2t2
xy

U
Sx ·SyP0

+
1
U

P0 ∑
x,y,σ ,σ ′

t2
xyc†

x,σ cx,σ c†
y,σ ′cy,σ ′P0−

1
U ∑

x,y
t2
xy

= ∑
x,y

2t2
xy

U
Sx ·SyP0 (4.20)

This transformation is of importance in its own. It shows that the Hubbard model at half filling and for large
U can be mapped to the anti-ferromagnetic Heisenberg model. For the corollary above it has the consequence
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that the total spin of the Hubbard model at half filling and for large U is the same as for the Heisenberg model,
therefore S = 1

2 ||A|− |B||.
Since the ground state is unique for all U , it is sufficient to know the total spin S for small or large U , due to

the uniqueness it cannot change.
Lieb’s theorem suggests anti-ferromagnetism or ferrimagnetism (depending on whether the two sub-lattices

A and B have the same size or not) for the Hubbard model at half filling. But, whereas for the anti-ferromagnetic
Heisenberg model long-range order was proven in two dimensions in the ground state and in three dimensions
for sufficiently low temperatures, there is no proof for long-range order for the Hubbard model up to now. The
methods to prove long-range order for the Heisenberg model cannot be applied to the Hubbard model. The
simple reason is that the Hubbard model is richer much more complicated and allows for a much larger number
of phenomena. Nevertheless, many results including the renormalisation results (see Sect. 3.4) indicate the
existence of long range order for large U .

Lieb’s proof uses the fact that for an even number of fermions, there is always a ground state with Sz = 0 due
to the SU(2) spin symmetry. This means that the ground state can be written in the form ψ =∑α,β Wαβ ψα,↑ψβ ,↓
where ψα,σ form a orthonormal basis of multi-particle states with Ne/2 particles with spin σ . Since txy and Ux

are real, one can assume that the matrix W is self adjoined. The expectation value of the Hamiltonian in the
state ψ can be written as a quadratic form E(W ) in W and it can be shown that for non-positive interactions
E(W ) ≥ E(|W |). |W | is the positive semi-definite matrix satisfying W 2 = |W |2. It is then easy to see that the
ground state corresponding to |W | has S = 0. The uniqueness is shown by assuming that a second ground
state with some W exists. Then, R = |W |−W is a ground state as well. Some lengthy but easy to understand
argument which uses the fact that the graph of T is connected then shows that W = ±|W | and therefore that
the ground state is unique. Compared to many other proofs, Lieb’s proof is very elegant and compact, only
somewhat more than one page in a letter. I recommend to read it to everybody.

4.2.2 The Mermin-Wagner Theorem

The term Mermin-Wagner Theorem is usually used for a huge class of theorems which state that for lattice
models in one or two space dimensions with a continuous symmetry, like an SU(2) symmetry, there is no long
range order at finite temperature. Originally, Mermin and Wagner [44] showed in 1966 that in the one- or
two-dimensional Heisenberg model there is no long-range order, neither anti-ferromagnetic nor ferromagnetic.
This result was extended to the Hubbard model by Walker and Ruijgrok 1968 [75] and by Ghosh 1971 [16].
Further, Hohenberg [24] showed 1967 that there cannot be superconductivity or long range crystalline order in
one or two dimensions. The proof for the Hubbard model was considerably simplified and somewhat extended
by Koma and Tasaki [32].

The original proof by Mermin and Wagner
Mermin and Wagner consider the Heisenberg model

H =− ∑
x,y∈V

Jxy~Sx ·~Sy−h ∑
x∈V

Sx,zsx (4.21)

with a magnetic field h in z-direction. For the ferromagnetic case they choose sx = 1 for all x ∈ V , for anti-
ferromagnetism they choose sx =±1 for the two sublattices of the anti-ferromagnet. The interaction has to be
of finite range. We write sx = exp(−i~K ·~rx). For the ferromagnetic case, ~K = 0.

For a two-dimensional lattice with lattice sites V they show that

|sz|<
const.
T 1/2

1
| ln |h||1/2 (4.22)

and in one dimension
|sz|<

const.
T 2/3 |h|

2/3 (4.23)

where sz = Sz/|V | is the z component of the total spin per lattice site.
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To show these result, they make use of the Bogoliubov inequality.

1
2
〈[A,A†]+〉〈[[C,H],C†〉 ≥ kBT |〈[C,A]〉|2 (4.24)

Here, 〈X〉is the usual expectation value at finite temperature, i.e.

〈X〉= 1
Z

TrX exp(−βH) (4.25)

where β = 1/kBT is the inverse temperature and Z = Trexp(−βH) is the partition function. The Bogoliubov
inequality holds for any operators for which the expectation values are defined.

To prove the Bogoliubov inequality, we first introduce

(A,B) =
′

∑
i, j
〈i|A| j〉∗〈i|B| j〉

wi−w j

Ei−E j
(4.26)

Here, i denote the eigenstates of H, Ei are the eigenvalues, and wi = Z−1 exp(−βEi). The sum excludes pairs
of states with the same energy. First, note that

0 <
wi−w j

Ei−E j
<

1
2

β (wi +w j) (4.27)

and therefore
(A,A)≤ 1

2
β 〈[A,A†]+〉 (4.28)

Further, (A,B) satisfies all the properties of an inner product and therefore fulfils Schwartz inequality

(A,A)(B,B)≥ |(A,B)|2 (4.29)

The Bogoliubov inequality now follows if one chooses B = [C†,H].
Let us now apply the Bogoliubov inequality to prove the Mermin-Wagner theorem. We assume translational

invariance and introduce the Fourier transformed quantities

~S(~k) = ∑
x∈V

exp(−i~k ·~rx)~Sx (4.30)

J(~k) = ∑
x∈V

exp(−i~k · (~rx−~r0)J0x (4.31)

for some arbitrary lattice site 0.~rx is the vector pointing to the lattice site x. The back transformation is

~Sx =
1
|V |∑

~k

exp(i~k ·~rx)~S(~k) (4.32)

Jxy =
1
|V |∑

~k

exp(i~k · (~rx−~ry))J(~k) (4.33)

where the sums are taken over the first Brillouin zone.
We now use Bogoliubov’s inequality with C = S+(~k) and A = S−(−~k−~K). We obtain

1
2
〈[Sx(~k+~K),S−(−~k−~K)]+〉 ≥ |V |2kBT sz

{
1
|V |∑

~k′
[J(~k)− J(~k′−~k)]

× 〈Sz(−~k′)Sz(~k′)+
1
4
[S+(~k′),S−(−~k′)]+〉+

|V |
2

hsz

}−1

(4.34)
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The term in the curly bracket can be estimated by

1
|V |
|∑

x
Jx(1− exp(i~k ·~rx)∑

~k′
exp(−i~k′ ·~rx)〈Sz(−~k′)Sz(~k)+

1
4
[S+(~k′),S−(−~k′)]+

|V |
2

hsz

< |V |∑
x
|Jx|(1− cos(~k ·~rx))S(S+1)+

|V |
2

hsz

<
1
2
|V |[∑

x
~rx

2|Jx|k2S(S+1)+hsz] (4.35)

Replacing the curly bracket by this upper bound and summing over~k one obtains

S(S+1)> 2kBT s2
z

1
|V |∑

~k

[S(S+1) ∑
x∈V

~rx
2|Jx|k2 +hsz] (4.36)

Taking the thermodynamic limit, we replace the sum by an integral over a sphere that is entirely contained in
the first Brillouin zone. The we obtain in two dimensions

s2
z <

const.
kBT

ω

ln(1+ω/|hsz|
) (4.37)

and in one dimension

s3
z < const.

(
(|h|ω)1/2

2kBTtan−1(ω/|hsz|)−1/2

)
(4.38)

which, for small |h| yield (4.22) and (4.23).

Generalisations
Already Mermin and Wagner noted that their proof can be extended to show the absence of long-range crys-

talline order in one or two dimensions. Walker and Ruijgrok 1968 [75] and Ghosh 1971 [16] extended the result
to Hubbard type models, i.e. electrons moving on a lattice with a short-ranged (screened) Coulomb interaction.
Further, Hohenberg [24] showed 1967 that there cannot be superconductivity or long range crystalline order in
one or two dimensions.

The Theorem was extended to yield limits for the correlation functions. The result by Mermin and Wagner
only show that there is no long-range order. More interesting is to understand how the correlation functions
decay. The most general result is by Koma and Tasaki. Their proof uses a different method to proof the bounds,
which was first used by McBryan and Spencer [43].

Theorem (Koma, Tasaki 1992) For a Hubbard model in one and two dimensions with finite range hopping
(i.e. txy = 0 if the distance |x−y| lies above some finite value) in the thermodynamic limit, the following
bounds hold for the correlation functions

|〈c†
x↑c

†
x↓cy↓cy↑〉| ≤

{
|x− y|−α f (β ) for d = 2

exp(−γ f (β )|x− y|) for d = 1
(4.39)

|〈Sx ·Sy〉| ≤
{

|x− y|−α f (β ) for d = 2
exp(−γ f (β )|x− y|) for d = 1

(4.40)

for some α > 0, γ > 0, f (β ) > 0 where 〈.〉 denotes the expectation value at inverse temperature β and
f (β ) is a decreasing function of β which behaves like f (β )≈ 1/β for β � β0 and f (β )≈ (2/β0)| ln(β )|
for β � β0. β0 is some constant.

This result rules out long-range spin-order or superconductivity at finite temperatures in one or two dimensions.
The power laws for d = 2 are certainly not optimal for high temperatures, where one expects an exponential
decay of correlation functions. But they are sufficient to exclude long-range order.
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Having a power law decay at low temperatures in two dimensions and an exponential decay at large tem-
peratures means that there must be a transition between the two. This transition is called Kosterlitz-Thouless
transition [43]. It may occur in two dimensions.

The interesting point of the proof of Koma and Tasaki is that it only needs a U(1) symmetry. Thus, any lattice
model with a U(1) symmetry in one or two dimensions cannot have superconducting or magnetic long-range
order at finite temperature in one or two dimensions.

The term Mermin-Wagner Theorem is usually used for a huge class of theorems which state that for lattice
models in one or two space dimensions with a continuous symmetry, like an SU(2) symmetry, there is no long
range order at finite temperature. Originally, Mermin and Wagner [44] showed in 1966 that in the one- or
two-dimensional Heisenberg model there is no long-range order, neither anti-ferromagnetic nor ferromagnetic.
This result was extended to the Hubbard model by Walker and Ruijgrok 1968 [75] and by Ghosh 1971 [16].
Further, Hohenberg [24] showed 1967 that there cannot be superconductivity or long range crystalline order in
one or two dimensions. The proof for the Hubbard model was considerably simplified and somewhat extended
by Koma and Tasaki [32].

Theorem (Koma, Tasaki 1992) For a Hubbard model in one and two dimensions with finite range hopping
(i.e. txy = 0 if the distance |x−y| lies above some finite value) in the thermodynamic limit, the following
bounds hold for the correlation functions

|〈c†
x↑c

†
x↓cy↓cy↑〉| ≤

{
|x− y|−α f (β ) for d = 2

exp(−γ f (β )|x− y|) for d = 1
(4.41)

|〈Sx ·Sy〉| ≤
{

|x− y|−α f (β ) for d = 2
exp(−γ f (β )|x− y|) for d = 1

(4.42)

for some α > 0, γ > 0, f (β ) > 0 where 〈.〉 denotes the expectation value at inverse temperature β and
f (β ) is a decreasing function of β which behaves like f (β )≈ 1/β for β � β0 and f (β )≈ (2/β0)| ln(β )|
for β � β0. β0 is some constant.

This result rules out long-range spin-order or superconductivity at finite temperatures in one or two dimensions.
The power laws for d = 2 are certainly not optimal for high temperatures, where one expects an exponential
decay of correlation functions. But they are sufficient to exclude long-range order. This means that a Kosterlitz-
Thouless transition may occur. [43].

The interesting point of the proof is that it only needs a U(1) symmetry. Thus, any lattice model with a
U(1) symmetry in one or two dimensions cannot have superconducting or magnetic long-range order at finite
temperature in one or two dimensions.

The older proof of Ghosh [16] uses the SU(2) spin symmetry and the Bogoliubov inequality and is easy to
understand.

The result by Koma and Tasaki is more general, their proof uses a method developed by McBryan and
Spencer [43] for classical spin systems and its extension to quantum spin systems by Ito [26]. The proof uses the
fact that for an arbitrary observable A one has Tr(Aexp(−βH)) = Tr(G(θ)AG(θ)−1 exp(−βG(θ)HG(θ)−1)).
G(θ) is a local transformation. The right hand side can be bounded using some standard inequalities, namely
the Schwartz inequality stating that for hermitian matrices O and P one has Tr(OP)≤ (Tr(O∗O)Tr(P∗P))1/2,
and the Golden-Symanzik-Thompson inequality Trexp(O+P) ≤ Tr(exp(O)exp(P)). Suitable choices for A
and G(θ) then yield the bounds.

In one dimension, with nearest neighbour hopping only, and for finite Ux, the Lieb-Mattis theorem [38]
says that the minimal energy in the subspace with fixed spin S is strictly lower than the minimal energy in the
subspace with S+1. This clearly rules out ferromagnetism in one dimension in the ground state.

4.2.3 Nagaoka’s Theorem

The so called Nagaoka Theorem was actually first proven by Thouless [73] 1965 for some special bipartite
lattices. The proof of Nagaoka [55], only one year later, is more general and applies to non-bipartite lattices as
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well. Therefore, the result is called Nagaoka theorem today. The most general proof is due to Tasaki [68]. It
states the following:

Theorem (Tasaki 1989) The Hubbard model (4.1) with non-negative txy, Ne = |V |− 1, and a hard-core re-
pulsion Ux = ∞ for all x ∈ V has a ground state with a total spin S = 1

2 Ne. The ground state is unique
except for the usual (2S+1)-fold spin degeneracy provided a certain connectivity condition for txy holds.

This theorem is remarkable, because it states that there is a unique ferromagnetic ground state in the vicinity of
half filling, where an anti-ferromagnetic spin order is assumed to be present.

The proof of the theorem uses the Schwarz inequality to show that a ferromagnetic ground state exists.
To show the uniqueness, it uses the Perron-Frobenius theorem, which states that for a matrix with only non-
negative entries and for which the graph is connected (the matrix is irreducible), the eigenstate with the largest
eigenvalue is unique and has non-negative entries. The theorem can be applied here by finding a suitable basis
for the multi-particle Hilbert space of the Hubbard model. The connectivity condition in the theorem ensures
that the graph of the Hamiltonian in that basis obeys the irreducibility needed in the Perron-Frobenius theorem.
Essentially it states that by the hopping of particles, arbitrary permutations of the particles can be realised. This
holds for almost any lattice except the one-dimensional chain.

The Nagaoka theorem made people believe that for many lattices, e.g. as well for hyper-cubic lattices, a
large region in the parameter space (U large and a density close to but not at half filling) exists where the
Hubbard model has ferromagnetic ground states. But any attempt to prove that failed so far. Instead, many
variational calculations by various groups mainly in the early 90s showed that the Nagaoka state is not very
stable. Changing the conditions a bit, either putting more than one hole in the system or lowering U causes the
Nagaoka state to become unstable against single spin flips, i.e. E(S = Ne/2−1)< E(S = Ne/2) (for details see
e.g. [66]). Exact diagonalisations of small systems yield the same result. On the other hand, for some special
non-bipartite lattices, these calculations indicate that the Nagaoka state may be more stable and that a larger
region in the parameter space exists where the ground state is ferromagnetic.

4.2.4 Flat-band systems

A first example of a lattice having a flat band is a bipartite lattice with |A| = n|B|. A simple example which
Lieb [36] used as an illustration for his theorem is the quadratic lattice with additional lattice sites on each
edge. If there is only nearest neighbour hopping, the original lattice sites of the quadratic lattice form one of
the sub-lattices, say B and the new lattice sites form the second sub-lattice A. There are twice as many lattice
sites on A than on B. Each elementary cell contains one lattice site from B and two from A, in total three.
We have thus a three band model. Since the lattice is bipartite, the single particle spectrum is symmetric with
respect to 0. There is one energy band in the centre which is completely flat. The flat band causes the extensive
magnetisation S = 1

2 ||A| − |B|| =
1
2 |B|, as we pointed out already in Sect. 4.2.1. Since this magnetisation is

related to the existence of two sub-lattices, the system is ferrimagnetic.
Two years after Lieb first examples of lattices with a flat band at the bottom of the spectrum were published

[47, 46, 48, 69, 54]. One class of such lattices are line graphs, the other are decorated lattices. Since the
construction of a line graph is elementary and since we need it later, we give a more detailed description here.

Let G = (V,E) be a graph with a vertex set V and an edge set E. Any lattice can be regarded as a graph. The
lattice sites are the vertices and there are edges between two vertices if there is a non-vanishing hopping matrix
element connecting the two. If we allow only for nearest neighbour hopping, the hopping matrix is (up to a
factor t) the adjacency matrix A(G) = (axy)xy∈V of the graph. axy = 1 if {x,y}= e ∈ E is an edge of the graph,
0 otherwise.

The line graph L(G) of a graph G is constructed as follows: The vertex set V (L(G)) of the line graph is the
edge set E(G) of the original graph and two vertices of the line graph are connected, if the corresponding edges
in G have a vertex in common.

Figure (4.1) shows an illustration of the construction of a line graph. Let G be a part of the hexagonal lattice,
as shown in black. Now we put a new vertex in the middle of each edge and connect two new vertices if the
edges of the original hexagonal lattice have a vertex in common. This procedure yields a new lattice build of
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Figure 4.1: The kagomé lattice (red, dashed) as the line graph of the hexagonal lattice (black).

hexagons surrounded by triangles, shown in red. The new lattice constructed that way is the line graph of the
hexagonal lattice, it is called kagomé lattice. You may take any lattice or even any graph G and construct the
line graph in that way.

Let us now investigate the spectral properties of the adjacency matrix A(L(G)) of a line graph. To do this,
we first introduce a new matrix B(G) = (bxe)x∈V,e∈E , the so called edge vertex incidence matrix. The matrix
elements bxe = 1 if the edge e connects to the vertex x, bxe = 0 otherwise. Note that B has |V | columns and |E|
rows. Except for a graph without loops or with only one loop, |E| > |V | and the kernel of B has a dimension
≥ |E|−|V |. The adjacency matrix of the line graph and the incidence matrix of the original graph are related via
A(L(G)) = B(G)tB(G)−2. As a consequence, −2 is a lower bound of the spectrum of A(L(G)) and becomes
the lowest eigenvalue with degeneracy at least |E|− |V | if |E|> |V |. In fact, one can show that the degeneracy
is Nd = |E|− |V |+1 if G is bipartite and connected, Nd = |E|− |V | if G is not bipartite and connected.

This fact can now be applied to a lattice. If G is a translationally invariant lattice with one or more energy
bands, L(G) is a lattice as well and the lowest energy band lies at energy −2t and is completely flat. A lattice
which is a line graph, e.g. the kagomé lattice, has a lowest flat band. This makes it easy to construct ground
states of the Hubbard model, at least for Ne ≤ Nd . In that case any state with all electrons having the same spin
is a ground state, since this state minimises both the kinetic energy and the interaction. This construction is
indeed trivial. The interesting question is whether or not there are other ground states and whether or not they
can be characterised completely. This is indeed possible for Ne = Nd as the following theorem shows [46, 47]:

Theorem (Mielke 1991) Let H be the Hubbard model on a line graph L(G) of a two-connected bipartite
graph G or a three-connected graph G and let Ne = Nd , Ux > 0 for all x. Then the ground state has a spin
S = Nd

2 and is unique up to the (2S+1) -fold degeneracy due to the SU(2) spin symmetry.

The kagomé lattice is obviously an example for this theorem.
The original proof of the theorem uses some graph theoretical notions. We will not present it here since later

a more general and simpler result has been shown which does not use the notion of a line graph.
On the other hand, let us discuss the single particle ground states with energy −2t a bit further since they

serve for many easy illustrations we may need later. Let p be a self-avoiding closed path (x1,x2, . . .xn) of even
length n on G. It obviously translates to an even path on L(G). Let us now construct the single particle state
ψp(e) as follows. ψp(e) = 0 if e lies not on p. On p, ψp(e) = ±1 with alternating sign for subsequent edges
of G. It is easy to see that Bψp = 0. ψp is therefore a ground state of A(L(G)) with eigenvalue −2. It can be
shown that these states form an over-complete basis of the eigenspace of the eigenvalue −2.

If G is a bipartite plane graph, like the hexagonal lattice, each face f is surrounded by a self-avoiding path,
let us call it f as well. Let F be the set of faces. Due to Euler’s theorem, |F |= |E|− |V |+2. One of the faces
is the outer face of the graph, there are exactly |E| − |V |+ 1 inner faces. It is easy to see that the states ψ f

corresponding to the inner faces f are linearly independent. They thus form a basis (not orthonormal) of the
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eigenspace of the ground state energy. Using this construction, it is possible to construct all ground states for
Ne ≤ Nd .

One year later, 1992, Tasaki [69] published a class of decorated lattices with lowest flat bands, for which he
proved a similar result. In 1993 [54], we investigated these lattices further and showed how one can construct
all ground states with Ne ≤ Nd for these decorated lattices. We further showed that for these lattices the char-
acterisation of the ground states can be mapped to a percolation problem. This allows to show that the system
remains ferromagnetic with an extensive but not saturated total spin S up to some critical density on that below
that density the system is paramagnetic.

This construction is most easily understood for line graphs of planar bipartite graphs, see the kagomé lattice
in Fig. 4.1 as an example. For these graphs, the faces yield the single particle ground state. The inner faces
form a basis (not orthogonal). Neighboured faces of G have an edge in common. Therefore, putting electrons
with different spin on neighboured faces may produce a double occupancy on that edge. This yields to a higher
energy. To obtain a ground state, electrons on neighboured faces should have the same spin. But if Ne < Nd not
all faces are occupied and one may form non-touching clusters with total spins pointing in different directions.
Constructing non-touching clusters of faces is a percolation problem on the dual graph of G. This percolation
problem has a percolation threshold, above which one large extended cluster is formed. This cluster has an
extensive spin, whereas all other finite clusters have a finite spin. Therefore, above the percolation threshold
the system is ferromagnetic. The percolation problem is not the classical percolation problem since each cluster
with a spin S has a 2S+1 fold degeneracy.

After 1993, more classes of lattices with flat bands have been found and investigated. A general result, which
covers all these cases, is available as well. It needs a condition on the projector ρ = (ρxy)x,y∈V onto the space
of single particle ground states [50, 49, 51].

Theorem (Mielke 1993, 1999) The Hubbard model with an Nd fold degenerate single particle ground state,
Ux > 0, and Ne ≤ Nd electrons has a unique (2S+ 1)-fold degenerate ferromagnetic ground state with
S = Nd/2 if and only if Ne = Nd and ρxy is irreducible.

The original proof of this theorem was complicated and used a special construction for a non-orthonormal basis
of single particle ground states. The later proof is simpler. First, the following result is shown:

Theorem (Mielke 1999) The Hubbard model with a Nd fold degenerate single particle ground state, Ux > 0,
and Ne ≤ Nd electrons has a multi-particle ground state with S < Ne/2− 1 if it has a single spin flip
ground state with S = Ne/2−1.

In other words: To prove stability of ferromagnetism it is sufficient to show that there is no single spin flip
ground state. This is indeed easy if Ne = Nd and ρxy is irreducible. Therefore, the first theorem is a consequence
of the second. Note that the second theorem is not trivial at all. For other lattices, you may easily construct
cases where a ferromagnetic state is stable with respect to single spin flips but where it it nevertheless not the
ground state of the system.

The last two results are very general, they hold for arbitrary lattices and arbitrary, even complex, hopping
matrix elements txy. This is important because the flat band physics started to attract much attention in the past
few years for mainly two reasons. First, using optical lattices it is now possible to investigate these systems
experimentally. For instance the kagomé lattice was build using that technique by Jo et al. in 2012 [27].
Second, people became interested recently in so called topological flat bands. Here, the flat (often quasi flat)
band arises from special choices for the phases of complex txy.

In 2003, Tanaka and Ueda [67] showed that for the special case of the kagomé lattice, the ferromagnetic
ground states remains stable if one introduces a special perturbation that yields a small dispersion to the lowest
flat band, provided U is not too small. Similarly, Tasaki [71] showed in 1996, that for some decorated lattices
the ferromagnetic ground state remains stable. These results are important because they indicate that flat band
ferromagnetism is not something exotic like the Nagaoka ferromagnet.

Another interesting question arises what happens if ρxy is not irreducible. Batista and Shastry [6] were the
first to investigate an example for such a lattice, today many examples are known. One can show the following
general results [52]:
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Let ρ have the following properties:

1. ρ is reducible. It can be decomposed into Nr irreducible blocks ρk, k = 1, . . . ,Nr. Nr should be an
extensive quantity, i.e. Nr ∝ Nd ∝ |V |, so that in the thermodynamic limit the density of degenerate
single-particle ground states and the density of irreducible blocks are both finite.

2. Let Vk be the support of ρk, i.e. the set of vertices for which at least one element of ρk does not vanish.
ρk,xy = 0 if x /∈ Vk or y /∈ Vk. One has Vk ∩Vk′ = /0 if k 6= k′ because of the fact that ρk are irreducible
blocks of the reducible matrix ρ and

⋃
k Vk ⊆V .

3. We choose the basis B such that the support of each basis states ψi(x) ∈ B is a subset of exactly one Vk.
We denote the number of states belonging to the cluster Vk as νk. One has ∑k νk = Nd .

4. νmax = maxk{νk} is O(1), i.e. not an extensive quantity.

With these properties one can show

Theorem (Mielke 2012) For Hubbard models with a lowest single-particle eigenenergy 0 which is Nd-fold
degenerate and for which the projector onto the eigenspace of 0 fulfils the properties on the previous
slide, the following results hold for Ne ≤ Nd :

1. The ground state energy is 0.

2. Let Ax be an arbitrary local operator, i.e. an arbitrary combination of the four creation and annihil-
ation operators c†

xσ and cxσ . The correlation function ρA,xy = 〈AxAy〉−〈Ax〉〈Ay〉 has a finite support
for any fixed x and vanishes if x and y are out of different clusters Vk. The system has no long-range
order.

3. The system is paramagnetic.

4. The entropy at zero temperature S(c) is an extensive quantity, S(c) = O(Ne). It increases as a
function of c = Ne/Nd from 0 for c = 0 to some maximal value Smax ≥∑k[(νk−1) ln2+ ln(νk +2)]
and then decays to S(1) = ∑k ln(νk +1).

These models have therefore no long range order. The most interesting aspect is the finite entropy at zero
temperature.

4.2.5 Uniform density theorem

The uniform density theorem [41, 42, ?] is valid on a bipartite lattice and at half filling. The proof makes use
of the particle-hole symmetry which is valid in that case. It states

Theorem (MacLachlan 1959, 1961; Lieb, Loss, McCann 1993) For the Hubbard model on a bipartite
lattice and at half filling, either in a canonical ensemble with Ne = |V | at T > 0 or in the ground state at
T = 0 or in a grand canonical ensemble with µ = 0, the density matrix ρσ ,xy = 〈c†

xσ cyσ 〉 has the property

ρσ ,xy =
1
2

δxy ifx,y ∈ Aorx,y ∈ B (4.43)

The theorem may appear to be trivial if one has a translationally invariant lattice in mind. The point is, it holds
for arbitrary txy and arbitrary Ux on an arbitrary bipartite graph, translational invariance is not used and not
necessary. The theorem is therefore of large importance in quantum chemistry, i.e. for the Pariser-Parr-Pople
variant of the Hubbard model.

4.2.6 Further rigorous results

There are further rigorous results on the Hubbard model. Many of them deal with the absence of ferromagnetism
or at least with the absence of a fully polarised ground state under certain conditions. For details I refer to
[37, 70, 72].
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5.1 Preliminary Remarks

High-temperature superconductors were first discovered by J.G. Bednorz and K.A. Müller from the IBM re-
search center in Rüschlikon, Switzerland in 1986. 1987 the received the Nobel prize http://www.nobel.se/
physics/laureates/1987/. After the discovery of these materials the interest in correlated electron systems
has grown a lot. The Hubbard model, sometimes with some further interactions included, was first used to
describe the behaviour of this systems in the normal, non-superconducting state. Quite early, people assumed
that the pairing mechanism in high-temperature superconductors is not caused by phonons but by electronic ex-
citations, e.g. spin waves. If this was true, a purely electronic model should be able to explain high-temperature
superconductivity.

The goal of this chapter is to introduce some of the basic ideas and concepts used to explain high-temperature
superconductivity. We restrict ourselves to the discussion of purely electronic models, i.e. the Hubbard model
and its variants. Other aspects of the theory of high-temperature superconductivity will not be discussed.

An overview on the theory of high-temperature superconductivity can be found in the review article by P.A.
Lee, N. Nagosa und X.-G. Wen [34]. A large part of the material presented here is taken from that article.

Materials which show high-temperature superconductivity have a rich phase diagram. Besides the supercon-
ducting phase, many other phases have been found depending on doping and temperature. Most of the aspects
are not yet fully understood. The common aspects of this class of materials are:

1. A common structure element, planes of CuO2.

2. Undoped materials are insulators.

3. In the undoped case, the conduction band is half filled. Thus, the materials are Mott insulators.

4. In the undoped case, the materials show long-range anti-ferromagnteic order, which vanishes under dop-
ing.

5.2 Models of High-Temperature Superconductors

As already mentioned, on common structure element are the CuO2-planes. Depending on the material, further
oxygen atoms are present, so that e.g. octahedra are formed with Cu in the center. These octahedra are distorted
(Jahn-Teller effect). The distance between Cu and O in the planes is typically smaller. The planes form a three
dimensional structure with other atoms sitting between the planes. One expects that most of the physics of
high-temperature superconductors can be understood by looking at a model for electrons moving in the planes.
It is clearly possible to add further terms to such a model to make it more realistic.

5.2.1 Single-particle Hamiltonian

The most simple single-particle Hamiltonian one can look at is

H0 = εA ∑
x∈A

nx + εB ∑
y∈B

ny + t ∑
<x∈A,y∈B>,σ

(c†
xσ cyσ + c†

yσ cxσ ) (5.1)
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5 High-Temperature Superconductivity: Doped Mott-Insulators

Here, A and B are the two sub-lattices of the CuO2–plane (A for Cu, B for O), εA,B are the different single
particle energies on the two sub-lattices and t is the hopping matrix element. The notation < ., . > menas,
that the two lattice sites should be neighboured. Only nearest neighbour hopping is taken into account. Each
elementary cell contains three atoms, the single particle Hamiltonian (5.1) has therefore three energy bands.
The elementary cells form a square lattice.

Due to the structure of the 3d-orbitals of Cu one often chooses a different sign for the hopping in different
directions. But a gauge transformation can be applied so that all hoppings have the same sign. We therefore
choose t to be the same in both directions.

After a Fourier transformation one obtains

H0 = ∑
k

3

∑
a,b=1

hab(k)c†
k,a,σ ck,b,σ (5.2)

The indices a,b are the band indices of the three band. The matrix H(k) = (hab(k))a,b=1,2,3 has the structure

H(k) =

 εA 2t cos(kx/2) 2t cos(ky/2)
2t cos(kx/2) εB 0
2t cos(ky/2) 0 εB


and can be easily diagonalised. The eigenvalues are

ε1,2(k) =
εA + εB

2
±

√(
εA− εB

2

)2

+4t2(cos2(kx/2)+ cos2(ky/2)) (5.3)

ε3(k) = εB (5.4)

Notice that for the special cases εA = εB = 0, the lattice is bipartite. It is just the Lieb lattice with a flat band
in the middle of the spectrum and two bands symmetrically above and below. The introduction of the on-site
energies shifts the bands and deforms the two non-flat bands.

In the case of high-temperature superconductors, the two lower bands are completely filled and the upper
band is half filled in the undoped case, since the two p-orbitals in O are filled with two electrons each and
the d-orbitals in Cu are filled with one electron each. The model has five electrons per elementary cell or
equivalently one hole. Looking only at the single-particle model, the undoped system should be a metal. Since
it is a anti-ferromagnetic insulator, the interaction is essential, the systems are therefore correlated systems.

The simple single-particle model can be extended by introducing a further hopping matrix element tBB

between next-nearest neighboured B–lattice sites.As a consequence, the flat band gets a dispersion and the
two other bands are modified a bit. But, since the essential physics happens in the conduction band, the generic
properties should not change.

5.2.2 Interactions

As already mentioned, simply to explain the undoped ground state of the materials, we need an interaction. The
most important interactions are on-site interactions. Taking these into account, one gets a Hubbard model. It
should be sufficient to explain the ati-ferromagnetic insulating ground state. Often, interactions for electrons
on neighboured sites are introduced as well. The full model to describe these systems is therefore given by the
interactions

HWW =UA ∑
x∈A

nx↑nx↓+UB ∑
y∈B

ny↑ny↓+UAB ∑
<x∈A,y∈B>

nxny (5.5)

and the kinetic energy

Hkin = εA ∑
x∈A

nx + εB ∑
y∈B

ny + t ∑
<x∈A,y∈B>,σ

(c†
xσ cyσ + c†

yσ cxσ )

+t ′ ∑
<y∈B,y′∈B>,σ

c†
yσ cy′σ (5.6)
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so that the full Hamiltonian reads
H = Hkin +HWW (5.7)

This model contains six independent energy parameters: The three interactions UA, UB, and UAB, and the three
parameters of the kinetic term ∆ = εA− εB, t and t ′. Since the A-lattice sites represent the Cu atoms and since
the 3d–orbitals of ionised Cu re relatively small, a double occupation of the A-lattice sites costs a lot of energy
and we expect the parameter UA to be the largest.

With this idea in mind we could first take the limit of very large UA. In the limit UA → ∞ we have one
hole per elementary cell. The lB-lattice sites are occupied by two electrons, the A-lattice sites by one and
hopping is strongly suppressed since it would create a double occupancy on an A-lattice site. If UA is large but
finite, virtual processes are possible, where two electrons on neighboured A-lattice sites are exchanged. This
requires four hoppings and the intermediate states have energy differences UA−UB +∆, UB−∆ and ∆−UB. In
complete analogy to the Hubbard model at large U we can transform the present model to an antiferromagnetic
Heisenberg model with an exchange interaction J =− 4t4

(UA−UB+∆)(UB−∆)2 . Hopping t ′ and interactions UAB play
only a role at higher orders and are expected to be smaller than the other energies. Therefore, to leading
order, we obtain a Heisenberg model which describes the anti-ferromagnetic ordering of the high-temperature
superconductors in the undoped regime.

5.2.3 An effective single-band model

Since the essential physics takes place in the conduction and, one should be able to derive an effective single-
band model. This is indeed the case. Starting point is the above Hamiltonian, which we now write as

H = H0 +H++H− (5.8)

H+ transfers one electron from B to A, H− = H†
+ transfers one electron from A to B. H0 contains all the terms

which let the number of electrons on the two sublattices constant.
We now introduce flow equations to transform that Hamiltonian. Let

η = H−−H+ (5.9)

dH
d`

= [η ,H] = [H−,H0]− [H+,H0]−2[H+,H−] (5.10)

dH0

d`
= −2[H+,H−] (5.11)

dH+

d`
= −[H+,H0] (5.12)

dH−
d`

= [H−,H0] (5.13)

η is an anti-hermitian operator, the differential equation therefore describes a continuous unitary transforma-
tion. For details on flow equations and continuous unitary transformations, I refer to the book by S. Kehrein
[29]. (5.8) is the starting point of this continuous unitary transformation. During the transformation, further
terms are generated in the Hamiltonian. In the end, for large `, H+ vanishes and we obtain an effective Hamilto-
nian which contains no terms that change the number of electrons on the two sublattices. We approximate the
Hamiltonian as follows: H+ should contain all possible matrix elements which transfer one electron from a
lattice site A to a neighboured lattice site B.

H+ = ∑
<x∈A,y∈B>,σ

(t + t2Anx−σ + t2Bny−σ + t2ABnx−σ ny−σ )c†
xσ cyσ (5.14)
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Restricting H+ to these terms, H0 contains only terms with three nearest neighboured sites. I use the notation
< x ∈ A,y ∈ B,x′ ∈ A > etc. One obtains

H0 = εA ∑
x∈A

nx + εB ∑
y∈B

ny +UA ∑
x

nx↑nx↓+UB ∑
y

ny↑ny↓

+JAB ∑
<x∈A,y∈B>

[
1
2

nxny−2~Sx ·~Sy]+KAB ∑
<x∈A,y∈B>

[nx↑nx↓ny−ny↑ny↓nx]

+tA ∑
<x∈A,x′∈A>σ

c†
xσ cx′σ + tAA ∑

<x∈A,x′∈A>σ

(nx−σ +nx′−σ )c†
xσ cx′σ

+tB ∑
<y∈B,y′∈B>σ

c†
yσ cy′σ + tBB ∑

<y∈B,y′∈B>σ

(ny−σ +ny′−σ )c†
yσ cy′σ

+ ∑
<x∈A,y∈B,x′∈A>στ

στ[K̃AB + K̃2AB(nx−σ +nx′−τ)+ K̃3ABnx−σ nx′−τ ]c†
xσ c†

y−σ cy−τcx′τ

+ ∑
<y∈B,x∈A,y′∈B>στ

στ[K̃BA + K̃2BA(ny−σ +ny′−τ)+ K̃3BAny−σ ny′−τ ]c†
yσ c†

x−σ cx−τcy′τ

Some of the terms in H0 vanish at ` = 0, they are not part of the initial model. But they are generated during
the transformation.

UA is the by far largest parameter in the initial model and we expect it to be the largest parameter for large
`. Therefore, we expect that the holes (one per elementary cell in the undoped case, less than one in the doped
case) sit on the lattice sites A. Further, εA is smaller than εB and the difference becomes even larger as a funtions
of `. Since in the limit `→ ∞ H± vanish, it is sufficient to look at H0. Since in H0 all lattices sites B are doubly
occupied and since there is no hopping from A to B, we may drop all the terms in H0 which contain B-lattice
sites. We therefore obtain the effective Hamiltonian

Heff = εA ∑
x∈A

nx +UA ∑
x

nx↑nx↓ (5.15)

+tA ∑
<x∈A,x′∈A>σ

c†
xσ cx′σ + tAA ∑

<x∈A,x′∈A>σ

(nx−σ +nx′−σ )c†
xσ cx′σ (5.16)

The first three terms form a standard Hubbard model on a square lattice, the last term destroys the particle-hole
symmetry. This should have been expected since the original Hamiltonian has no particle-hole symmetry.

The parameters in Heff can be calculated using the flow equations. Doing this, one has to take into account
that some of the terms we dropped in the calculation couple back to the terms we kept, if one replaces the
particle-number operators ny for y ∈ B by their expectation values (i.e. by 2). This makes the actual calculation
a bit more complicated but it is still feasible.

5.2.4 t− J model

We already saw that the Hubbard model for large U can be mapped to an anti-ferromagnetic Heisenberg model
at half filling. The same is true for the Hamiltonian (5.15,5.16). High-temperature superconductors are doped
anti-ferromagnets. Doping introduces holes in the anti-ferromagnet, which can hop. To desribe this situation
effectively, one often uses the so called t− J model. The Hamiltonian reads

H = t ∑
<x,y>σ

(1−nx−σ )c†
xσ cyσ (1−ny−σ )+ J ∑

<x,y>
SxSy (5.17)

and can be obtained from the Hamiltonian (5.15,5.16) by a further unitary transformation valid for large UA

similar to the one leading to (4.20). Sx are the local spin operators we introduced before. It is important to note
that the Hilbertspace of the model described by (5.17) does not contain doubly occupied sites .

The t− J model can as well be derived from the simple Hubbard model or from (5.15,5.16) or directly from
the three-band model. As discussed above, the coupling J is of the order 4t4

(UA−UB+∆)(UB−∆)2 .
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5.3 Frustrated spin systems

5.3.1 Some general ideas

At half filling, the ground state of (5.17) is expected to have anti-ferromagnetic long-range order. Small doping
can destroy anti-ferromagnetic order. In high-temperature superconductors, only 1% doping is sufficient to
destabilise the anti-ferromagnetic order. This implies the following questions:

1. How does the spin-system look like at small doping?

2. How do the holes move in the spin systems?

3. If kind of effective interactions between holes are introduced due to the spin fluctuations?

ad 1.: The basic idea was formulated by Anderson, Baskaran, and Zhou [2, 3, 4, 5]. They propose that the
spin system is in a resonating valence bond (RVB) state. There are many authors who followed that idea and
there are therefore many different formulations. In the undopted regime, all those states are variational states
with an energy only slightly above the ground state energy. In the following subsection we describe a rather
general approach. Among them, there are states with and without anti-ferromagnetic long-range order. The
states without long-range order show a local ordering, which is not unexpected.

ad 2.: A hole which moves in a local anti-ferromagnetic background destroys this background locally. This
may hinder the movement of the hole.

ad 3.: If two holes move together in a correlated fashion. the second hole may heal the locally disturbed
anti-ferromagnetic background. Therefore, one may develop the idea that a correlated movement of holes in an
anti-ferromagnetic background is energetically favourable compared to an uncorrelated movement. This effect
can be described by an effective attractive interaction between holes.

To better understand these ideas, one first has to understand the physics of the ground state of anti-ferromagnetic
spin systems in two dimensions.

5.3.2 RVB-states

Let us first discuss the concept of RVB-states, which allows for the description of ordered, locally ordered or
disordered spin systems, the valence bond (VB) or resonating valence bond (RVB) states. There is a couple
of lattices for which one can show that the ground state of a Heisenberg model can be described using this
concept.

We first introduce a singlet pair of spins

|(x,y)〉= 1√
2
(|↑x↓y〉− |↓x↑y〉) (5.18)

on lattice sites x and y. We now choose a coverage P of pairs which cover the entire lattice (we assume |Λ| to
be pair) and form the singlet state

|P〉= ∏
(x,y)∈P

|(x,y)〉 (5.19)

This state is called a VB-state. One can show that all VB-states form an overcomplete basis of the singlet space.
This means that any singlet state can be written as

|Ψ〉= ∑
P

A(P) ∏
(x,y)∈P

|(x,y)〉 (5.20)

Since the states |P〉 are overcomplete, the representation of a singlet state in this form is not unique.
The representation (5.20) is useful because it leads to variational ansatzes for the ground state of the system.

A popular variational ansatz is
|Ψ〉= ∑

P
∏

(x,y)∈P
a(|x− y|) |(x,y)〉 (5.21)
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i.e.
A(P) = ∏

(x,y)∈P
a(|x− y|) (5.22)

Such a state is called an RVB-state.
In concrete calculations we start with a given lattice. In the following we take the square lattice. It is a

bipartite lattice. The two sublattices have the same number of lattice sites. We let

a(|x− y|) = 0 (5.23)

if x and y are on the same sublattice. For bipartite lattices this is a natural ansatz.
Let us now calculate the overlap of two VB states.〈

P′ |P〉 (5.24)

where both P and P′ contain only sinlet pairs on lattice sites which come from the two different sublattices. Let
us first consider an easy example:

〈(x1,y2)(x2,y1)|(x1,y1)(x2,y2)〉 =
1
4
(〈↑x1↓y2 |− 〈↓x1↑y2 |)(〈↑x2↓y1 |− 〈↓x2↑y1 |)(|↑x1↓y1〉− |↓x1↑y1〉)(|↑x2↓y2〉− |↓x2↑y2〉)

=
1
4
(〈↑x1↓y2 | 〈↑x2↓y1 | |↑x1↓y1〉 |↑x2↓y2〉+ 〈↓x1↑y2 | 〈↓x2↑y1 | |↓x1↑y1〉 |↓x2↑y2〉)

= 2
1
22 (5.25)

〈(x1,y1)(x2,y2)|(x1,y1)(x2,y2)〉 =
1
4
(〈↑x1↓y1 |− 〈↓x1↑y1 |)(〈↑x2↓y2 |− 〈↓x2↑y2 |)(|↑x1↓y1〉− |↓x1↑y1〉)(|↑x2↓y2〉− |↓x2↑y2〉)

=
1
4
(〈↑x1↓y1 |− 〈↓x1↑y1 |)(|↑x1↓y1〉− |↓x1↑y1〉)(〈↑x2↓y2 |− 〈↓x2↑y2 |)(|↑x2↓y2〉− |↓x2↑y2〉)

= 22 1
22 (5.26)

Similar calculations can be done for the general case as well. We obtain〈
P′ |P〉= 2nL−Ns/2 (5.27)

where nL is the number of loops one obtains when drawing 〈P′ |P〉 on the lattice and Ns is the number of lattice
sites. Up to cyclic permutation a loop C is a sequence of lattice sites, C = (x1,y1,x2,y2, . . . ,xn,yn). In our
construction, the lattice sites are alternatingly elements of A and B. 〈P′ |P〉 contains each lattice site of the
lattice exactly once, therefore it forms a covering {Ci, i = 1, . . . ,nL} of the lattice with loops. The norm of the
variational state |Ψ〉 is

ZΨ = ∑
{Ci}

∏
i

f (Ci) (5.28)

where

f (C) = 2 ∏
(x,y)∈C

a(|x− y|)√
2

(5.29)

The correlation function is 〈
P′
∣∣S3,xS3,x′ |P〉=

1
4

2nL−Ns/2 (5.30)

where x ∈ A and x′ ∈ A are on the same loop, otherwise the right hand side is zero, and〈
P′
∣∣S3,xS3,y |P〉=−2nL−Ns/2 (5.31)
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for x ∈ A and y ∈ B where again both lattice sites must belong to the same loop. This means that the entire
problem can be mapped to a problem of loops on a lattice.For each loop we introduce a probability

ρ(C) = Z−1
Ψ

f (C)ZΨ\C (5.32)

that the loop C occurs on the lattice. One has

ρ(C) =
∂ lnZΨ

∂ ln f (C)
(5.33)

The correlation function

ρz,z′ = 4sz,z′
〈Ψ|S3,zS3,z′ |Ψ〉

ZΨ

(5.34)

is
ρz,z′ = ∑

C::z,z′∈C
ρ(C) (5.35)

where sz,z′ = 1 if both lattice sites are on the same sublattice, sz,z′ =−1 otherwise, The quantity

`= ∑
z′

ρz,z′ = N−1
s ∑

z,z′
ρz,z′ (5.36)

is the average loop length. If this quantity is extensive, i.e. ` ∝ Ns, the system has long range order.

5.3.3 The Néel state

To test whether the above concept is useful we want to investigate whether the Néel state can be described
within the RVB concept and whether usual spin wave theory works as well. The Néel state is a state with
maximal order. We obtain this ate if we let a(|x− y|) = 1 for all x ∈ A , y ∈ B.

Let us first calculate ZΨ. We have

ZΨ =
1

2Ns/2 ∑
{Ci}

2nL (5.37)

The sum runs over all loop coverages of the lattice. Let ni be the number of loops of length 2i, then we have

∑
i

ni = nL (5.38)

∑
i

ini = Ns/2 (5.39)

The number of coverages of the lattice with n1 loops of length 2, n2 loops of length 4, etc is

(Ns
2 )!

2

∏i inini!
(5.40)

Therefore we have

ZΨ =
1

2Ns/2 (
Ns

2
)!2

∑
{ni}:∑i ini=Ns/2

∏
i

2ni

inini!
=

1
2Ns/2 (

Ns

2
)!(

Ns

2
+1)! (5.41)

The average loop length is

`= Z−1
Ψ

1
2Ns/2 (

Ns

2
)!2

∑
{ni}:∑i ini=Ns/2

(
4
Ns

∑
i

i2ni)∏
i

2ni

inini!
=

2
3
(Ns/2+2) (5.42)

All the sums can be calculated for the formula gin in the chapter on combinatorics in the Handbook of Math-
ematical Functions, by Abramowitz, Stegun [1]. Since all lattice sites are equivalent, we have

ρz,z′ =
Ns +1

3(Ns−1)
(5.43)

for z 6= z′. Naively, one may have expected that the Néel state has ρz,z′ = 1. But since the state must be
SU(2)-symmetric, we obtain ρz,z′ =

1
3 .
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5.3.4 Short-range correlations

Another extreme case are state where a(|x− y|) = 1 for neighboured states, a(|x− y|) = 0 otherwise. These
states are called dimer states. They have no long-range order, the average loop length is not ∝ Ns. Unfortunately,
excat results for these states are not available. One does not know whether these states have an exponential or
an algebraic decay. There are good arguments for both.

5.3.5 The two-dimensional Heisenberg model

Liang, Douçot, and Anderson [35] did variational calculations for the Heisenberg model on a square lattice.
Their results have been improved by several authors. The variational state wth the lowest energy one knows
has an energy per lattice site of −0.6688J and a(|x− y|) ∝ |x− y|−4. The state has long-range order, ρz,z′ tends
to 0.12 for large distances. The authors point outthat there are states with only a slightly higher energy and
without long-range order. This is not unexpected since we know that for any finite temperature, the long range
order disappears. This is the Mermin-Wagner theorem. Also, introducing frustration will suppress long-range
order.

The problem can as well be treated analytically using an argument by Flory from the theory of polymers.
The coverage of loops can be interpreted as a set of loops with repulsive interaction. The repulsive interaction
within a loop tends to blow up the loop whereas the repulsive interaction between loops tends to compress a
loop. Both effects work in different directions. If one assumes that both effects cancel each other, we may
neglect the loop interaction entirely. Doing that yields the exact result for the Néel state. There are good
reasons to assume that this argument yields qualitatively good results for dimensions d ≥ 3 and that it becomes
exact in the limit d→ ∞. In one dimension the argument is definitely wrong. In two dimension, the situation
is unclear. Wegner [77] applied it to the two-dimensional Heisenberg model. he obtained for the correlation
function ρz,z′→ 0.13, which is very close to the result by Liang, Douçot, and Anderson [35], but the energy per
lattice site is E = −1.0056J. For the energy, the short range correlations are important and they are certainly
no well described by the Flory argument.

5.4 Field theoretic description

5.4.1 Fermions and Schwinger bosons

Spin operators can be expressed using fermionic or bosonic operators. The fermionic representation is clear,
we used it before.

S3,x =
1
2
(c†

x+c+− c†
x−cx−) (5.44)

S+,x = c†
x+cx− (5.45)

S−,x = c†
x−cx+ (5.46)

S1,x =
1
2
(S+,x +S−,x) (5.47)

S2,x =
1
2i
(S+x−S−x) (5.48)

The commutation relation for the spin operators are fulfilled if

c†
x+cx++ c†

x−cx− = 1 (5.49)

The number of particles on a lattice site must be one. (5.49) implies that the interpretation of the usual com-
mutation relations must be restricted on the Hilbert space in which all states fulfil the constraint. Applying a
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bare creation or annihilation operator to an element of that Hilbert space creates a state which is no longer an
element on that Hilbert space. Thus, all matrix elements of the creation or annihilation operator in the restricted
Hilbert space vanish. Let us consider as an example [cx+,nx] = cx+. On the left hand side, in the restricted
Hilbert space, nx = 1. But we we set nx = 1 in this equation the left hand side is zero. This is correct, since, as
stated above, all matrix elements of the creation or annihilation operator in the restricted Hilbert space vanish.
In the restricted Hilbert space only operators occur where in each product the number of creation and anni-
hilation operators is the same. Taking this restriction into account, the usual commutation relations between
the creation or annihilation operators are still correct, i.e. [cxσ ,c†

x′σ ′ ] = δx,x′δσ ,σ ′ . Later, we will use similar
constraints with more operators involved, there, the same is true.

Similarly, we can use bosons to represent spin operators. Let bxσ and b†
xσ be annihilation and creation

operators for bosons on the lattice site x. σ takes the values ±1. We let

S3,x =
1
2
(b†

x+bx+−b†
x−bx−) (5.50)

S+,x = b†
x+bx− (5.51)

S−,x = b†
x−bx+ (5.52)

and let
b†

x+bx++b†
x−bx− = 1 (5.53)

One obtains

S2
3,x +

1
2
(S+,xS−,x +S−,xS+,x) =

1
4
(b†

x+bx+−b†
x−bx−)

2

+
1
2
(b†

x+bx−b†
x−bx++b†

x−bx+b†
x+bx−)

=
1
4
(b†

x+bx++b†
x−bx−)

2

+
1
2
(b†

x+bx++b†
x−bx−)

=
3
4

(5.54)

[S3,x,S±,x] =±S±x (5.55)

[S+,x,S−,x] = b†
x+bx−b†

x−bx+−b†
x−bx+b†

x+bx− = 2S3,x (5.56)

and the Hamiltonian in this representation is

H =
1
2 ∑

x,y
Jx,y

[
1
4
(a†

x+ax+−a†
x−ax−)(a†

y+ay+−a†
y−ay−)

+
1
2
(a†

x+ax−a†
y−ay++a†

x−ax+a†
y+ay−)

]
(5.57)

where the additional condition a†
x+ax++ a†

x−ax− = 1 has to be taken into account. a and a† are fermionic or
bosonic operators. The projection operator commutes with the Hamiltonian. In a more compact form, the
Hamiltonian can be written as

H =
1
4 ∑

x,y,σ ,τ

Jx,y(ζ a†
xσ a†

yτayσ axτ −
1
2
) (5.58)
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with ζ =+1 for bosons and ζ =−1 for fermions. Up to a constant −1
2 ∑x,y Jx,y the Hamiltonian is

H =
ζ

4 ∑
x,y

Jx,yPx,y (5.59)

where the operator Px,y exchanges two particles on the two lattice sites x and y. The eigenstates of H are
symmetric with respect to permutations of two bosons. For a two-particle state there are two possible cases

1. For bosons: symmetric in lattice and spin space. For fermions: antisymmetric in lattice and spin space.

a†
x+a†

y+|0〉,
1√
2
(a†

x+a†
y−+a†

x−a†
y+)|0〉, a†

x−a†
y−|0〉 (5.60)

These are triplet states.

2. For bosons: antisymmetric in lattice and spin space. For fermions: symmetric in lattice and spin space.

1√
2
(a†

x+a†
y−−a†

x−a†
y+)|0〉 (5.61)

This is the singlet state..

An RVB-state can now be written as

|Ψ〉= ∑
P

∏
(x,y)∈P

a(|x− y|)√
2

(a†
x+a†

y−−a†
x−a†

y+)|0〉 (5.62)

5.4.2 Field theoretic formulation

As introduced in the first chapter of this course, a fermionic or bosonic model can be written in a Lagrangian
formulation with Grassmann or complex fields. The only difference is that in the present formulation an addi-
tional condition has to be taken into account. For the present model, the action can be written as

S =
∫

β

0
dτ L (5.63)

L = ∑
x,σ

φ
∗
x,σ (τ)(∂τ −µ)φx,σ (τ)− i∑

x
λx(τ)(∑

σ

φ
∗
x,σ (τ)φx,σ (τ)−1)+V ({φ ∗x,σ (τ),φx,σ (τ)}) (5.64)

where

V ({φ ∗x,σ (τ),φx,σ (τ)}) =
ζ

4 ∑
x,y,σ ,σ ′

Jx,yφ
∗
x,σ (τ)φ

∗
y,σ ′(τ)φy,σ (τ)φx,σ ′(τ) (5.65)

A constant has been dropped. λx(τ) is a real Lagrangian multiplier field. The integration over λx(τ) guaranties
that the additional condition

∑
σ

φ
∗
xσ (τ)φxσ ′(τ) = 1 (5.66)

is fulfilled. Because of the additional condition, the chemical potential can in principle be dropped. In what
follows we take only couplings between neighboured sites into account. The potential is then

V ({φ ∗x,σ (τ),φx,σ (τ)}) =
ζ J
4 ∑

x,i,σ ,σ ′
φ
∗
x,σ (τ)φ

∗
x+ei,σ ′(τ)φx+ei,σ (τ)φx,σ ′(τ) (5.67)

The index i runs over the directions. Using a Hubbard-Stratonovich transformation, the action becomes quad-
ratic in the fields φ and φ ∗. They can be integrated out and we obtain an effective theory which contains the
Hubbard-Stratonovich fields and the Lagrange parameter λx. This effective action can then be treated in a
saddle point or mean field approach. We can as well study fluctuations around the saddle point. An important
property of this effective action is that is possesses a local gauge invariance. The reason is simple: There are
local conserved quantities, namely the particle numbers. Let us now perform the different steps sketched so far.
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Hubbard-Stratonovich transformation. The Hubbard-Stratonovich transformation is nothing but a Gaus-
sian integral. One has

exp(−J
2

z∗z) ∝

∫
dχdχ

∗ exp(−2
J

χ
∗
χ +χ

∗z+ z∗χ) (5.68)

V can be written as

V ({φ ∗x,σ (τ),φx,σ (τ)}) =
ζ J
2 ∑

x,i,σ ,σ ′
φ
∗
x,σ (τ)φ

∗
x+ei,σ ′(τ)φx+ei,σ (τ)φx,σ ′(τ)

=
J
2 ∑

x,i
(∑

σ

φ
∗
x,σ (τ)φx+ei,σ (τ))(∑

σ

φ
∗
x+ei,σ (τ)φx,σ (τ)) (5.69)

and therefore

exp(−V ({φ ∗x,σ (τ),φx,σ (τ)})) ∝

∫
D[χ(τ)]D[χ∗(τ)]exp

(
−2

J ∑
x,i

χ
∗
x,i(τ)χx,i(τ)

+ ∑
x,i
(χ∗x,i(τ)(∑

σ

φ
∗
x+ei,σ (τ)φx,σ (τ))+χx,i(τ)(∑

σ

φ
∗
x,σ (τ)φx+ei,σ (τ))

)
(5.70)

This yields the new action

L′ = ∑
x,σ

φ
∗
x,σ (τ)(∂τ −µ)φx,σ (τ)− i∑

x
λx(τ)(∑

σ

φ
∗
x,σ (τ)φx,σ (τ)−1)

−2
J ∑

x,i
χ
∗
x,i(τ)χx,i(τ)

+∑
x,i

(
χ
∗
x,i(τ)∑

σ

φ
∗
x+ei,σ (τ)φx,σ (τ)+χx,i(τ)∑

σ

φ
∗
x,σ (τ)φx+ei,σ (τ)

)
(5.71)

The integral over φ and φ ∗ is a Gaussian integral and can be calculated. Before doing this, let us look at the
symmetries of L′.

Locale gauge symmetry. With

χx,i(τ) = ρx,i(τ)exp(iAx,i(τ)) (5.72)

the local gauge transformation is
φx(τ)→ φx(τ)exp(iϕx(τ)) (5.73)

λx(τ)→ λx(τ)+∂τϕx(τ) (5.74)

Ax,i(τ)→ Ax,i(τ)−ϕx+ei(τ)+ϕx(τ) (5.75)

This transformation yields
L′→ L′+ i∑

x
∂τϕx(τ) (5.76)

and

S→ S+ i∑
x

∫
β

0
dτ∂τϕx(τ) = S+ i∑

x
(ϕx(β )−ϕx(0)) = S

since ϕx(τ) is a bosonic field and therefore periodic in τ . We can even generalise the periodic boundary
condition for ϕx(τ) by letting

ϕx(β ) = ϕx(0)+2πmx
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The system is even symmetric under a larger group of gauge transformations. As a consequence of the sym-
metry, we may choose a special gauge. The main point is that the gauge only needs to guaranty that the
condition

∑
σ

φ
∗
xσ (τ)φxσ ′(τ) = 1

holds for on value of τ . It is then automatically fulfilled for any τ. For example, we may choose

λx(τ) = λxδ (τ− τ0)

Saddle point approximation. One can introduce a parameter to the model which has the effect that in
a certain limit the saddle point approximation becomes exact. This allows for a systematic expansion around
the saddle point. To do this, we look at a model which has an SU(N) symmetry instead of the usual SU(2)
symmetry. The Hamiltonian can then be written as

H =
1
N ∑

x,y
Jx,y

N

∑
α,β=1

Ŝβ

α(x)Ŝα

β
(y) (5.77)

where Ŝβ

α(x) are the generators of the SU(N) algebra. As a representation we choose

Ŝβ

α(x) =
nc

∑
a=1

c†
αa(x)c

βa(x)−δ
β

α

nc

2
(5.78)

with the additional conditions

N

∑
α=1

c†
αa(x)c

αb(x) =
{

δ b
a m x ∈ A

δ b
a (N−m) x ∈ B

(5.79)

We assume a bipartite lattice with the sublattices A and B. For N = 2 there is only one value m = 1 and we
obtain a representation of the SU(2). The spin in the representation is s = nc/2. For nc = 1 we obtain the above
representaion. In the following, I restrict the calculation to the case nc = 1, N even and m = N/2. Other cases
may be iteresting as well. for example the limit nc→ ∞ yields a spin wave approximation. For the Lagrangian
density we obtain

L′ = ∑
x,α

φ
∗
x,α(τ)(∂τ −µ)φx,α(τ)− i∑

x
λx(τ)(∑

α

φ
∗
x,α(τ)φx,α(τ)−

N
2
)

−N
J ∑

x,i
χ
∗
x,i(τ)χx,i(τ)

+∑
x,i

(
χ
∗
x,i(τ)∑

α

φ
∗
x+ei,α(τ)φx,α(τ)+χx,i(τ)∑

α

φ
∗
x,α(τ)φx+ei,α(τ)

)
(5.80)

For N = 2 this is the above expression. We now integrate the (in this representation fermionic) fields φ and φ ∗

and obtain
Seff[λ ,χ,χ

∗] = NS̄[λ ,χ,χ∗] (5.81)

S̄[λ ,χ,χ∗] = Trln
(
(∂τ −µ− iλx(τ))δx,yδτ,τ ′+(χx,i(τ)δy,x+ei +χ

∗
x−ei,i(τ)δy,x−ei)δτ,τ ′

)
−
∫

dτ

(
1
J ∑

x,i
χ
∗
x,i(τ)χx,i(τ)−

i
2 ∑

x
λx(τ)

)
(5.82)
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The effective action is ∝ N and therefore, for large N the saddle point approximation becomes exact and we
may even think of a 1/N expansion. The saddle point equations are

δ S̄
δρx,i(τ)

= 0 (5.83)

δ S̄
δAx,i(τ)

= 0 (5.84)

δ S̄
δλx(τ)

= 0 (5.85)

It is difficult to find an exact solution of these equations. Only solutions for various subspaces are known.
In the following we consider some solutions of the equations on a square lattice. When we introduced the

local gauge transformation, we saw that the phase of χ and λ has the interpretation of an electromagnetic
potential. The absolute value of χ represents the density. At constant density and for 0 magnetic field, one
obtains the solution which was first proposed by Baskaran, Zou and Anderson. The energy is

EBZA =
4NNs

J
ρ̄

2− 16
π2 NNsρ̄ (5.86)

with the minimum E =−16NNsJ/π4 =−0.164NNsJ for ρ̄ = 2J/π2. At constant density and constant magnetic
field 6= 0 we obtain so called flux phase states with a lower energy, namely

EFlussphase =
4NNs

J
ρ̄

2−8NNsρ̄

∫
|pi|≤ π

2

d2 p
(2π)2

√
sin2 p1 + sin2 p2 (5.87)

The minimum is E =−0.230NNsJ. Further, there are dimer states with an even lower energy

E =
4NNs

J
ρ̄

2−NNsρ̄ (5.88)

and a minimum E =−JNNs/4 at ρ̄ = J/4. But this energy is still higher than the variational energy of the RVB
states for N = 2 (E = −0.6688JNs). But the 1/N corrections are missing here. A problem of all the states is
that in all of them the local gauge symmetry is broken. Thus, the status of the theory is still open.

Flux phases. Flux phases are states with λ = 0 and with a τ independent χ . With these assumptions we
obtain the effective Hamiltonian

H =− ∑
x, j,α

ρ̄x, j
(
c†

x,α exp(iAx, j)cx+e j,α +h.c.
)
+

N
J ∑

x, j
ρ̄

2
x, j (5.89)

Flux phase states have a fixed ρ̄x, j = ρ̄ . The flux phase problem can be solved by first finding the minimum
of H at fixed ρ̄ by varying Ax, j and in a second step finding the minimum by varying ρ̄ . Here we have to take
into account that the number of fermions is equal to the number of lattice sites, we are at half filling. In the
following we consider again a square lattice. We choose a vector potential Ax, j that corresponds to a flux φ

through each elementary cell of the square lattice. This is the situation of a constant magnetic field. The ground
state energy is then

E0 =−ρ̄Tr|T|+ 4NNs

J
ρ̄

2 (5.90)

where T = (tx,y) is the matrix
tx,y = exp(iAx, j)δy,x+e j (5.91)

and the flux phase condition is
Ax,2 +Ax+e2,1−Ax+e1,2−Ax,1 = φ (5.92)
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Let |T | be the positive definite matrix for which |T |2 = T 2. Tr|T| is the sum of the absolute values of the
eigenvalues of T . A special solution, for which the flux phase condition is fulfilled, is

Ax,1 =
φ

2
, Ax,2 = (−1)x1

φ

2
(5.93)

Using this gauge, we obtain four sublattices. For the eigenfunctions of T , we make the ansatz

ψx = exp(ikx)ai (5.94)

for x in the sublattice i = 1, . . . ,4. This yields a eigenvalue equation for ai with a 4×4-matrix. The eigenvalues
can be calculated, as well as Tr|T|. The minimum occurs at

φ = π (5.95)

and for the eigenvalues we obtain

±2
√

sin2 k1 + sin2 k2 (5.96)

This yields the above formula for the ground state energy. The optimal value φ = π for the flux is more general
than what can be seen from this simple calculations. For instances one can show that for this flux we also obtain
a minimm of detT . Further, the result can be generalised to planar bipartite graphs. A planar bipartite graph
consist of npolygons with n edges. The optimal flux through such a polygon is π(n− 2)/2. Further one can
construct flux phase states with a density less than 1.

5.5 The doped anti-ferromagnet: The t− J modell

If we dope an anti-ferromagnet, the long range order may be weakened or even eliminated completely. We
already saw that a suitable model for a doped anti-ferromagnet is the t− J model

Ht−J = ∑
x,y,σ

tx,y(1−nx,−σ )c†
x,σ cyσ (1−ny,−σ )+∑

x,y
Jx,y~Sx ·~Sy (5.97)

where we now use a fermionic representation of the spins,

S3,x =
1
2
(c†

x+c+− c†
x−cx−) (5.98)

S+,x = c†
x+cx−, S−,x = c†

x−cx+ (5.99)

S1,x =
1
2
(S+,x +S−,x), S2,x =

1
2i
(S+x−S−x) (5.100)

The spin interaction in the Hamiltonian is the usual Heisenberg interaction. The kinetic part allows for a
hopping of a spin from one lattice site to another. The factors (1− nx,−σ )(1− ny,−σ ) guaranty that there are
never two electrons on a lattice site. Above we derived the t− J from a one band or three band Hubbard model
using unitary transformations and the limit of strong repulsion. There are other ways to motivate this model.
We take it here as a model of its own interest and not as a limiting case of another model.

The main effect we expect in the t−J model is a weakening of the anti-ferromagnetic order and in connection
with that a possible attractive effective interaction between the holes.

There are various methods that have been used so far to investigate the t − J model. In one dimesion it
is exactly solvable for a special value of t/J. In higher dimensions the motion of a single hole in the spin
background was studied quite early. A finite concentration of holes is not yet completely understood. The
methods used in this course can be applied if one introduces auxiliary fields like for the Heisenberg model. For
a single lattice site the model has three states: |0〉x, the empty lattice site, |+〉x and |−〉x with an electron on the
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site with a spin σ = ±. We represent the spins using fermionic operators f †
x,σ and fx,σ as before, empty sites

using bosons b†
x and bx. The creation or annihilation operator for an electron is then represented as

c†
x,σ = bx f †

x,σ , cx,σ = b†
x fx,σ (5.101)

We need the additional condition
b†

xbx +∑
σ

f †
x,σ fx,σ = 1 (5.102)

on each lattice site. The kinetic part of the Hamiltonian reads

Ht = ∑
x,y,σ

tx,y f †
x,σ fy,σ b†

ybx (5.103)

A different possibility is, as mentioned before for the Heisenberg model, to represent the spins by bosonic
operators b†

x,σ and bx,σ . The hole operator then has to be represented by fermionic operators a†
x and ax. We have

c†
x,σ = a†

xbx,σ , cx,σ = a†
xbx,σ (5.104)

a†
xax +∑

σ

b†
x,σ bx,σ = 1 (5.105)

Ht = ∑
x,y,σ

tx,yb†
x,σ by,σ a†

yax (5.106)

The two approaches are called slave boson or slave fermion approach. The hole excitations are often called
holons, the spin excitations spinons. Holes may condensate, which was interpreted as a first hint for a high Tc

superconductor. This idea seems to be wrong. The transitions is just an artefact of the representation.
As the Heisenberg model the t− J can be treated using a field-theoretic approach. The only difference is the

additional field for the holes. One has here as well a local gauge symmetry, and one has the local conditions
which can be taken into account using a Lagrangian multiplier. Using a Hubbard-Stratonovich transformation
it is possible to decouple the interaction. The fields corresponding to the operators f †

x,σ and fx,σ or b†
x,σ and

bx,σ can then be integrated out. One obtains an action that depends on the Hubbard-Stratonovich field and
the Lagrangian multiplier. The action has again a local gauge symmetry. Investigating the influence of holes
further, it turns out that the flux phase state is stabilised. On the square lattice, the optimal flux per unit cell is
πn where n is the electron density.

We choose the ansatz (5.101). The exchange interaction then has the form

~Sx ·~Sy =−
1
4 ∑

σ ,σ ′
f †
xσ fyσ f †

yσ ′ fxσ ′−
1
4
( f †

x+ f †
y−− f †

x− f †
y+)( fy−x fx+− fy+ fx−)+

1
4 ∑

σ

( f †
xσ fxσ + f †

yσ fyσ )

The derivation is easy, one just uses the representation of the spin operators by fermions and the representation
(5.101) of the fermionic operators. One then eliminates the bosonic operators b(†)x using (5.102). In a similar
way, the density-density interaction can be written as

nxny = (1−b†
xbx)(1−b†

yby)

Often, the term b†
xb†

ybybx is neglected because of the low hole concentration. The remaining quartic terms are
decoupled using the Hubbard-Stratonovich transformation, as already mentioned. We obtain

L1 =
1
4 ∑

xy
Jxy(|χxy|2 + |∆xy|2)+∑

xσ

f ∗xσ (∂τ − iλx) fxσ

−1
4

[
∑
xyσ

Jxyχ
∗
xy f ∗xσ fyσ + c.c.

]
+

1
4

[
∑
xy

Jxy∆xy( f ∗x+ f ∗y−− f ∗x− f ∗y+)+ c.c.

]
+∑

x
b∗x(∂τ − iλx +µ)bx−∑

xyσ

txybxb∗y f ∗xσ fyσ
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S is invariant under local gauge transformations

fxσ → exp(iθx) fxσ , bx→ exp(iθx)bx

χxy→ exp(−iθx)χxy exp(iθy)

∆xy→ exp(iθx)∆xy exp(iθy)

λx→ λx +∂τθx

Often one writes L1 in the form

L1 =
1
8 ∑

xy
TrJxyU†

xyUxy +
1
8 ∑

xyσ

(Φ†
xσUxyΦyσ + c.c.)

+∑
xσ

f ∗xσ (∂τ − iλx) fxσ +∑
x

b∗x(∂τ − iλx +µ)bx−∑
xyσ

txybxb∗y f ∗xσ fyσ

where

Φx+ =

(
fx+

f ∗x−

)
, Φx− =

(
fx−
− f ∗x+

)
Uxy =

(
−χ∗xy ∆xy

∆∗xy χxy

)
In this representation, and at half filling (µ = 0, b = 0) S is invariant under

Φxσ →VxΦxσ

Uxy→VxUxyV †
y

where Vx are local SU(2) matrices. Therefore, besides the local gauge symmetry, the model even has a local
SU(2)-symmetry.

Various authors proposed different mean field solutions to this model. They correspond to different saddle
point approximations. In these saddle point approximations, the following variables play a crucial role

χxy = ∑
σ

〈 f ∗xσ fyσ 〉

∆xy = 〈 f ∗x+ f ∗y−− f ∗x− f ∗y+〉

The first represents the RVB-state proposed by Baskaran, Zou, and Anderson. The ansatz is χxy = χ real and
∆xy = 0. The spectrum is that of a ferionic model

HBZA =−χ

2 ∑
xyσ

Jxy f †
xσ fyσ

There are other states with low energies. Among them, there is a super-conducting d-wave state and a flux
phase state, both with the same variational energy and the same dispersion relation for low lying excitations.
Both are equivalent and can be obtained from each other using the local SU(2)-symmetry. Totally, one obtains
four different mean fields phase: a Fermi liquid (χ 6= 0, b 6= 0), a spin-gap phase (χ 6= 0, ∆ 6= 0), d-wave
superconductivity ( χ 6= 0, b 6= 0, ∆ 6= 0), a strange metal (χ 6= 0), and at higher temperature the RVB-state.
The mean-field theory represents the experimental situation quite well.

Partially, these considerations can be made mathematically precise, see the work by J. Fröhlich and P. Mar-
chetti [14]. But the resulting field theory is difficult and has not yet been fully investigated and understood.
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6 The fractional quantum Hall effect

6.1 Introduction

The quantum Hall effect was found 1980 by von Klitzing and published in a paper by von Klitzing, Dorda, and
Pepper [30], Klaus von Klitzing received in 1985 the Nobel prize. For a general introduction I refer to [61]. The
quantum Hall effect can be observed in two dimensional electron systems in a strong perpendicular magnetic
field. Under certain conditions one observes a conductivity tensor of the form

σ =

(
0 −n e2

h
n e2

h 0

)
(6.1)

The Hall conductivity is thus σH = n e2

h . For the usual quantum Hall effect, n is an integer. The most remarkable
point is the experimental precision with which this number can be obtained. The relative precision is 3 · 10−7

or even better. Therefore, the quantum Hall effect can be used to determine the fine structure constant e2

h̄c ≈
1

137
with a very high precision since c is fixed. In the fractional quantum Hall effect n is a fraction with a typically
small odd denominator. The precision is less but still high. The theory has to explain why the effect occurs
and why the experimental precision is so high. This is remarkable since the two dimensional electron system
is formed at the interface between two semi-conductors, e.g. in a Si-MOSFET or in a GaAs/GaAlAs hetero
structure. At the interface between two semi-conductors one has lots of imperfections, disorder, so that such a
high precision is really astonishing.

The Hall effect

The most simple theory takes quantum effects only in a semi-classical approximation into account. The theory
is based on the assumption that the two dimensional electrons have a mean free path `0 or equivalently a mean
free flight time τ0. Both are related because the electron move at the Fermi velocity , i.e. `0 = vFτ0. In an
electric field ~E an electron is accelerated between two collisions. The velocity between two collision increases
by ∆~v =−e~Eτ0/m. Adding up the contributions of all electrons, one obtains the current density ~j = σ0~E where

σ0 = ρe2
τ0/m (6.2)

Quantum effects are included only via an effective mass m and via the mean free flight time τ0.
If we apply in addition a magnetic field, the Lorentz force acts on the electrons and we obtain

~j = σ0~E−
σ0

ρec
~j×~B (6.3)

In a two dimensional system we therefore obtain

σ
−1 =

(
σ
−1
0

B
ρec

− B
ρec σ

−1
0

)
(6.4)

The conductivity is therefore
σxx =

σ0

1+ω2
c τ2

0
, σxy =

ρec
B

+
σxx

ωcτ0
(6.5)

where ωc =
eB
mc is the cyclotron frequency. Note that in the limit τ0→∞ one obtains the result for free electrons.
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6 The fractional quantum Hall effect

Experimental realisation

As already mentioned, the quantum Hall effect is observed at the interface of two semi-conductors, to be
precise, at the interface of a semi-conductor (e.g. doped Si, GaAlAs) and an insulator (SiO2, GaAs). The
typical systems are Si-MOSFETs or GaAs-GaAlAs hetero structures. The basic idea is relatively simple: Via
a gate one applies an electric field perpendicular to the interface so that electrons move to the interface. Since
they cannot enter the insulator, they form a two dimensional electron gas at the interface. At the interface, the
energy band is lower than in the bulk so that electrons concentrate at the interface. They form an inversion
layer. The electrons are bound in the direction perpendicular to the interface, but they can move rlatively freely
parallel to the interface. Due to defects and impurities, esp. in the doped semi-conductor, the mean free path is
expected to be short.

Landau levels

We now apply a magnetic field perpendicular to the interface. We first neglect all impurities and interactions,
we just look at a free electron in two dimensions with a perpendicular megnetic field. The Hamiltonian is

H =
h̄2

2m

[(
1
i

∂

∂x
− eB

h̄c
y
)2

− ∂ 2

∂y2

]
(6.6)

where we chose a Landau gauge Ax = −yB, Ay = 0. Since x does not appear as a variable in the Hamiltonian,
we can use the ansatz

ψ ∝ exp(ikx)φ(y) (6.7)

for the eigenfunctions. This leads to the eigenvalue equation

h̄ωc

2

(
−l2

B
∂ 2

∂y2 +

(
y
lB
− lBk

)2
)

φ = Eφ (6.8)

where lB = (h̄c/eB)1/2 is the magnetic length. This is the eigenvalue equation of a shifted harmonic oscillator.
The solutions are therefore

φn,k ∝ Hn(y/lB− lBk)exp(−(y− l2
Bk)/2l2

B) (6.9)

Enk = h̄ωc(n+1/2) (6.10)

and the eigenvalues do not depend on k. We therefore obtain a huge degeneracy. The degenerate eigenvalues
are called Landau levels. The number of states in a Landau level is F/2πl2

B, where F is the area of the system.
Boundary effects are neglected here. The density of states is given by

nB =
1

2πl2
B
=

eB
hc

(6.11)

The single-particle states constructed in that way are localised in y-direction and extended in x-direction. But
the high degeneracy allows to take arbitrary linear combinations of states with the same eigenvalue. Therefore,
one can as well construct eigenstates that are localised in x-direction and extended in y-direction or that are
localised in both directions.

If a Landau level is completely filled, the Fermi energy lies between two Landau levels in a region without
states. That means that there is no scattering and no diffusion, i.e. τ0 = ∞. The filling factor

ν =
ρ

nB
(6.12)

is an even number and for the conductivity tensor one obtains
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6 The fractional quantum Hall effect

σ
−1 =

(
σ
−1
0

B
ρec

− B
ρec σ

−1
0

)
=

(
0 h

νe2

− h
νe2 0

)
(6.13)

A second argument yields the same result. Is uses the Lorentz invariance. A system with a magnetic field ~B
and a perpendicular electric field ~E can be transformed to another system with a Lorentz transformation with
velocity

~v = c
~E×~B

B2 (6.14)

which contains no electric field and therefore no macroscopic current. In the original system, the current density
is therefore

~j =−ρe~v (6.15)

which yields the same conductivity tensor. Therefore, without imperfections, defects or impurities one always
obtains

σxx = 0, σxy =
ρec
B

= ν
e2

h
(6.16)

The question now is, what is the influence of disorder.

6.2 The integer quantum Hall effect

In this section we will discuss two different arguments which may explain the plateaus one observes experi-
mentally in the integer quantum Hall effect. The main goal is a qualitative understanding of the effect, not the
theoretical details. We are mainly interested in the fractional quantum Hall effect, where interactions play a
crucial role.

6.2.1 Disorder

The integer quantum Hall effect can be explained on a very basic level as follows: We saw that a completely
filled Landau level yields a contribution of e2

h to σxy. The question is now, what happens for a partially filled
Landau level. We have many imperfections, defects and impurities, in the system. What is the effect of
disorder? Generically, disorder leads to localisation, this is the so called Anderson localisation. P. W. Anderson
received the Nobel prize (together with Mott and van Fleck) in 1977 for his contribution to the theory of
localisation. Suppose that the disorder is not too large. Typically, one describes a disordered system by a
potential V (x,y). Suppose that the typical energy differences of the potential are small compared to h̄ωc. Then,
in a first order perturbational treatment, one has to diagonalise the Hamiltonian

H0 = P0V (x,y)P0 (6.17)

where P0 is the projector onto a Landau level. We take the Landau level which contains the Fermi energy.
A potential V (x,y) that describes disorder is often realised as a random potential. Such a potential lifts the
degeneracy of the Landau level and tends to localise the electrons. Electrons close to deep minima or maxima
of the potential will be stronger localised and will have an energy far away from the original energy of the
Landau level. On the other hand, we know that the complete Landau level must still yield a contribution e2

h to
the Hall conductivity. This contribution cannot com from localised states. It must come from extended states
which we expect to find in the middle of the broadened Landau level. If we now change the filling factor, e.g.
by changing the magnetic field, the Fermi energy will move through the spectrum. There are regions in the
spectrum where all states are localised and do not contribute to the current. In these regions we should observe
a zero diagonal conductivity and a Hall conductivity which is an integer multiple e2

h .
It is of course possible to formulate this argument in a mathematically more precise way. A field theoretic

formulation can be found in Chapter 5 by A. M. M. Pruisken in [61].

81



6 The fractional quantum Hall effect

Figure 6.1: The cylinder geometry
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6.2.2 Laughlins gauge argument

Let us choose the vector potential to be

Ax =−By+
Φ

2πR
, Ay = 0 (6.18)

so that the Hamiltonian reads

H =
h̄2

2m

[(
1
i

∂

∂x
− eB

h̄c
y+

eΦ

2πRh̄c

)2

− ∂ 2

∂y2

]
+V (x,y) (6.19)

Further, we assume periodic boundary conditions in x-direction, i.e.

x = ϕR (6.20)

where 0 < ϕ ≤ 2π . This corresponds to a cylinder geometry. The potential V (x,y) contains the Hall voltage
VH applied in y-direction, a boundary potential depending only on y, and the disorder potential coming from
the impurities. For V = 0 the energy levels are the Landau levels characterised by the Landau index n. Within
a Landau level one introduces a second index. The eigenfunctions are

ψn,k ∝ exp(ikx)Hn(y/lB− lB(k+
eΦ

2πRh̄c
))exp(−(y− l2

B(k+
eΦ

2πRh̄c
)/2l2

B) (6.21)

where k = l/R, l ∈ Z because of the periodic boundary conditions. We can write as well

ψn,l ∝ exp(2πilϕ)Hn

(
y
lB
− lB

R
(l +

eΦ

hc
)

)
exp

(
−1

2

(
y
lB
− lB

R
(l +

eΦ

hc
)

)2
)

(6.22)

The eigenvalues do not depend on l or Φ. We now introduce a potential V0(y) that fixes the boundary. It is still
possible to describe the states by the two indices n and l, but now the eigenvalues may depend on l and Φ. The
dependency En,l(Φ) is not arbitrary. The x-dependency of the wave function is not affected by V0(y) and the
Hamiltonian depends only on l + eΦ

hc , therefore we have En,l(Φ) = En(l + eΦ/hc) and

En,l(Φ+
hc
e
) = En,l+1(Φ) (6.23)

V0(y) is only at the boundary different from 0. The states are therefore still localised in y-direction close to
l2
B
R (l+

eΦ

hc ) and only those states where the localisation is close to the boundary will be affected by the potential.
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6 The fractional quantum Hall effect

Therefoe, only states close to the boundary will have an energy significantly different from h̄ωc(n+ 1
2). The

contribution of a state to the current in x-driection is

In,l =−c
dEn,l(Φ)

dΦ
(6.24)

Only the states close to the boundary have a significant dependency on Φ. They yield a contribution to the
current. The total current is the sum over all contributions In,l weighted with the occupation number. Averaging
over Φ yields

I =
e
h

∫ hc/e

0
dΦ∑

n,l
nn,lIn,l

= − e
h ∑

n,l
nn,l(En,l(hc/e)−En,l(0))

= − e
h

ν

∑
n=0

(En,lmax(0)−En,lmin(0))

=
e2

h
νVH (6.25)

Therefore σH = I/VH is an integer multiple of e2/h. This argument remains correct if one introduces disorder
to the system. In that case, the eigenenergies En,l(Φ) depend separately on l and Φ and not only on l+ eΦ

hc . But
the Hamiltonian is still periodic in Φ and therefore we may still apply the above argument. The disorder will
localise most of the eigenstates, but some of them must still carry a current. With this argument it becomes
clear that in this geometry the current carrying states are those close to the boundary.

Experimental systems always have a boundary, also in x-direction. If one introduces a boundary potential in
x-direction as well, the argument cannot be applied directly but one still expects that the current is carried by
states which are extended around the boundary. On the other hand, it is as well possible to formulate the theory
with periodic boundary conditions in both directions. In that case there are no boundary states but there are still
states carrying the current.

6.3 The fractional quantum Hall effect

The fractional quantum Hall effect was found by Tsui, Störmer and Gossard at the end of 1981 and published in
1982 [74]. First theoretical approaches followed immediately, the main theoretical achievement was the work
by Laughlins [33] who described the ground state of the interacting many-electron system as a quantum fluid.
The Nobel Prize in Physics 1998 was awarded to Robert B. Laughlin, Horst L. Störmer, Daniel C. Tsui for their
discovery and theoretical work on the fractional quantum Hall effect.

6.3.1 Wave functions

Lowest Landau level

Models with non-interacting electrons as introduced in the last section cannot explain the fractional quantum
Hall effect. For the fractional quantum Hall effect, the interaction between electrons is important. The Hamilto-
nian is

H = ∑
j

[
1

2m

(
h̄
i
∇ j +

e
c
~A j

)2

+V1(~r j)

]
+

1
2 ∑

j 6=k
V (|~r j−~rk|) (6.26)

V1(~r) is a single particle potential. In the simplest way it describes a homogeneous background. In a more
complete model in contains the effect of the lattice, of imperfections, of the boundary, etc. The interaction
V (|~r|) is typically isotropic. An ansatz would be the Coulomb interaction

V (|~r|) = e2

|~r|
(6.27)
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or a screened interaction, which may be more suitable in the case we have in mind. The electrons move in a
strong magnetic field. We assume that the spin of the electrons is polarised and can therefore be ignored. This
is a suitable approximation if the filling factor ν ≤ 1. For the vector potential we choose a symmetric gauge

~A =
B
2
(y~ex− x~ey) (6.28)

m is the effective mass, it depends on the material we are looking at. For GaAs hetero structures m = 0.07me is
a typical value. In the following I take as a first ansatz a constant background potential V1 which can be put to
0. The single particle Hamiltonian now reads

H =
1
2

h̄ωc

[(
−ilB

∂

∂x
− y

2lB

)2

+

(
−ilB

∂

∂y
+

x
2lB

)2
]

=
1
2

h̄ωc[z∗z+ z∗∂z∗− z∂z−∂z∂z∗ ] (6.29)

where
z =

1
2lB

(x− iy), z∗ =
1

2lB
(x+ iy) (6.30)

∂z = lB

(
∂

∂x
+ i

∂

∂y

)
, ∂z∗ = lB

(
∂

∂x
− i

∂

∂y

)
(6.31)

We define
a† =

1√
2
(z∗−∂z) (6.32)

a =
1√
2
(z+∂z∗) (6.33)

where [a,a†] = 1, and obtain

H = h̄ωc(a†a+
1
2
) (6.34)

A wave function in the lowest Landau level obeys the condition

aψ = 0 (6.35)

zψ +∂z∗ψ = 0 (6.36)

with the general solution
ψ = f (z)exp(−z∗z) (6.37)

f (z) is an arbitrary analytic function depending on z. We assume that h̄ωc is the by far largest energy scale and
that ν < 1. The Hilbert space can then be restricted to the lowest Landau level. A general multi-particle wave
function in the lowest Landau level has the form

Ψ = f (z1, . . . ,zNe)exp(−∑
i

z∗i zi) (6.38)

where f is again an analytic function.
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Construction of a single particle basis and angular momentum

Before we discuss a variational ansatz for the many particle ground state, let us introduce a suitable single
particle basis. The Hamiltonian has a rotational symmetry, it commutes with the angular momentum Lz parallel
to the magnetic field. One has

Lz = ix
∂

∂y
− iy

∂

∂x
= z∂z− z∗∂z∗ (6.39)

Lz f (z)exp(−z∗z) = z f ′(z)exp(−z∗z) (6.40)

The eigenstates of Lz are therefore
ψm = zm exp(−z∗z) (6.41)

with the eigenvalue m. The ψm for a complete and orthogonal system of states within the lowest Landau level,
since they are the eigenfunctions of the operator Lz. Introducing a suitable normalisation the set {ψm, m =
1, . . . ,∞} forms an orthonormal basis of the single-particle Hilbert space. |ψm(z,z∗)|2 is rotational invariant and
has a maximum at |z|2 = m. To deal with a finite system, we restrict the Hilbert space to values m ≤ M, the
filling factor is then ν = Ne/M. This corresponds to a disk geometry with a soft boundary.

A many particle wave function
Ψ = f (z1, . . . ,zNe)exp(−∑

i
z∗i zi) (6.42)

is an eigenfunction of Lz, if f (z1, . . . ,zNe) is a homogeneous polynomial in the variables.

Laughlins ansatz for the ground state

Because of the projection to the lowest Landau level the only important contribution in the Hamiltonian is the
interaction. There is no single particle Hamiltonian any more. Laughlins idea is that the electrons should avoid
each other as good as possible. We therefore look for an ansatz which is homogeneous and where the electrons
have a large distance between each other. An ansatz, which was very successful in the description of liquid He3
is the Jastrow ansatz. It has the form

∏
j<k

f (~r j−~rk) (6.43)

In our case this means
Ψ = ∏

j<k
f (z j− zk)exp(−∑

i
z∗i zi) (6.44)

This wave function must have the following properties

• It should be an eigenfunction ofLz. Therefore f (z) ∝ zm.

• It should be antisymmetric with respect to permutaions of two particles. Therefore, m must be odd.

This means that the Jastrow ansatz yields

Ψ = Ψm = ∏
j<k

(z j− zk)
m exp(−∑

i
z∗i zi) (6.45)

Ψm is a wave function with an angular momentum Lz = mNe(Ne−1)/2. The highest power which occurs for a
single argument z j is M = m(Ne−1). As a consequence, the filling factor of the wave function is ν = 1/m. For
a fixed density, i.e. a fixed filling factor, the Jastrow ansatz has no free parameter, the wave function is fixed.

The question is whether Ψm is a good ansatz for the ground state of the Hamiltonian, and if yes, why. To
clarify this we look at two different calculations which have been done quite early after the publication of this
ansatz by Laughlin. The first is the diagonalisation of the Hamiltonian for small numbers of particles. An exact
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diagonalisation allows to calculate the overlap of the true ground state with Ψm. A good overview of such
calculations can be found in the book by T. Chakraborty and O. Pietiläinen [7]. It turns out that the overlap
is better for short range interactions and that for the bare Coulomb interaction the overlap is about 99% per
particle. The calculation have been done with up to 7 electrons for ν = 1/3. The Hilbert space dimension is(

21
7

)
, the diagonalisations are done using a Lanczos algorithm.

The numerical calculations show that for short range interactions the overlap is even better. Since the
electrons in our case have all the same spin, a short range interaction of Hubbard type, which would be
V (r) = V0δ (r) in the continuum, has no effect. The Pauli principle interdicts two electrons with the same
spin at the same place. The shortest possible interaction is therefore

V (r) =V2∇
2
δ (r) (6.46)

One can show that Ψm is the exact ground state for such a short range interaction. We will come back to this
point. It supports the view that Ψm describes the ground state wave function quite well.

Let us mention that it is possible to formulate a Laughlin type wave function as well for systems with periodic
boundary conditions. This is useful because in such a case the gauge argument formulated by Laughlin for the
integer quantum Hall effect can be applied. We discuss periodic boundary conditions below.

Properties of Ψm

Let us first discuss the case m = 1.

Ψ1 = ∏
j<k

(z j− zk)exp(−∑
i

z∗i zi) (6.47)

The factor ∏ j<k(z j− zk) is a so called Vandermonde determinant. One has

∏
j<k

(z j− zk) = (−1)Ne(Ne−1)/2
∑
P
(−1)P

∏
i

zi
P(i) (6.48)

Up to a normalisation factor, Ψ1 is the Slater determinant of the Ne single particle basis states ψm, m= 1, . . . ,Ne.
Therefore, Ψ1 is the exact ground state of the system for filling factor ν = 1.

Let us now discuss general wave functions Ψm. One has

|Ψm|2 = exp(−βφm(z1, . . . ,zNe)) (6.49)

This is the distribution function of the electrons. It can be interpreted as a classical gas with a free energy
φm(z1, . . . ,zNe). We choose β = 2/m and obtain

φm(z1, . . . ,zNe) =−m2
∑
j<k

ln |z j− zk|+m
Ne

∑
l=1
|zl|2 (6.50)

This is the free energy of a classical two-dimensional one-component plasma with charge m. The general free
energy of a classical two-dimensional one-component plasma is

φm(z1, . . . ,zNe) =−e2
∑
j<k

ln |z j− zk|+
π

2
ρ0e

Ne

∑
l=1
|zl|2 (6.51)

Here, the first term represents the two-dimensional Coulomb repulsion of the particles and the second term
represents the attractive interaction with a homogeneous background with a charge density ρ0. In our case we
have

ρ0 =
2
π

(6.52)
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The plasma is neutral, the particle density is

ρ =
2

πm
(6.53)

Th physical properties of the two-dimensional single-component plasma is well understood. For not too large
m it forms an incompressible fluid. It has a homogeneous density. The most important quantity to look at is the
pair correlation function

g(z1,z2) =
Ne(Ne−1)

ρ2

∫
d2z3 . . .d2zNe |Ψm|2∫
d2z1 . . .d2zNe |Ψm|2

(6.54)

g describes the correlation of two particles. For a translational invariant and isotropic system, it depends only
on r = |z1− z2|. For large r the function tends to 1. For small r it decays like ∝ r2m. The interaction energy is

EWW =
1
2

∫
d2zg(|z|)V (|z|) (6.55)

Taking into account the homogeneous background, the total energy is

E =
1
2

∫
d2z(g(|z|)−1)V (|z|) (6.56)

For a short range interaction V (z) = V2∇2δ (z) we have E = EWW . If g(r) decays faster than r2 one obtains
E = 0. Since E is non-negative, Ψm is a ground state of the system, as stated above. Further, one can show that
Ψm is the only ground state for m = 3. For m = 5 it is not unique but it becomes unique if a second term is
introduced to the interaction V (z) = (V2∇2+V4(∇

2)2)δ (z). Similar results can be shown for larger values of m.
This explains the above proposition that Ψm is the exact ground state of the system for short range interactions.

The function g(r) shows the typical characteristics of an incompressible fluid. It vanishes sufficiently fast at
r = 0, has a single maximum at some characteristic value of r and tends to 1 without further oscillations for
large r. For a crystal g(r) shows oscillations. For m = 1 we can calculate g(r) exactly, one obtains

g(r) = 1− exp(−r2) (6.57)

The wave function Ψm therefore describes for not too large m an incompressible quantum fluid. For an
incompressible quantum fluid one expects an energy gap between the ground state and the low lying excitations.
Let us now look at the low lying excitations.

6.3.2 Elementary excitations

We use the quasi-particle concept to describe the elementary excitations. We constrict quasi-particles and -
holes. Let εp and εh be the energy of a quasi-particle or -hole respectively. Then, ε = εp + εh is the excitation
energy of an uncharged excitation. In Laughlin’s original formulation, he created quasi-particles or -holes by
changing M instead of Ne. Let us first discuss a quasi-hole. It can be obtained by increasing M.

For a given wave function Ψ, M is determined by the number of zeros the wave function has as a function of
a single particle coordinate zi. Increasing M means increasing the number of zeros. The simplest state is one
with an additional zero, i.e. a state with M+1 zeros. We let

Ψ
(−)
m = Sz0Ψm (6.58)

Sz0 =
Ne

∏
j=1

(z j− z0) (6.59)

The wave function Sm
z0

Ψm corresponds to a wave function with filling factor 1/m and Ne + 1 electrons, where

one electron at z0 is taken out. Ψ
(−)
m ca therefore be interpreted as a hole where a 1/m fraction of an electron

was removed. The state is a state with a fractional charge. The quasi-hole generated at z0 via Sz0 has the charge
e/m. The same holds true for the classical two-dimensional one-component plasma. The multiplication with
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Sz0 corresponds to adding −m∑ j ln |z j− z0| to φm, and therefore to a missing charge of 1, whereas the particles
forming the plasma have a charge m.

Because of the translational invariance of the system the energy of the quasi-hole does not depends on z0.
One can determine the energy either by diagonalising small systems numerically like for the ground state or by
calculating the expectation value of the Hamiltonian in the state Ψ

(−)
m , which as well must be done numerically.

The typical energy of the quasi-hole is 0.025e2/lB. At typical field strength B≈ 10−20T the excitation energy
corresponds to a temperature of 4−8K. This is in good agreement with the experimental fact that the fractional
quantum Hall effect can be observed ate temperature below 1K.

It is a bit more difficult to construct wave functions for quasi-particles. Laughlins proposal was to use

Ψ
(+)
m = exp(−∑

j
|z j|2)

Ne

∏
j=1

∂

∂ z j
∏
k<l

(zk− zl)
m (6.60)

for a quasi-particle at the origin. The numerical calculations show that this is a less good approximation.
Nevertheless, the basic physical idea connected to this ansatz is the same as for quasi-holes.

The excitation energies for quasi-particles or quasi-holes are finite, as it should be for an incompressible
quantum fluid. Similarly to the integer quantum Hall effect, one may now argue that the quasi-particles or
holes in the system behave like usual electrons in the integer quantum hole effect. The only difference is the
charge, which is 1/m times the original charge. This argument can then be used to explain why there are
plateaus in the Hall conductivity at integer multiples of e2/hm.

6.3.3 Periodic boundary conditions

The ideas presented so far can be formulated in a system with periodic boundary conditions as well. The math-
ematical formulation is more evolved, because one has to deal with doubly-periodic analytic functions. Such
functions do not exists. Instead, one needs quasi-periodic functions, so called θ -functions. The representation
uses projective representations of the translation group. Within this representation it can be shown that an ad-
ditional particle or hole in the system is indeed localised and thereby on can explain the existence of a plateau
in the Hall conductivity.

6.4 Universality

In a seminal paper, Fröhlich and Kerler [13] showed that there is a completely different way to explain the
integer and fractional quantum Hall effect. In this last section, I briefly sketch their view and I try to connect it
to what we learned so far. Starting point is classical electrodynamics.

6.4.1 Classical electrodynamics in quantum Hall systems

In this subsection we look at the classical electrodynamics of a two-dimensional electron gas which has a
conductivity tensor of the form

σ =

(
0 −σH

σH 0

)
= σHε (6.61)

where ε = (εαβ )α,β=1,2 with ε12 = −ε21 = 1, ε11 = ε22 = 0 . We introduce the current density ~j = ( j1, j2)

and the charge density j0. The electric field is ~E = (E1,E2) and we introduce a field-strength tensor F . It is
anti-symmetric and has the elements F0α = Eα , F12 = −B. B is the magnetic field perpendicular to the two-
dimensional plane the electrons move in. Further, let x0 = ct and x1, x2 be the coordinates, x = (x0,x1,x2),
and

∂α =
∂

∂xα
(6.62)
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6 The fractional quantum Hall effect

The current density is given by
jα(x) = σHε

αβ Eβ (x) (6.63)

The continuity condition is
∂α jα = 0 (6.64)

and Faradays law has the form
∂B
∂x0 (x)+∇×~E(x) = 0 (6.65)

or
ε

αβγ
∂αFβγ(x) = 0 (6.66)

Taking the continuity condition and Faradays law, we obtain

σH∂0B =−σH∇×~E =−∇ ·~j = ∂0 j0 (6.67)

and therefore
j0(x) = σHB(x) (6.68)

Taking this equation together with the material equations for ~j we may put everything together in the compact
form

Jαβ (x) = σHFαβ (x) (6.69)

where
Jαβ (x) = εαβγ jγ(x) (6.70)

εαβγ is the complete anti-symmetric tensor. The continuity equation now takes the form

ε
αβγ

∂αJβγ(x) = 0 (6.71)

As a consequence, σH must be locally independent of x! Further, lines where σH changes must carry a current.
The continuity equation implies that for the current tensor Jαβ and as well for the field-strength tensor Fαβ we
can introduce a vector potential

Fαβ = ∂αAβ −∂β Aα (6.72)

Jαβ = ∂αaβ −∂β aα (6.73)

and we obtain
∂α(aβ −σHAβ )−∂β (aα −σHAα) = 0 (6.74)

This relation can be derived from the action

SCS(a−σHA) =
∫

R×Ω

d3xε
αβγ(aα −σHAα)∂β (aγ −σHAγ) (6.75)

SCS is called Chern-Simons action. This action is independent of the choice of coordinates.
The status of the ideas presented so far is as follows: Whereas the continuity equation and Faradays law hold

exactly, the material equation J = σHF is experimentally varified only on sufficiently large time and length
scales. We therefore cannot exclude that in addition to the Chern-Simons action SCS the total action contains
a further term SI which should be symmetric under time reversal and which should conserve parity. The total
action will therefore be

S(a,A) = SCS(a−σHA)+SI(a,A) (6.76)

where the behaviour on long time and length scales is determined by SCS.
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6 The fractional quantum Hall effect

6.4.2 Quantisation

The current density j is a quantum mechanical operator, to be precise an operator valued distribution, therefore
the vector potential a must be an operator as well. The same is true for A, at least in principle. Since we do not
want to treat QED, it is in our case sufficient to take A as a classical field. The remaining task is now to quantise
the action S(a,A) where A will be treated as an external, classical field. The quantisation can be performed
using a path integral. We use Euclidean path integrals and introduce the coordinates

a0→−ia0, A0→−iA0, ∂0→−i∂0, dx0→ idx0 (6.77)

Further, we introduce the vector potential Ac for the external constant magnetic field so that the total as vec-
tor potential Ã = Ac +A contains Ac and A, coming from local sources. The Euclidean measure dPA, which
describes the ground state of the system with the action S is then given by

dPA(a) := Z(Ac +A)−1 exp(−1
h̄

SE(a,A))D[a] (6.78)

where
SE(a,A) =−iκSCS(a−σHA)+SI(a,A) (6.79)

D[a] = ∏
x

2

∏
α=0

daα(x) (6.80)

and Z(Ac +A) is the partition function, chosen such that
∫

dPA(a) = 1. The action SE(a,A) should be derived
form a microscopic theory, but such a derivation does not yet exist. The field theoretical formulation of the
non-interacting electron system presented e.g. in the chapter 5 by Pruisken in [61] for the integer quantum Hall
effect is of that form. But using just the structure of the action one can already derive some properties. The
Euclidean partition function Z(Ac +A) should be invariant under gauge transformations and the electron wave
function must be unique. Both properties can only be fulfilled if σH takes values

σH =± 1
2l +1

e2

h
(6.81)

This was shown by Fröhlich and Kerler [13]. The authors further show that one may allow for more than one
current. Let J(i) be a set of currents, for each the condition

J(i) = σ
(i)
H F (6.82)

must hold. This then explains the experimentally observed values of σH .
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