A Remnant of Supersymmetry on the Lattice

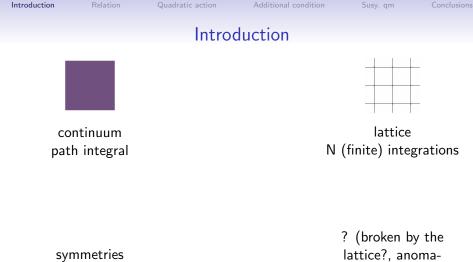
Georg Bergner

December 15, 2007

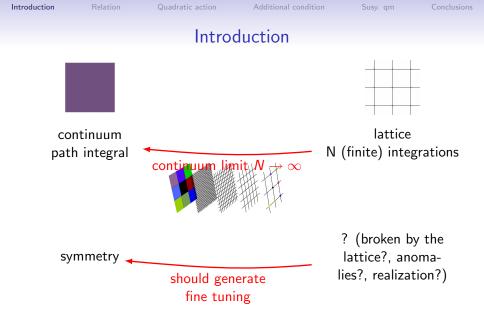
- Introduction: blocking the continuum
- 2 Blocking induced symmetry relations
- Quadratic action
- Additional condition
- 5 Application to supersymmetric quantum mechanics with a quadratic action

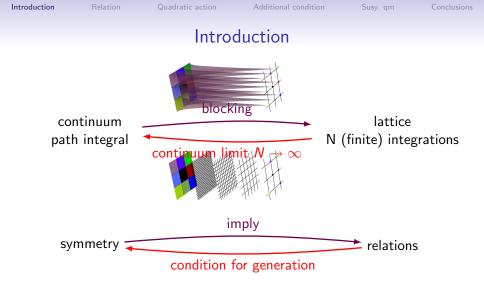
6 Conclusions

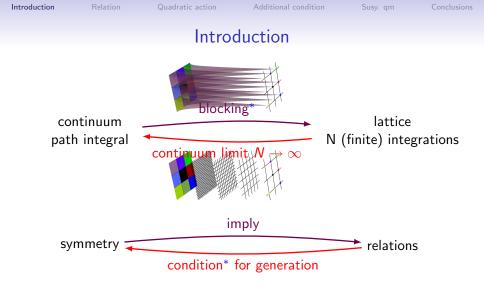
suggestion [Lüscher]; earlier attempts [So, Ukita]



lies?, realization?)

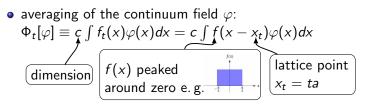






* blocking not unique; not invertible (condition necessary?)

The blocking transformation



• associate the degrees of freedom on the lattice with averaged continuum fields e.g.

$$e^{-S_L(\{\phi_t\})} = \int \mathcal{D}\varphi \prod_t \delta(\phi_t - \Phi_t[\varphi]) e^{-S[\varphi]}$$

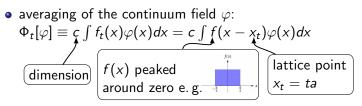
• "smeared" version¹ (α blocking matrix):

$$e^{-S_{L}(\{\phi_t\})} = \int \mathcal{D}\varphi \, e^{-\frac{1}{2}(\phi_t - \Phi_t[\varphi])\alpha_{tt'}(\phi_{t'} - \Phi_{t'}[\varphi])} e^{-S[\varphi]}$$

$$\exp\left(-\frac{1}{2}(\phi_t - \Phi_t[\varphi])\alpha_{tt'}(\phi_{t'} - \Phi_{t'}[\varphi])\right) \xrightarrow[\alpha_{tt} \to \infty]{} \prod_t \delta(\phi_t - \Phi_t[\varphi])$$

¹used in [Ginsparg, Wilson]

The blocking transformation



• associate the degrees of freedom on the lattice with averaged continuum fields e.g.

$$e^{-S_L(\{\phi_t\})} = \int \mathcal{D}\varphi \prod_t \delta(\phi_t - \Phi_t[\varphi]) e^{-S[\varphi]}$$

• "smeared" version¹ (α blocking matrix):

$$e^{-S_L(\{\phi_t\})} = \int \mathcal{D}\varphi \ e^{-\frac{1}{2}(\phi_t - \Phi_t[\varphi])\alpha_{tt'}(\phi_{t'} - \Phi_{t'}[\varphi])} e^{-S[\varphi]}$$

$$\exp\left(-\frac{1}{2}(\phi_t - \Phi_t[\varphi])\alpha_{tt'}(\phi_{t'} - \Phi_{t'}[\varphi])\right) \xrightarrow[\alpha_{tt} \to \infty]{} \prod_t \delta(\phi_t - \Phi_t[\varphi])$$

¹used in [Ginsparg, Wilson]

The blocking transformation

• averaging of the continuum field φ : $\Phi_t[\varphi] \equiv c \int f_t(x)\varphi(x)dx = c \int f(x-x_t)\varphi(x)dx$

• associate the degrees of freedom on the lattice with averaged continuum fields e.g.

$$e^{-S_L(\{\phi_t\})} = \int \mathcal{D}\varphi \prod_t \delta(\phi_t - \Phi_t[\varphi]) e^{-S[\varphi]}$$

• "smeared" version¹ (α blocking matrix):

$$e^{-S_{L}(\{\phi_{t}\})} = \int \mathcal{D}\varphi \, e^{-\frac{1}{2}(\phi_{t} - \Phi_{t}[\varphi])\alpha_{tt'}(\phi_{t'} - \Phi_{t'}[\varphi])} e^{-S[\varphi]}$$

$$\exp(-\frac{1}{2}(\phi_t - \Phi_t[\varphi])\alpha_{tt'}(\phi_{t'} - \Phi_{t'}[\varphi])) \xrightarrow[\alpha_{tt} \to \infty]{} \prod_t \delta(\phi_t - \Phi_t[\varphi])$$

¹used in [Ginsparg, Wilson]

Conclusions

Symmetry on the lattice

- global continuum symmetry $(\tilde{Q}_{\sigma,\rho})$: $S[\varphi + \delta \varphi] \equiv S[(1 + \varepsilon \tilde{Q})\varphi] = S[\varphi]$ $(\varphi(x) \rightarrow \varphi_{\sigma}(x) \text{ (multiplet); } \Phi_{i} \equiv \Phi_{\sigma t} = c \int f_{t}(x)\varphi_{\sigma}(x)dx)$
- to translate the continuum symmetry transformations (Q) into a lattice transformations (Q):

$$\varepsilon Q_{ij} \Phi_j = \varepsilon Q_{\sigma t,\rho t'} \Phi_{\rho t'} \equiv \varepsilon c \int f_t(x) \tilde{Q}_{\sigma,\rho} \varphi_{\rho}(x) dx$$

- can not be defined for every $ilde{Q}$ and $f \hookrightarrow$ additional condition
- lattice transformations: $(\delta \phi)_i = \varepsilon Q_{ij} \phi_j$
- naive lattice symmetry: $S_L(\{\phi_i + \varepsilon Q_{ij}\phi\}) = S_L(\{\phi_i\})$

Conclusions

Symmetry on the lattice

- global continuum symmetry $(\tilde{Q}_{\sigma,\rho})$: $S[\varphi + \delta \varphi] \equiv S[(1 + \varepsilon \tilde{Q})\varphi] = S[\varphi]$ $(\varphi(x) \rightarrow \varphi_{\sigma}(x) \text{ (multiplet)}; \Phi_i \equiv \Phi_{\sigma t} = c \int f_t(x)\varphi_{\sigma}(x)dx)$
- to translate the continuum symmetry transformations (Q) into a lattice transformations (Q):

$$\varepsilon \mathbf{Q}_{ij} \Phi_j = \varepsilon \mathbf{Q}_{\sigma t, \rho t'} \Phi_{\rho t'} \equiv \varepsilon c \int f_t(x) \tilde{\mathbf{Q}}_{\sigma, \rho} \varphi_{\rho}(x) dx$$

- can not be defined for every \widetilde{Q} and $f \hookrightarrow$ additional condition
- lattice transformations: $(\delta \phi)_i = \varepsilon Q_{ij} \phi_j$
- naive lattice symmetry: $S_L(\{\phi_i + \varepsilon Q_{ij}\phi\}) = S_L(\{\phi_i\})$

Symmetry on the lattice

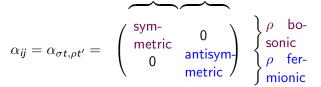
- global continuum symmetry $(\tilde{Q}_{\sigma,\rho})$: $S[\varphi + \delta \varphi] \equiv S[(1 + \varepsilon \tilde{Q})\varphi] = S[\varphi]$ $(\varphi(x) \rightarrow \varphi_{\sigma}(x) \text{ (multiplet)}; \Phi_i \equiv \Phi_{\sigma t} = c \int f_t(x)\varphi_{\sigma}(x)dx)$
- to translate the continuum symmetry transformations (Q) into a lattice transformations (Q):

$$\varepsilon Q_{ij} \Phi_j = \varepsilon Q_{\sigma t, \rho t'} \Phi_{\rho t'} \equiv \varepsilon c \int f_t(x) \tilde{Q}_{\sigma, \rho} \varphi_{\rho}(x) dx$$

- can not be defined for every $ilde{Q}$ and $f \hookrightarrow \operatorname{additional}$ condition
- lattice transformations: $(\delta \phi)_i = \varepsilon Q_{ij} \phi_j$
- naive lattice symmetry: $S_L(\{\phi_i + \varepsilon Q_{ij}\phi\}) = S_L(\{\phi_i\})$

• fermionic fields can be included in φ (real fields):

 σ bosonic σ fermionic



- ε can be fermionic (Graßmann)
- the additional minus sign if ε is commuted with a fermionic field can be absorbed in $\alpha \to \alpha^T$ ($\alpha^{(T)}$ means α^T if ε fermionic)

Inherited symmetry of the blocked action

• a transformation inside the blocked action (use symmetry of the continuum action and additional condition):

$$e^{-S_{L}(\{\phi_{i}+\varepsilon Q_{ij}\phi_{j}\})} = \int \mathcal{D}\varphi \ e^{-\frac{1}{2}(1+\varepsilon Q)_{ij}(\phi-\Phi[\varphi])_{j}\alpha_{ik}(1+\varepsilon Q)_{kl}(\phi-\Phi[\varphi])_{l}} e^{-S[\varphi]}$$

• consider only terms linear in ε :

$$\varepsilon e^{-S_L} Q_{ij} \phi_j \frac{\partial}{\partial \phi_i} S_L = \varepsilon \int \mathcal{D}\varphi \, \frac{1}{2} (\phi - \Phi) (Q^T \alpha + \alpha^{(T)} Q) (\phi - \Phi) \times e^{-(\phi - \Phi)\alpha(\phi - \Phi)} e^{-S_L} (\phi - \Phi) (Q^T \alpha + \alpha^{(T)} Q) (\phi - \Phi) + e^{-S_L} (\phi - \Phi) (\phi - \Phi$$

• use
$$\frac{\partial}{\partial \phi} M \frac{\partial}{\partial \phi} e^{-\frac{1}{2}\phi\alpha\phi} = (\phi\alpha^T M \alpha \phi - (M\alpha)_{ii}) e^{-\frac{1}{2}\phi\alpha\phi}$$

$$\varepsilon e^{-S_L} \phi_i Q_{ij}^T \left(\frac{\partial}{\partial \phi_j} S_L \right) = \varepsilon \frac{1}{2} \left(\frac{\partial}{\partial \phi_i} (\alpha^{-1})_{ij}^T (Q^T \alpha + \alpha^{(T)} Q)_{jk} (\alpha^{-1})_{kl} \frac{\partial}{\partial \phi_l} + \frac{1}{2} (\alpha^{-1})_{ij}^T (Q^T \alpha + \alpha^{(T)} Q)_{ji} \right) e^{-S_L}$$

Inherited symmetry of the blocked action

• a transformation inside the blocked action (use symmetry of the continuum action and additional condition):

$$e^{-S_{L}(\{\phi_{i}+\varepsilon Q_{ij}\phi_{j}\})} = \int \mathcal{D}\varphi \, e^{-\frac{1}{2}(1+\varepsilon Q)_{ij}(\phi-\Phi[\varphi])_{j}\alpha_{ik}(1+\varepsilon Q)_{kl}(\phi-\Phi[\varphi])_{l}} e^{-S[\varphi]}$$

• consider only terms linear in ε :

$$\varepsilon e^{-S_L} Q_{ij} \phi_j \frac{\partial}{\partial \phi_i} S_L = \varepsilon \int \mathcal{D} \varphi \frac{1}{2} (\phi - \Phi) (Q^T \alpha + \alpha^{(T)} Q) (\phi - \Phi) \times e^{-(\phi - \Phi)\alpha(\phi - \Phi)} e^{-S_L} \varphi^{(T)}$$

• use $\frac{\partial}{\partial \phi} M \frac{\partial}{\partial \phi} e^{-\frac{1}{2}\phi \alpha \phi} = (\phi \alpha^T M \alpha \phi - (M \alpha)_{ii}) e^{-\frac{1}{2}\phi \alpha \phi}$

$$\varepsilon e^{-S_L} \phi_i Q_{ij}^T \left(\frac{\partial}{\partial \phi_j} S_L \right) = \varepsilon \frac{1}{2} \left(\frac{\partial}{\partial \phi_i} (\alpha^{-1})_{ij}^T (Q^T \alpha + \alpha^{(T)} Q)_{jk} (\alpha^{-1})_{kl} \frac{\partial}{\partial \phi_l} + \frac{1}{2} (\alpha^{-1})_{ij}^T (Q^T \alpha + \alpha^{(T)} Q)_{ji} \right) e^{-S_L}$$

Inherited symmetry of the blocked action

• a transformation inside the blocked action (use symmetry of the continuum action and additional condition):

$$e^{-S_{L}(\{\phi_{i}+\varepsilon Q_{ij}\phi_{j}\})} = \int \mathcal{D}\varphi \, e^{-\frac{1}{2}(1+\varepsilon Q)_{ij}(\phi-\Phi[\varphi])_{j}\alpha_{ik}(1+\varepsilon Q)_{kl}(\phi-\Phi[\varphi])_{l}} e^{-S[\varphi]}$$

• consider only terms linear in ε :

$$\varepsilon e^{-S_L} Q_{ij} \phi_j \frac{\partial}{\partial \phi_i} S_L = \varepsilon \int \mathcal{D}\varphi \, \frac{1}{2} (\phi - \Phi) (Q^T \alpha + \alpha^{(T)} Q) (\phi - \Phi) \times e^{-(\phi - \Phi)\alpha(\phi - \Phi)} e^{-S}$$

• use
$$\frac{\partial}{\partial \phi} M \frac{\partial}{\partial \phi} e^{-\frac{1}{2}\phi \alpha \phi} = (\phi \alpha^T M \alpha \phi - (M \alpha)_{ii}) e^{-\frac{1}{2}\phi \alpha \phi}$$

 $\varepsilon e^{-S_L} \phi_i Q_{ij}^T \left(\frac{\partial}{\partial \phi_j} S_L\right) = \varepsilon \frac{1}{2} \left(\frac{\partial}{\partial \phi_i} (\alpha^{-1})_{ij}^T (Q^T \alpha + \alpha^{(T)} Q)_{jk} (\alpha^{-1})_{kl} \frac{\partial}{\partial \phi_l} + \frac{1}{2} (\alpha^{-1})_{ij}^T (Q^T \alpha + \alpha^{(T)} Q)_{ji}\right) e^{-S_L}$

Supersymmetry relation for the blocked action

• Supersymmetry:
$$\varepsilon$$
 fermionic
 $\left(\frac{\partial}{\partial \phi}((\alpha^{-1})^{T}Q^{T} + Q\alpha^{-1})\frac{\partial}{\partial \phi} = 2\frac{\partial}{\partial \phi}(Q\alpha^{-1})\frac{\partial}{\partial \phi}\right)$
 $\varepsilon \phi Q^{T}\left(\frac{\partial}{\partial \phi}S_{L}\right) = \varepsilon \left(\frac{\partial}{\partial \phi}S_{L}\right)(Q\alpha^{-1})\left(\frac{\partial}{\partial \phi}S_{L}\right)$
 $- (Q\alpha^{-1})_{ij}\left(\frac{\partial}{\partial \phi_{i}}\frac{\partial}{\partial \phi_{j}}S_{L}\right) \quad (+\mathrm{Tr}_{B}(Q) \text{ vanishes})$

- α_S^{-1} drops out if $((\alpha_S^{-1})^T Q^T + Q \alpha_S^{-1}) = 0 \hookrightarrow$ invariant blocking
- α^{-1} equivalent to $\alpha^{-1} + \alpha_S^{-1}$ (true for any symmetry but not always possible to construct α_S^{-1})

Supersymmetry relation for the blocked action

• Supersymmetry:
$$\varepsilon$$
 fermionic
 $\left(\frac{\partial}{\partial\phi}((\alpha^{-1})^{T}Q^{T} + Q\alpha^{-1})\frac{\partial}{\partial\phi} = 2\frac{\partial}{\partial\phi}(Q\alpha^{-1})\frac{\partial}{\partial\phi}\right)$
 $\varepsilon\phi Q^{T}\left(\frac{\partial}{\partial\phi}S_{L}\right) = \varepsilon\left(\frac{\partial}{\partial\phi}S_{L}\right)(Q\alpha^{-1})\left(\frac{\partial}{\partial\phi}S_{L}\right)$
 $-(Q\alpha^{-1})_{ij}\left(\frac{\partial}{\partial\phi_{i}}\frac{\partial}{\partial\phi_{j}}S_{L}\right)$

- α_S^{-1} drops out if $((\alpha_S^{-1})^T Q^T + Q \alpha_S^{-1}) = 0 \hookrightarrow$ invariant blocking
- α^{-1} equivalent to $\alpha^{-1} + \alpha_s^{-1}$ (true for any symmetry but not always possible to construct α_s^{-1})

Matrix relation for a quadratic action

• consider a quadratic action: $S_L = \phi_i K_{ij} \phi_j$

• naive Symmetry:
$$\varepsilon \phi Q^T \left(\frac{\partial}{\partial \phi} S_L \right) = 2\varepsilon \phi Q^T K \phi = 0 \Leftrightarrow$$

 $Q^T K + K^T Q = 0$ (like α_S)

• blocking induced symmetry:

 $2\varepsilon\phi Q^{\mathsf{T}} K\phi = 4\varepsilon\phi K^{\mathsf{T}} (Q\alpha^{-1}) K\phi \quad \left(-(Q\alpha^{-1})_{ij} K_{ij} \text{ vanishes} \right)$

• define a K dependent $\hat{Q}^T \equiv Q^T - 2K^T Q \alpha^{-1}$ $\hookrightarrow \varepsilon \phi \hat{Q}^T K \phi = 0$

• pure matrix relation:
$$\hat{Q}^T K + K^T \hat{Q} = 0$$

Matrix relation for a quadratic action

• consider a quadratic action: $S_L = \phi_i K_{ij} \phi_j$

• naive Symmetry:
$$\varepsilon \phi Q^T \left(\frac{\partial}{\partial \phi} S_L \right) = 2\varepsilon \phi Q^T K \phi = 0 \Leftrightarrow$$

 $Q^T K + K^T Q = 0$ (like α_S)

blocking induced symmetry:

 $2\varepsilon\phi Q^{\mathsf{T}} K\phi = 4\varepsilon\phi K^{\mathsf{T}} (Q\alpha^{-1}) K\phi \quad \left(-(Q\alpha^{-1})_{ij} K_{ij} \text{ vanishes} \right)$

• define a K dependent $\hat{Q}^T \equiv Q^T - 2K^T Q \alpha^{-1}$ $\hookrightarrow \varepsilon \phi \hat{Q}^T K \phi = 0$

• pure matrix relation:
$$\hat{Q}^T K + K^T \hat{Q} = 0$$

Matrix relation for a quadratic action

• consider a quadratic action: $S_L = \phi_i K_{ij} \phi_j$

• naive Symmetry:
$$\varepsilon \phi Q^T \left(\frac{\partial}{\partial \phi} S_L \right) = 2 \varepsilon \phi Q^T K \phi = 0 \Leftrightarrow$$

 $Q^T K + K^T Q = 0$ (like α_S)

blocking induced symmetry:

 $2\varepsilon\phi Q^{\mathsf{T}} \mathsf{K}\phi = 4\varepsilon\phi \mathsf{K}^{\mathsf{T}} (Q\alpha^{-1}) \mathsf{K}\phi \quad \left(-(Q\alpha^{-1})_{ij} \mathsf{K}_{ij} \text{ vanishes}\right)$

• define a K dependent $\hat{Q}^T \equiv Q^T - 2K^T Q \alpha^{-1}$ $\hookrightarrow \varepsilon \phi \hat{Q}^T K \phi = 0$

• pure matrix relation:
$$\hat{Q}^T K + K^T \hat{Q} = 0$$

The additional condition for supersymmetry

must solve

 $\begin{aligned} Q_{\sigma t,\rho t'} \Phi_{\rho t'} &\equiv Q_{\sigma t,\rho t'} c \int f_t(x) \varphi_{\rho}(x) dx = c \int f_t(x) \tilde{Q}_{\sigma,\rho} \varphi_{\rho}(x) dx \\ \text{for } Q \text{ and } f_t(x) &= f(x - x_t) \end{aligned}$

- off-shell supersymmetry: \tilde{Q} is a matrix acting on σ, ρ ($\sqrt{$) but contains derivative operators (\hookrightarrow solve)
- ∇ is the lattice derivative inside Q: $\nabla_{tt'} \int f_{t'}(x)\varphi(x)dx = \int f_t(x)\partial_x\varphi(x)dx \,\forall \,\varphi \Leftrightarrow$ $\overline{\nabla_{tt'}f_{t'}(x) + \partial_xf_t(x)} = 0$
- if λ_n are the eigenvalues of $\nabla_{tt'}$ the solution is : $f_t(x) = B_t^{(0)} + \sum_{n=-(N-1)/2}^{(N-1)/2} B_n e^{i\frac{2\pi}{N}nt - \lambda_n x} \stackrel{!}{=} f(x-t)$

• fulfilled if $\hat{\lambda}_n = i \frac{2\pi}{N} n$ if $\hat{\lambda}_n$ are the λ_n with $B_n \neq 0$

 this ensures the periodic boundary conditions for lattice and continuum
 A Remnant of Susy. on t Georg Bergner

The additional condition for supersymmetry

must solve

 $\begin{aligned} Q_{\sigma t,\rho t'} \Phi_{\rho t'} &\equiv Q_{\sigma t,\rho t'} c \int f_t(x) \varphi_{\rho}(x) dx = c \int f_t(x) \tilde{Q}_{\sigma,\rho} \varphi_{\rho}(x) dx \\ \text{for } Q \text{ and } f_t(x) &= f(x - x_t) \end{aligned}$

- off-shell supersymmetry: \tilde{Q} is a matrix acting on σ, ρ ($\sqrt{$) but contains derivative operators (\hookrightarrow solve)
- ∇ is the lattice derivative inside Q: $\nabla_{tt'} \int f_{t'}(x)\varphi(x)dx = \int f_t(x)\partial_x\varphi(x)dx \ \forall \ \varphi \Leftrightarrow$ $\nabla_{tt'}f_{t'}(x) + \partial_x f_t(x) = 0$
- if λ_n are the eigenvalues of $\nabla_{tt'}$ the solution is : $f_t(x) = B_t^{(0)} + \sum_{n=-(N-1)/2}^{(N-1)/2} B_n e^{i\frac{2\pi}{N}nt - \lambda_n x} \stackrel{!}{=} f(x-t)$

• fulfilled if $\hat{\lambda}_n = i \frac{2\pi}{N} n$ if $\hat{\lambda}_n$ are the λ_n with $B_n \neq 0$

• this ensures the periodic boundary conditions for lattice and continuum A Remnant of Susy. on t

The additional condition for supersymmetry

• must solve

 $Q_{\sigma t,\rho t'} \Phi_{\rho t'} \equiv Q_{\sigma t,\rho t'} c \int f_t(x) \varphi_{\rho}(x) dx = c \int f_t(x) \tilde{Q}_{\sigma,\rho} \varphi_{\rho}(x) dx$ for Q and $f_t(x) = f(x - x_t)$

- off-shell supersymmetry: \tilde{Q} is a matrix acting on σ, ρ ($\sqrt{$) but contains derivative operators (\hookrightarrow solve)
- ∇ is the lattice derivative inside Q: $\nabla_{tt'} \int f_{t'}(x)\varphi(x)dx = \int f_t(x)\partial_x\varphi(x)dx \ \forall \ \varphi \Leftrightarrow$ $\nabla_{tt'}f_{t'}(x) + \partial_x f_t(x) = 0$
- if λ_n are the eigenvalues of $\nabla_{tt'}$ the solution is : $f_t(x) = B_t^{(0)} + \sum_{n=-(N-1)/2}^{(N-1)/2} B_n e^{i\frac{2\pi}{N}nt - \lambda_n x} \stackrel{!}{=} f(x-t)$

• fulfilled if $\hat{\lambda}_n = \mathrm{i} \frac{2\pi}{N} n$ if $\hat{\lambda}_n$ are the λ_n with $B_n \neq 0$

 this ensures the periodic boundary conditions for lattice and continuum
 A Remnant of Susy. on 1 Georg Bergner

Solution of the additional condition

- maximum number of $\hat{\lambda}_n$ is N (SLAC-derivative); minimum to get "sensible" f(x) is $\hat{\lambda}_n = \{0, \pm i2\pi/N\}$
- Hermiticity: $\nabla(N, p) = i \sum_{l} C_{l}(N) \sin(lp)$ $(\lambda_{n} = \nabla(N, \frac{2\pi}{N}n))$
- continuum limit: ∂_p∇(N, p = 0) = i for all N (more general lim_{a→0} 1/a∇(1/a, ap) = ip)
- if $\hat{\lambda}_i = 0, \pm i2\pi/N, \pm i4\pi/N, \dots, \pm iL2\pi/N$ then $i2\pi/N = \nabla(N, 2\pi/N); \dots; iL2\pi/N = \nabla(N, L2\pi/N)$
- L + 1 conditions to solve use C_1, \ldots, C_{L+1}
- in position space: i sin(*lp*) → 1/2(δ_{t,t'+l} − δ_{t,t'-l}) (the larger L the more off diagonal elements needed until the whole matrix is covered)

elation

Solution of the additional condition

• maximum number of $\hat{\lambda}_n$ is N (SLAC-derivative); minimum to get "sensible" f(x) is $\hat{\lambda}_n = \{0, \pm i2\pi/N\}$

• Hermiticity:
$$\nabla(N, p) = i \sum_{l} C_{l}(N) \sin(lp)$$

 $(\lambda_{n} = \nabla(N, \frac{2\pi}{N}n))$

- continuum limit: $\partial_p \nabla(N, p = 0) = i$ for all N(more general $\lim_{a\to 0} 1/a \nabla(1/a, ap) = ip$)
- if $\hat{\lambda}_i = 0, \pm i2\pi/N, \pm i4\pi/N, \dots, \pm iL2\pi/N$ then $i2\pi/N = \nabla(N, 2\pi/N); \dots; iL2\pi/N = \nabla(N, L2\pi/N)$
- L + 1 conditions to solve use C_1, \ldots, C_{L+1}
- in position space: isin(*lp*) → 1/2(δ_{t,t'+l} − δ_{t,t'-l}) (the larger L the more off diagonal elements needed until the whole matrix is covered)

elation

Solution of the additional condition

• maximum number of $\hat{\lambda}_n$ is N (SLAC-derivative); minimum to get "sensible" f(x) is $\hat{\lambda}_n = \{0, \pm i2\pi/N\}$

• Hermiticity:
$$\nabla(N, p) = i \sum_{l} C_{l}(N) \sin(lp)$$

 $(\lambda_{n} = \nabla(N, \frac{2\pi}{N}n))$

- continuum limit: $\partial_p \nabla(N, p = 0) = i$ for all N (more general $\lim_{a\to 0} 1/a \nabla(1/a, ap) = ip$)
- if $\hat{\lambda}_i = 0, \pm i2\pi/N, \pm i4\pi/N, \dots, \pm iL2\pi/N$ then $i2\pi/N = \nabla(N, 2\pi/N); \dots; iL2\pi/N = \nabla(N, L2\pi/N)$
- L + 1 conditions to solve use C_1, \ldots, C_{L+1}
- in position space: isin(*lp*) → 1/2(δ_{t,t'+l} − δ_{t,t'-l}) (the larger L the more off diagonal elements needed until the whole matrix is covered)

elation

Solution of the additional condition

• maximum number of $\hat{\lambda}_n$ is N (SLAC-derivative); minimum to get "sensible" f(x) is $\hat{\lambda}_n = \{0, \pm i2\pi/N\}$

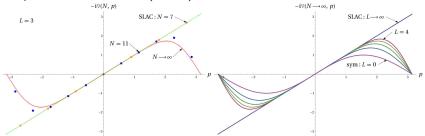
• Hermiticity:
$$\nabla(N, p) = i \sum_{l} C_{l}(N) \sin(lp)$$

 $(\lambda_{n} = \nabla(N, \frac{2\pi}{N}n))$

- continuum limit: $\partial_p \nabla(N, p = 0) = i$ for all N (more general $\lim_{a\to 0} 1/a \nabla(1/a, ap) = ip$)
- if $\hat{\lambda}_i = 0, \pm i2\pi/N, \pm i4\pi/N, \dots, \pm iL2\pi/N$ then $i2\pi/N = \nabla(N, 2\pi/N); \dots; iL2\pi/N = \nabla(N, L2\pi/N)$
- L + 1 conditions to solve use C_1, \ldots, C_{L+1}
- in position space: isin(*lp*) → 1/2(δ_{t,t'+l} − δ_{t,t'-l}) (the larger L the more off diagonal elements needed until the whole matrix is covered)

Derivatives that solve the additional condition

Interpolation between SLAC-derivative (L = (N - 1)/2) and symmetric derivative (L = 0):



other solution: $C(N)\nabla^{S}(p)$ where $C(N \to \infty) \to \frac{1}{2}$

Transformations for supersymmetric quantum mechanics

For a quadratic action only the matrices Q,K and α need to be specified.

Transformations in the continuum $(\varphi_{\sigma} = (\tilde{\varphi}, F, \psi, \bar{\psi}))$:

$$\begin{array}{ll} \delta\tilde{\varphi}=-\bar{\varepsilon}\psi+\varepsilon\bar{\psi} & \delta \mathsf{F}=-\bar{\varepsilon}\partial\psi-\varepsilon\partial\bar{\psi}\\ \delta\psi=-\varepsilon\partial\tilde{\varphi}-\varepsilon\mathsf{F} & \delta\bar{\psi}=\bar{\varepsilon}\partial\tilde{\varphi}-\bar{\varepsilon}\mathsf{F} \end{array}$$

Transformations on the lattice (∇ solution to additional condition, $\phi_{\sigma,t} = (\hat{\varphi}_t, \hat{F}_t, \hat{\psi}_t, \hat{\psi}_t)$):

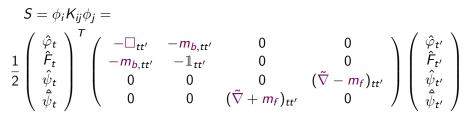
$$\delta \begin{pmatrix} \hat{\varphi} \\ \hat{F} \\ \hat{\psi} \\ \hat{\psi} \\ \hat{\psi} \end{pmatrix} = \begin{pmatrix} 0 & 0 & -\bar{\varepsilon} & \varepsilon \\ 0 & 0 & -\bar{\varepsilon}\nabla & -\varepsilon\nabla \\ -\varepsilon\nabla & -\varepsilon & 0 & 0 \\ \bar{\varepsilon}\nabla & -\bar{\varepsilon} & 0 & 0 \end{pmatrix} \begin{pmatrix} \hat{\varphi} \\ \hat{F} \\ \hat{\psi} \\ \hat{\psi} \\ \hat{\psi} \end{pmatrix} = (\varepsilon Q + \bar{\varepsilon}\bar{Q})\phi$$

Ansatz for the lattice action in supersymmetric quantum mechanics

in the continuum:

$$S = rac{1}{2} (\partial ilde{arphi})^2 - mF arphi - rac{1}{2}F^2 + ar{\psi}(\partial + m)\psi$$

on the lattice:



Hermiticity: \Box , m_b , m_f symmetric; $\tilde{\nabla}$ antisymmetric (undetermined) translation invariance: all circulant matrices \rightarrow commutative algebra

A blocking matrix α

$$\begin{array}{l} \text{general } (\alpha \sim \delta_{tt'}): \\ \alpha_G = \begin{pmatrix} b_1 & b_4 & 0 & 0 \\ b_4 & b_3 & 0 & 0 \\ 0 & 0 & 0 & -b_2 \\ 0 & 0 & b_2 & 0 \end{pmatrix} \delta_{tt'}; \quad \alpha_G^{-1} = \begin{pmatrix} \beta_1 & \beta_4 & 0 & 0 \\ \beta_4 & \beta_3 & 0 & 0 \\ 0 & 0 & 0 & \beta_2 \\ 0 & 0 & -\beta_2 & 0 \end{pmatrix} \delta_{tt'}$$

 α^{-1} and $\alpha^{-1} + \alpha_s^{-1}$ lead to the same relations (are equivalent) \hookrightarrow Use α_s^{-1} to reduce matrix entries ($\beta_4 = 0$ by shift in β_2):

$$\alpha_{S}^{-1} = \begin{pmatrix} 0 & \beta_{4}' & 0 & 0 \\ \beta_{4}' & 0 & 0 & 0 \\ 0 & 0 & 0 & \beta_{4}' \\ 0 & 0 & -\beta_{4}' & 0 \end{pmatrix} \delta_{tt'}; \quad \alpha_{A}^{-1} = \begin{pmatrix} \beta_{1} & 0 & 0 & 0 \\ 0 & \beta_{3} & 0 & 0 \\ 0 & 0 & 0 & \beta_{2} \\ 0 & 0 & -\beta_{2} & 0 \end{pmatrix} \delta_{tt'}$$

Solution for supersymmetric quantum mechanics with a quadratic action

• pure matrix identity,
$$\hat{Q}^T K + K^T \hat{Q} = 0$$

 $(\hat{Q}^T = Q^T - 2K^T Q \alpha^{-1})$, leads to:
 $\nabla \tilde{\nabla} - \Box + \nabla (m_f - m_b) = -(\beta_1 \Box \nabla + \beta_2 (\Box + m_b \nabla))(m_f + \tilde{\nabla})$
 $m_f - m_b + \tilde{\nabla} - \nabla = -(\beta_1 m_b \nabla + \beta_2 (\Box + m_b \nabla))(m_f + \tilde{\nabla})$

- same conditions from \bar{Q}
- solution:

$$\square = \frac{(1 - \beta_1 m_b^2) \nabla^2}{1 - \beta_1 \nabla^2}$$
$$(\tilde{\nabla} + m_f) = \frac{\nabla + m_b}{1 + \beta_2 m_b + \beta_2 \nabla + \beta_1 m_b \nabla}$$

- m_b not specified could use $m_b = m$
- if there are doublers in ∇ then a Wilson-term is needed:
 m_b = m + m_W ↔ for small β₁ no doubler and sensible
 twopointfunctions (F integrated out)

Continuum limit

- so far all in lattice units (a = 1)
- according to dimension $\lim_{a\to 0} \frac{1}{a^2} \Box(a, m_{ph}a, ap_{ph})$ $(m_{ph} = m/a \text{ fixed}; \Box(m, p))$
- dimension of parameter b_{1ph} ($\varphi_t b_1 \varphi_t$); b_{2ph} ($\bar{\psi}_t b_2 \psi_t$) should be the same as m_{ph}^2 and m_{ph}
- but keep b_1 (b_2) and not b_{1ph} (b_{1ph}) fixed $\hookrightarrow b_{1ph}$ (b_{1ph}) diverges in the continuum limit and $\exp \{-(\phi_{ph} - \Phi_{ph})b_{1ph}(\phi_{ph} - \Phi_{ph})\} \xrightarrow[a \to 0]{} \delta(\phi_{ph} - \Phi_{ph})$

 \hookrightarrow β_1 , β_2 , m_{ph} fixed

$$\frac{1}{a^2} \Box(a, m_{ph}a, p_{ph}a, \beta_1, \beta_2) = -p^2 + O(a)$$
$$\frac{1}{a} (\tilde{\nabla} + m_f)(a, m_{ph}a, p_{ph}a, \beta_1, \beta_2) = (\mathbf{i}p + m) + O(a)$$

Conclusions

- symmetry of a continuum action implies the fulfillment of certain relations for the lattice action which ensure a symmetric continuum limit
- requirement: definition of a lattice transformation by the "averaged" continuum symmetry transformation (additional condition)
- if α_s^{-1} exists the relations can be reduced to the naive lattice symmetry otherwise the naive symmetry is modified by terms proportional to α^{-1}
- in case of off-shell supersymmetry the additional condtion can be fulfilled and it is possible to find α_s^{-1}
- susy. with quadratic action: it is possible to fulfill the naive symmetry if an α_s^{-1} is used as well as the modfied symmetry if a more general α^{-1} is taken into account

Conclusions

Outlook

- In a non guadratic (local) supersymmetric lattice model at most a part of the naive supersymmetry can be preserved.
- In general there are two different kinds of problems:
 - chiral symmetry: no α_s^{-1} can be used
 - supersymmetry: no (non quadratic) local action found that preserves all naive symmetries – but α_s^{-1} possible
- hope for supersymmetry: find an action that is not naively symmetric but local and fulfills the modified symmetry
- a quadratic action is only a simple model to show the modification of the symmetry on the lattice \hookrightarrow intresting case: apply the procedure to a non quadratic action

📔 H. So and N. Ukita

Ginsparg-Wilson relation and lattice supersymmetry. *Phys. Lett.*, B457:314-318, 1999

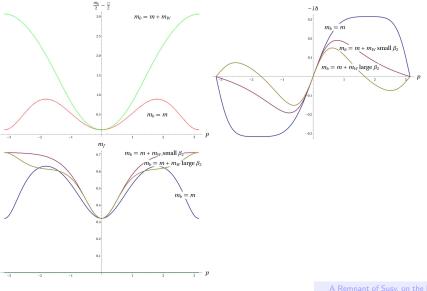
M. Lüscher

Exact chiral symmetry on the lattice and the Ginsparg-Wilson relation.

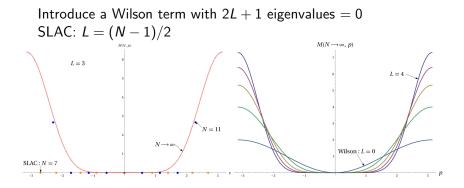
Phys. Lett., B428:342-345, 1998

P. H. Ginsparg and K. G. Wilson A Remnant of Chiral Symmetry on the Lattice. *Phys. Rev.*, D25:2649, 1982

Dispersion relations of the operators



Spectral improved Wilson terms



Dispersion relations of the operators

$$\Box = \frac{(1 - \beta_1 m_b^2) \nabla^2}{1 - \beta_1 \nabla^2}$$

$$\tilde{\nabla} = \frac{(1 - \beta_1 m_b^2) \nabla}{(1 + \beta_2 m_b)^2 - (\beta_2 + \beta_1 m_b)^2 \nabla^2}$$

$$m_f = \frac{m_b (1 + \beta_2 m_b) - (\beta_2 + \beta_1 m_b) \nabla^2}{(1 + \beta_2 m_b)^2 - (\beta_2 + \beta_1 m_b)^2 \nabla^2}$$

$$m_b = m + m_W = m + (1 - \cos(p))$$

$$L = 1 \hookrightarrow \nabla = iC_1 \sin(p) + i\frac{1}{2}(1 - C_1) \sin(2p)$$
with $C_1(N) = \frac{\frac{2\pi}{N} - \frac{1}{2} \sin(\frac{4\pi}{N})}{\sin(\frac{2\pi}{N}) - \frac{1}{2} \sin(\frac{4\pi}{N})}$