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Biological Background – From DNA to chromatin

Problem:

In human cells 2 m of ds-DNA have to be packed into a nucleus
of 10 µm diameter.
The first stages of compaction are well-known

2 nm 10 nm 30 nm

double helix nucleosome chromatin metaphase (inactive)

interphase (active)

?

The higher-order structure during interphase is widely
unknown. Is the chromatin fibre just a random coil or is it
somehow organized?
How is the structure connected to the complex functionality of
the nucleus?
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Biological Background – Experimental approaches

limitations of light microscopy → indirect approaches
FISH (flourescence in situ hybridization)

R² 

g

measurement of mean physical distance
〈
R2

〉
between two

FISH-markers of known genomic distance g gives information
about folding motifs and can be compared to polymer models
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Polymer models

Long macromolecules often can be described by simple polymer
models. On a scale much larger than a single molecule the
structural details and stiffness can be neglected.

basic idea:

divide the polymer into N equal
subunits
the subunits (beads) are
connected by linkers, e.g.

U =
N∑

i=1

1
2

κ ‖ xi − xi−1 ‖2

two chain segments can rotate
freely around each other
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Polymer models – Gaussian chain model

A characteristic feature of a
polymer model is the mean
squared end-to-end distance〈
R2

〉 R² 

For a Gaussian chain U =
∑N

i=1
1
2κ ‖ xi − xi−1 ‖2, we have

〈
R2〉 = b2N b2 =

3
κ

The proportionality to N is a universal feature and is also valid
for other choices of U, e.g. stiff linkers
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Polymer models – Effect of excluded volume

In most applications, excluded volume interactions have to be
taken into account, e.g. by an additional potential

Uex = vkBT
∑
i<j

δ(xi − xj)

The relation for the mean square displacement changes to〈
R2〉 = b2N2ν ν ≈ 0.588

But: Exact calculations become impossible
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Polymer models – globular state

Third important polymer state: globular state

further attractive interactions counteract excluded volume
interactions
→ collapse of the polymer
e.g. proteins
mean square displacement〈

R2〉 = b2N2ν , ν = 1/3

Manfred Bohn A Random Loop Model for Chromatin Organization



Experimental results

Experiments (Roel van Driel, Amsterdam) measure mean
square displacement in relation to genomic distance1

chromosome 1 and 11
gene-rich and gene-poor domains
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1Mateos-Langerak et al., 2007 (submitted to PNAS)
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Experimental results
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Results:

Up to 2-3 Mb the mean square displacement (MSD) increases
with genomic separation.
Above this distance, the mean square displacement levels off
and becomes independent of genomic distance
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Experimental results

Which polymer model describes best the experimental results?
small genomic distances < 3 Mb

MSD increases like
〈
R2

〉
∼ N2ν , but which ν (RW, SAW, GS)?
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The globular state describes chromatin organization in the regime
below ∼ 2 Mb

additional data: Yokota et al., 1995
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Experimental results

Which polymer model describes best the experimental results?
large genomic distances
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None of the polymer models with
〈
R2

〉
∼ N2ν can explain folding

behaviour
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A new model: the Random Loop Model

Idea

The formation of loops is necessary to obtain
〈
R2

〉
∼ O(1)

The number of loops and their size are random and change in
the course of time
biological justification: there is evidence that different genes
assemble to so-called “transcription factories”.
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Mathematical model

We consider N + 1 monomers in a general potential

U =
1
2

∑
i<j

κij ‖ xi − xj ‖2

connectivity of the chain: κij = κ, |i − j | = 1
random loops: The κij with |i − j | > 1 are Bernoulli distributed
with probability P

Note: We neglect the effect of excluded volume

Question: What is the mean square physical distance between two
arbitrary beads I and J of the chain?
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Quenched vs. annealed average

We have two types of average in our model:

1 The thermal average over the positions x0, . . . , xN , → partition
sum Z

2 The average over disorder of loops κij (random variables)

Two ways of averaging in disordered systems:

Quenched average
(τdis � τeq)

〈F 〉 = kBT 〈logZ〉dis

Annealed average
(τeq � τdis)

〈F 〉 = kBT log 〈Z〉dis

We presume that the quenched average is the relevant one!
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Calculation of the quenched average

We are interested in the mean square displacement between
two arbitrary beads I and J
The average over the thermal ensemble for quenched disorder
can be calculated to be〈

r2
IJ
〉

thermal = 3 (σJJ + σII − 2σIJ)

where

σ−1 = K =



∑N
j=0
j 6=1

κ1j −κ12 . . . −κ1N

−κ21
∑N

j=0
j 6=2

κ2j . . . −κ2N

...
...

. . .
...

−κN1 −κN2 . . .
∑N

j=0
j 6=N

κNj


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Calculation of the quenched average

Now we have to perform the average over the disorder of loops
(the variables {κij}).〈

r2
IJ
〉

=
〈〈

r2
IJ
〉

thermal

〉
loops

= 3
(
〈σJJ〉loops + 〈σII〉loops − 2 〈σIJ〉loops

)
This is equivalent to averaging over the ensemble of matrices K
and can only be done numerically
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Results

Mean square displacement
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Only a few loops on all
scales per 100 Mbp are
necessary (∼ 15)
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Results

Relation between higher-order moments

c4 =
〈
R4〉 /

〈
R2〉2

Significant deviations from RW or SAW behaviour
It is the average over the disorder in the RLM that makes c4
larger
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The effect of excluded volume

We need to use molecular dynamics simulations (ESPResSo
package)
Excluded volume is modelled by a shifted Lennard-Jones
potential with cutoff at minimum (→ no attractive part).

ULJ(r) =

{
4ε

((
σ
r

)12 −
(

σ
r

)6
)

+ ε for r <
6
√

2σ

0 otherwise
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The same qualitative
behaviour as without excluded
volume interactions!
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The annealed ensemble

For the annealed ensemble we have to take the disorder
average over the partition sum

〈Z〉dis =
∑
{κij}

Z ({xk}, {κij}) p ({κij})

The disorder average can be carried out, and the partition sum
can be rewritten in terms of an effective potential

〈Z〉dis =

∫ ∫
dx1 . . . dxN exp(−Ueff)

Ueff =
1
2

κ

N−1∑
i=0

r2
i,i+1 − kBT

∑
|i−j|>1

log
[
1 + P

(
e−

1
2 κr2

ij − 1
)]
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The annealed ensemble

MD simulations with annealed potential
Leveling-off does occur only at much larger probabilities P
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Random Matrices

For the quenched ensemble we had to average over random
matrices.

σ−1 = K =



∑N
j=0
j 6=1

κ1j −κ12 . . . −κ1N

−κ21
∑N

j=0
j 6=2

κ2j . . . −κ2N

...
...

. . .
...

−κN1 −κN2 . . .
∑N

j=0
j 6=N

κNj


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Random Matrices

For the quenched ensemble we had to average over random
matrices. We considered a slightly different ensemble of random
matrices

?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

9 − 1 0 0 0 − 1 − 1 − 1 − 1 − 1 − 1 − 1 0 0 0
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0 0 − 1 − 1 − 1 − 1 − 1 − 1 − 1 0 0 0 − 1 9 − 1
0 0 0 − 1 − 1 − 1 − 1 0 − 1 0 0 0 0 − 1 6
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N

N
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Random Matrices

The eigenvalue distribution changes its skew at the percolation
threshold. Above it shows a universal behaviour.
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Conclusions

Results:

There are two folding regimes:
On small genomic distances (< 2 Mb) the folding of chromatin
can be described by a globular state
On large genomic distance (> 5− 10 Mb) the folding motifs can
be characterized by the formation of random loops

Open Questions:

How can the crossover region (2− 10 Mb) be described?
Can one generalize this model to describe the common
structure and intermingling of all chromosomes in the nucleus?

Thanks for your attention!
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