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Perceptron

The ‘elementary particle’ of perception.

N dimensional Ising input ~ξ ∈ {−1, 1}N

adaptive weightvector ~J

Network response: s = g(~J · ~ξ/
√

N)
where g is a sigmoidal function.
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Why more complex?
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The illustration shows a linear separable function (left) and a
non-linear separable function (right).

A single layered network g(~J~ξ) = sign
(
~J~ξ
)

can only

implement linear separable functions.

→ more layers needed.



Outline Introduction Learning Learning with Incomplete Information Results Conclusion

Committee Machine1

N dimensional Ising input ~ξ ∈ {−1, 1}N

K weightvectors ~Jk for all ‘hidden’ units

K weights wk at output unit

Output of the network:

s(~ξ) = f
(

1√
K

∑K
k=1 wk g(~Jk

~ξ/
√

N)
)

1[Saad95]
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Committee Machine (2)

for K unrestricted, the network is an universal
approximator [Cybenko89]

soft-committee machine

f = id
output weights wk = 1
Def. field: xk = ~Jk

~ξ/
√

N

→ s(~ξ) = 1√
K

∑K
k=1 g(xk)
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Unsupervised and Supervised Learning

Unsupervised learning

no answers of a goal function given
information only in the correlations of the input
→ categorization of the input patterns

Supervised learning

learning based on examples / correct answers

here: consider a teacher network with output t(~ξ) and M
hidden units
for the Committee Machine we have 3 different cases:

K = M exactly learnable
K < M unlearnable
K > M overlearnable
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Reinforcement Learning2

instead of examples, only a reward signal is given

this signal may be unspecific in time

this unspecificity causes a credit assignment problem

more plausible biologically

RL ‘in between’ unsupervised and supervised learning

2[Hertz91, Sutton98]
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Hebbian Type Learning

General Hebbian learning rule:

~Jµ = ~Jµ−1 + 1
N l(sµ, tµ)~ξµtµ

Supervised Hebbian learning: l(sµ, tµ) = 1

Rosenblatts Perceptron learning: l(sµ, tµ) = Θ(−sµtµ)
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Generalization Error

Def.: εµ(~J) = 1
4 [sµ − tµ]2, t denoting the goal function.

theoretical analysis of the network: average error over
probability density P(ξ) of input patterns.

εg = 〈ε(~J, ~ξ)〉
P(~ξ)

in the following: isotropic density P(~ξ)

〈ξi 〉 = 0, 〈ξiξj〉 = δij
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One-Layered Geometrical Solution

Project to the (~J, ~B) plane:

Error probability: εg = φ/π = 1
πarccos(

~J·~B
J·B )

for Q = ~J · ~J, R = ~J · ~B, T = ~B · ~B gilt:

εg = 1
πarccos( R√

QT
)
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Committee Generalization Error

Plug in the definition of the soft-committee machine:

ε(x, y) = 1
4

(
1√
K

∑K
k=1 g(xk)− 1√

M

∑M
m=1 g(ym)

)2

Generalization Error: εg (~J) = 〈ε(~J, ~ξ)〉{~ξ}
Integration yields:

g(x) = sign(x):

εg = K
4 −

1
2πK

K∑
i

K∑
j

arccos

(
Qij√
QiiQjj

)

+M
4 −

1
2πM

K∑
m

K∑
n

arccos
(

Tmn√
TmmTnn

)

−
√

KM
2 + 1

π
√

KM

K∑
i

M∑
n

arccos
(

Rin√
QiiTnn

)
. (1)
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Supervised Hebbian Learning

Learing rule: ~Jµ = ~Jµ−1 + 1
N
~ξµtµ

Thermodynamic limit yields gaussian variables x and y .

Therefore using a continuous time limit, we can rewrite the
equation in the order parameters:

dR/dα =
√

2
π , dQ/dα = 2

√
2
πR(α) + 1

εg = 1
πarccos

[
(1 + π

2α)−1/2
]

Asymptotics (α→∞): εg ≈ 1√
2π
α−1/2
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Rosenblatt Perceptron Algorithm

Learning rule: ~Jµ = ~Jµ−1 + 1
N Θ(−sµtµ)~ξµtµ

with ρ(α) = R(α)√
Q(α)

yields:

dρ

dα
=

√
1

2π

(
1− ρ2

√
Q
− ρ

Q
arccos(ρ)

)
dQ

dα
=

√
2

π
(ρ− 1)

√
Q +

1

π
arccos(ρ) (2)

Asymptotics (α→∞): εg ≈ 1
π (2

3)1/3α−1/3
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Associative Reinforcement Learning3

so far only immediate supervision considered

now only graded feedback after L steps:

AE (“Average Error”):

eq = 1
2L

∑L
l=1 |tq,l − sq,l |

HI (“Hidden Instance”):

eq = 1
4L2

(∑L
l=1(tq,l − sq,l)

)2

3[Kuhn, Stamatescu, 2007]
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Associative Reinforcement Learning (2)4

the learning algorithm consists of two phases:
1 L times unsupervised Hebbian learning:

~Jq,l+1 = ~Jq,l + a1√
N

sq,l~ξq,l

2 finally an unspecific reinforcement step:
~Jq+1,L = ~Jq,L+1 − a2√

N
eq

∑L
l=1 sq,l~ξq,l

4[Kuhn, Stamatescu, 2007]
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Associative Reinforcement Learning (3)

Mechanisms needed for the algorithm have been observed in the
brain:

hippocampal replay of activity sequences during awake
state [Foster06] as well as in sleep [Nadasdy99]

replays have also been observed in cortex [Euston07]

neuromodulators control the polarity of plasticity [Seol07]
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Simulation Results
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Coarse Graining – Motivation

Goal of the following analysis:

get rid of random fluctuations

reduce degrees of freedom

speed up computing time

→ gain knowledge about the learning behavior
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Coarse Graining

Combine the two phases in one coarse grained step:

J
(q+1,1)
ki = J

(q,1)
ki +

gq√
N

∑L
l=1 g(x

(q,l)
k )ξ

(q,l)
i

gq = λ− eq, λ = a1/a2

Thermodynamic limit and continuous time limit yield:

dRkk ′

dα
= 〈gq

L

L∑
l

g(x
(q,l)
k )y

(q,l)
k ′ 〉,

dQkk ′

dα
= 〈

g2
q

L

L∑
l

g(x
(q,l)
k )g(x

(q,l)
k ′ )〉

+ 〈gq

L

L∑
l

[
g(x

(q,l)
k )x

(q,l)
k ′ + g(x

(q,l)
k ′ )x

(q,l)
k

]
〉
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Methods

Reduction from NK degrees of freedom to K (K + 1)/2 + KM
degrees, but

Integrals cannot be expressed in closed form

→ Monte-Carlo Simulation to solve r.h.s.

Runge-Kutta method to solve the DE
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Simulation and Coarse Graining
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K1 Asymptotics
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K1 Saddlepoint Plateau
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K1 Phase Trajectories

 0.0001

 0.001

 0.01

 0.1

 1

 0.01  0.1  1  10  100  1000  10000 100000 1e+06 1e+07 1e+08

ε g

Q1/2

λ = 0.0100000
λ = 0.0117000
λ = 0.0117085
λ = 0.0118000
λ = 0.0100000
λ = 0.0150000
λ = 0.0200000



Outline Introduction Learning Learning with Incomplete Information Results Conclusion

K1 Flow

Figure: Flow for λ = 0.3 and K = M = 1.
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K1 Flow

Figure: Flow for λ = 0.1 and K = M = 1.
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λc Dependence

√
Q0 = 1

√
Q0 = 10

√
Q0 = 100

√
Q0 = 10000

L=3 3.231 · 10−2 1.242 · 10−2 1.831 · 10−3 1.833 · 10−5

L=5 3.322 · 10−2 1.828 · 10−2 5.550 · 10−3 8.580 · 10−5

L=7 2.991 · 10−2 1.954 · 10−2 9.424 · 10−3 4.543 · 10−4

L=10 2.510 · 10−2 1.848 · 10−2 1.171 · 10−2 2.708 · 10−3

Table: Critical values of λc for various L and starting conditions
√

Q0.
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Symmetric Plateau
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Figure: K = M = 2. Less symmetric starting
conditions yield smaller plateaus.

Initial conditions:

Qkk′ = δkk′

Rkm = R0δkm

Tmm′ = δmm′
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Unrealizable Learning
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Figure: K = 1 and M = 2 unrealizable case.
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Overrealizable Learning
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Figure: K = 2 and M = 1 overrealizable case.
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Conclusion

Standard learning algorithms not sufficient to learn incomplete
information

Non-trivial dynamics:

above the bifurcation point λc learning always converges
below, two fixed points occur

In the committee machine many fixed points arise, that may
disturb learning

Overrealizable and unrealizable cases converge
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Thanks to my collaborators:
Ion-Olimpiu Stamatescu and Reimer Kühn

Thank you for your attention!
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