Learning with incomplete information on the Committee Machine

Urs Bergmann

Heidelberg, Δ Meeting, December 2007
(1) Introduction

- Network Architectures
(2) Learning
- Introduction
- Generalization Error
- Exemplified Analysis
(3) Learning with Incomplete Information
- Introduction
- Coarse Graining
(4) Results
- Perceptron
- Committee Machine
(5) Conclusion

Perceptron

The 'elementary particle' of perception.

- N dimensional Ising input $\vec{\xi} \in\{-1,1\}^{N}$
- adaptive weightvector \vec{J}
- Network response: $s=\mathrm{g}(\vec{\jmath} \cdot \vec{\xi} / \sqrt{N})$ where g is a sigmoidal function.

Why more complex?

- The illustration shows a linear separable function (left) and a non-linear separable function (right).
- A single layered network $\mathrm{g}(\vec{J} \vec{\xi})=\operatorname{sign}(\vec{J} \vec{\xi})$ can only implement linear separable functions.
- \rightarrow more layers needed.

Committee Machine ${ }^{1}$

- N dimensional Ising input $\vec{\xi} \in\{-1,1\}^{N}$
- K weightvectors \vec{J}_{k} for all 'hidden' units
- K weights w_{k} at output unit
- Output of the network:

$$
s(\vec{\xi})=\mathrm{f}\left(\frac{1}{\sqrt{K}} \sum_{k=1}^{K} w_{k} \mathrm{~g}\left(\vec{J}_{k} \vec{\xi} / \sqrt{N}\right)\right)
$$

[^0]
Committee Machine (2)

- for K unrestricted, the network is an universal approximator [Cybenko89]
- soft-committee machine
- $\mathrm{f}=\mathrm{id}$
- output weights $w_{k}=1$
- Def. field: $x_{k}=\vec{J}_{k} \vec{\xi} / \sqrt{N}$
- $\rightarrow s(\vec{\xi})=\frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathrm{~g}\left(x_{k}\right)$

Unsupervised and Supervised Learning

- Unsupervised learning
- no answers of a goal function given
- information only in the correlations of the input
- \rightarrow categorization of the input patterns

Unsupervised and Supervised Learning

- Unsupervised learning
- no answers of a goal function given
- information only in the correlations of the input
- \rightarrow categorization of the input patterns
- Supervised learning
- learning based on examples / correct answers
- here: consider a teacher network with output $t(\vec{\xi})$ and M hidden units
- for the Committee Machine we have 3 different cases:
- $K=M$ exactly learnable
- $K<M$ unlearnable
- $K>M$ overlearnable

Reinforcement Learning ${ }^{2}$

- instead of examples, only a reward signal is given
- this signal may be unspecific in time
- this unspecificity causes a credit assignment problem
- more plausible biologically
- RL 'in between' unsupervised and supervised learning

[^1]
Hebbian Type Learning

- General Hebbian learning rule:

$$
\vec{J}^{\mu}=\vec{J}^{\mu-1}+\frac{1}{N} I\left(s^{\mu}, t^{\mu}\right) \vec{\xi}^{\mu} t^{\mu}
$$

- Supervised Hebbian learning: I $\left(s^{\mu}, t^{\mu}\right)=1$
- Rosenblatts Perceptron learning: $I\left(s^{\mu}, t^{\mu}\right)=\Theta\left(-s^{\mu} t^{\mu}\right)$

Generalization Error

- Def.: $\varepsilon^{\mu}(\vec{J})=\frac{1}{4}\left[s^{\mu}-t^{\mu}\right]^{2}, t$ denoting the goal function.
- theoretical analysis of the network: average error over probability density $P(\xi)$ of input patterns.
- $\varepsilon_{g}=\langle\varepsilon(\vec{J}, \vec{\xi})\rangle_{P(\vec{\xi})}$
- in the following: isotropic density $P(\vec{\xi})$
- $\left\langle\xi_{i}\right\rangle=0,\left\langle\xi_{i} \xi_{j}\right\rangle=\delta_{i j}$

One-Layered Geometrical Solution

- Project to the (\vec{J}, \vec{B}) plane:

- Error probability: $\varepsilon_{g}=\phi / \pi=\frac{1}{\pi} \arccos \left(\frac{\vec{J} \cdot \vec{B}}{J \cdot B}\right)$
- for $Q=\vec{\jmath} \cdot \vec{J}, R=\vec{\jmath} \cdot \vec{B}, T=\vec{B} \cdot \vec{B}$ gilt:

$$
\varepsilon_{g}=\frac{1}{\pi} \arccos \left(\frac{R}{\sqrt{Q T}}\right)
$$

Committee Generalization Error

- Plug in the definition of the soft-committee machine:

$$
\varepsilon(\mathbf{x}, \mathbf{y})=\frac{1}{4}\left(\frac{1}{\sqrt{K}} \sum_{k=1}^{K} \mathrm{~g}\left(x_{k}\right)-\frac{1}{\sqrt{M}} \sum_{m=1}^{M} \mathrm{~g}\left(y_{m}\right)\right)^{2}
$$

- Generalization Error: $\varepsilon_{g}(\vec{J})=\langle\epsilon(\vec{J}, \vec{\xi})\rangle_{\{\vec{\xi}\}}$
- Integration yields:
- $\mathrm{g}(x)=\operatorname{sign}(x)$:

$$
\begin{array}{rll}
\varepsilon_{g}= & \frac{K}{4}-\frac{1}{2 \pi K} & \\
& \sum_{i}^{K} \sum_{j}^{K} \arccos \left(\frac{Q_{i j}}{\sqrt{Q_{i i} Q_{i j}}}\right) \\
& +\frac{M}{4}-\frac{1}{2 \pi M} & \sum_{m}^{K} \sum_{n}^{K} \arccos \left(\frac{T_{m n}}{\sqrt{T_{m m} T_{n n}}}\right) \tag{1}\\
-\frac{\sqrt{K M}}{2}+\frac{1}{\pi \sqrt{K M}} & \sum_{i}^{K} \sum_{n}^{M} \arccos \left(\frac{R_{i n}}{\sqrt{Q_{i i} T_{n n}}}\right) .
\end{array}
$$

Supervised Hebbian Learning

- Learing rule: $\vec{J}^{\mu}=\vec{J}^{\mu-1}+\frac{1}{N} \vec{\xi}^{\mu} t^{\mu}$
- Thermodynamic limit yields gaussian variables x and y.
- Therefore using a continuous time limit, we can rewrite the equation in the order parameters:

$$
d R / d \alpha=\sqrt{\frac{2}{\pi}}, \quad d Q / d \alpha=2 \sqrt{\frac{2}{\pi}} R(\alpha)+1
$$

- $\varepsilon_{g}=\frac{1}{\pi} \arccos \left[\left(1+\frac{\pi}{2 \alpha}\right)^{-1 / 2}\right]$
- Asymptotics $(\alpha \rightarrow \infty): \varepsilon_{g} \approx \frac{1}{\sqrt{2 \pi}} \alpha^{-1 / 2}$

Rosenblatt Perceptron Algorithm

- Learning rule: $\vec{J}^{\mu}=\vec{J}^{\mu-1}+\frac{1}{N} \Theta\left(-s^{\mu} t^{\mu}\right) \vec{\xi}^{\mu} t^{\mu}$
- with $\rho(\alpha)=\frac{R(\alpha)}{\sqrt{Q(\alpha)}}$ yields:

$$
\begin{align*}
\frac{d \rho}{d \alpha} & =\sqrt{\frac{1}{2 \pi}}\left(\frac{1-\rho^{2}}{\sqrt{Q}}-\frac{\rho}{Q} \arccos (\rho)\right) \\
\frac{d Q}{d \alpha} & =\sqrt{\frac{2}{\pi}}(\rho-1) \sqrt{Q}+\frac{1}{\pi} \arccos (\rho) \tag{2}
\end{align*}
$$

- Asymptotics $(\alpha \rightarrow \infty): \varepsilon_{g} \approx \frac{1}{\pi}\left(\frac{2}{3}\right)^{1 / 3} \alpha^{-1 / 3}$

Associative Reinforcement Learning ${ }^{3}$

- so far only immediate supervision considered
- now only graded feedback after L steps:
- AE ("Average Error"):

$$
e_{q}=\frac{1}{2 L} \sum_{l=1}^{L}\left|t^{q, l}-s^{q, l}\right|
$$

- HI ("Hidden Instance"):

$$
e_{q}=\frac{1}{4 L^{2}}\left(\sum_{l=1}^{L}\left(t^{q, l}-s^{q, l}\right)\right)^{2}
$$

${ }^{3}$ [Kuhn, Stamatescu, 2007]

Associative Reinforcement Learning (2) ${ }^{4}$

- the learning algorithm consists of two phases:
(1) L times unsupervised Hebbian learning:

$$
\vec{J} q_{q, l+1}=\vec{\jmath} \boldsymbol{J} q, l+\frac{a_{1}}{\sqrt{N}} s^{q, l} \vec{\xi}^{q, l}
$$

(2) finally an unspecific reinforcement step:

$$
\vec{J} q+1, L=\vec{J} q, L+1-\frac{a_{2}}{\sqrt{N}} e_{q} \sum_{l=1}^{L} s^{q, l} \vec{\xi}^{q, l}
$$

${ }^{4}$ [Kuhn, Stamatescu, 2007]

Associative Reinforcement Learning (3)

Mechanisms needed for the algorithm have been observed in the brain:

- hippocampal replay of activity sequences during awake state [Foster06] as well as in sleep [Nadasdy99]
- replays have also been observed in cortex [Euston07]
- neuromodulators control the polarity of plasticity [Seo/07]

Simulation Results

Coarse Graining - Motivation

Goal of the following analysis:

- get rid of random fluctuations
- reduce degrees of freedom
- speed up computing time
- \rightarrow gain knowledge about the learning behavior

Coarse Graining

- Combine the two phases in one coarse grained step:

$$
J_{k i}^{(q+1,1)}=J_{k i}^{(q, 1)}+\frac{g_{q}}{\sqrt{N}} \sum_{l=1}^{L} \mathrm{~g}\left(x_{k}^{(q, l)}\right) \xi_{i}^{(q, l)}
$$

- $g_{q}=\lambda-e_{q}, \lambda=a_{1} / a_{2}$
- Thermodynamic limit and continuous time limit yield:

$$
\begin{aligned}
\frac{d R_{k k^{\prime}}}{d \alpha} & =\left\langle\frac{g_{q}}{L} \sum_{l}^{L} \mathrm{~g}\left(x_{k}^{(q, /)}\right) y_{k^{\prime}}^{(q, l)}\right\rangle \\
\frac{d Q_{k k^{\prime}}}{d \alpha} & =\left\langle\frac{g_{q}^{2}}{L} \sum_{l}^{L} \mathrm{~g}\left(x_{k}^{(q, l)}\right) \mathrm{g}\left(x_{k^{\prime}}^{(q, l)}\right)\right\rangle \\
& +\left\langle\frac{g_{q}}{L} \sum_{l}^{L}\left[\mathrm{~g}\left(x_{k}^{(q, /)}\right) x_{k^{\prime}}^{(q, l)}+\mathrm{g}\left(x_{k^{\prime}}^{(q, l)}\right) x_{k}^{(q, l)}\right]\right\rangle
\end{aligned}
$$

Methods

Reduction from NK degrees of freedom to $K(K+1) / 2+K M$ degrees, but

- Integrals cannot be expressed in closed form
- \rightarrow Monte-Carlo Simulation to solve r.h.s.
- Runge-Kutta method to solve the DE

Simulation and Coarse Graining

K1 Asymptotics

- Figure: $L=10$ and
$\sqrt{Q_{0}}=100$
- Above λ_{c} perfect generalization
- Coarse
graining yields $\alpha^{-1 / 2 \lambda L^{2}}$
asymptotics

K1 Saddlepoint Plateau

K1 Phase Trajectories

K1 Flow

Figure: Flow for $\lambda=0.3$ and $K=M=1$.

K1 Flow

Figure: Flow for $\lambda=0.1$ and $K=M=1$.

λ_{c} Dependence

	$\sqrt{Q_{0}}=1$	$\sqrt{Q_{0}}=10$	$\sqrt{Q_{0}}=100$	$\sqrt{Q_{0}}=10000$
$\mathrm{~L}=3$	$3.231 \cdot 10^{-2}$	$1.242 \cdot 10^{-2}$	$1.831 \cdot 10^{-3}$	$1.833 \cdot 10^{-5}$
$\mathrm{~L}=5$	$3.322 \cdot 10^{-2}$	$1.828 \cdot 10^{-2}$	$5.550 \cdot 10^{-3}$	$8.580 \cdot 10^{-5}$
$\mathrm{~L}=7$	$2.991 \cdot 10^{-2}$	$1.954 \cdot 10^{-2}$	$9.424 \cdot 10^{-3}$	$4.543 \cdot 10^{-4}$
$\mathrm{~L}=10$	$2.510 \cdot 10^{-2}$	$1.848 \cdot 10^{-2}$	$1.171 \cdot 10^{-2}$	$2.708 \cdot 10^{-3}$

Table: Critical values of λ_{c} for various L and starting conditions $\sqrt{Q_{0}}$.

Symmetric Plateau

Initial conditions:

- $Q_{k k^{\prime}}=\delta_{k k^{\prime}}$
- $R_{k m}=R_{0} \delta_{k m}$
- $T_{m m^{\prime}}=\delta_{m m^{\prime}}$

Figure: $K=M=2$. Less symmetric starting conditions yield smaller plateaus.

Unrealizable Learning

Figure: $K=1$ and $M=2$ unrealizable case.

Overrealizable Learning

Figure: $K=2$ and $M=1$ overrealizable case.

Conclusion

- Standard learning algorithms not sufficient to learn incomplete information
- Non-trivial dynamics:
- above the bifurcation point λ_{c} learning always converges
- below, two fixed points occur
- In the committee machine many fixed points arise, that may disturb learning
- Overrealizable and unrealizable cases converge

Thanks to my collaborators: Ion-Olimpiu Stamatescu and Reimer Kühn

Thank you for your attention!

[^0]: ${ }^{1}[$ Saad 95$]$

[^1]: ${ }^{2}$ [Hertz91, Sutton98]

