# Polyakov loops from Dirac spectra 

Falk Bruckmann (Univ. Regensburg)

Delta, Heidelberg, Dec. 2007
with Erek Bilgici, Christof Gattringer and Christian Hagen Phys. Lett. B647 (2007) 56-61, PoS(LATTICE 2007) 289

## Motivation

QCD (quenched $\sim$ Yang-Mills) at finite temperature

- Polyakov loop: $\mathcal{P}(\vec{x})=\mathcal{P} \exp \left(i \int_{0}^{\beta} d x_{0} A_{0}\left(x_{0}, \vec{x}\right)\right), \quad \beta=1 / k_{B} T$



order parameter for confinement: $\left\langle\operatorname{tr}_{c} \mathcal{P}\right\rangle \sim e^{-\beta F_{\text {quark }}}$
- spectral density $\rho(\lambda)$ of the Dirac operator (in background $A_{\mu}$ ):



order parameter of chiral symmetry: $\rho(0) \sim\langle\bar{\psi} \psi\rangle$


## The idea

relate Polyakov loops to Dirac spectra, on the lattice

- Polyakov loop: $\mathcal{P}(x) \equiv \prod_{\tau=1}^{N} U_{0}\left(x_{0}+\tau, \vec{x}\right) \quad N \equiv N_{0}$
- Dirac operator, here staggered

$$
D(x, y) \equiv \frac{1}{a} \sum_{\mu} \eta_{\mu}(x)\left[U_{\mu}(x) \delta_{x+\hat{\mu}, y}-h . c .\right] \quad \text { hopping by one link }
$$

$D^{N}(x, x) \ni$ products of links along closed loops at $x$

## The idea

relate Polyakov loops to Dirac spectra, on the lattice

- Polyakov loop: $\mathcal{P}(x) \equiv \prod_{\tau=1}^{N} U_{0}\left(x_{0}+\tau, \vec{x}\right) \quad N \equiv N_{0}$
- Dirac operator, here staggered

Kogut,Susskind

$$
D(x, y) \equiv \frac{1}{a} \sum_{\mu} \eta_{\mu}(x)\left[U_{\mu}(x) \delta_{x+\hat{\mu}, y}-h . c .\right] \quad \text { hopping by one link }
$$

$D^{N}(x, x) \ni$ products of links along closed loops at $x$
how to distinguish Polyakov loops from 'trivially closed' loops?

- phase 'twisted' boundary conditions:

$$
\psi_{z}\left(x_{0}+\beta, \vec{x}\right)=z \psi_{z}\left(x_{0}, \vec{x}\right), \quad z=e^{i \phi}
$$

- realized by $U_{0} \rightarrow z U_{0}, U_{0}^{\dagger} \rightarrow z^{*} U_{0}^{\dagger}$ at, say, the last time slice
$\Rightarrow$ Polyakov loops: $\mathcal{P} \rightarrow z \mathcal{P}, P^{\dagger} \rightarrow z^{*} \mathcal{P}^{\dagger}$
Gattringer '06 while trivial loops do no change

$$
D_{z}^{N}(x, x)=z \mathcal{P}(\vec{x})+z^{*} \mathcal{P}^{\dagger}(\vec{x})+\ldots \quad(a=1)
$$

linear system, extract $\mathcal{P}$ by three different bc.s, say center

$$
\mathcal{P}(x)=D_{1}^{N}+z^{*} D_{z}^{N}+z D_{z^{*}}^{N} \quad z=e^{i \frac{2 \pi}{3}}
$$

or by an integral over all bc.s

$$
\mathcal{P}(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \phi z^{*} D_{z}^{N}(x, x) \quad z=e^{i \phi}
$$

$$
D_{z}^{N}(x, x)=z \mathcal{P}(\vec{x})+z^{*} \mathcal{P}^{\dagger}(\vec{x})+\ldots \quad(a=1)
$$

linear system, extract $\mathcal{P}$ by three different bc.s, say center

$$
\mathcal{P}(x)=D_{1}^{N}+z^{*} D_{z}^{N}+z D_{z^{*}}^{N} \quad z=e^{i \frac{2 \pi}{3}}
$$

or by an integral over all bc.s

$$
\mathcal{P}(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \phi z^{*} D_{z}^{N}(x, x) \quad z=e^{i \phi}
$$

invoke spectral decomposition on the r.h.s.: $\mathcal{P}(x)=\operatorname{func}\left(\lambda_{z, n} ; \psi_{z, n}(x)\right)$

$$
D_{z}^{N}(x, x)=z \mathcal{P}(\vec{x})+z^{*} \mathcal{P}^{\dagger}(\vec{x})+\ldots \quad(a=1)
$$

linear system, extract $\mathcal{P}$ by three different bc.s, say center

$$
\mathcal{P}(x)=D_{1}^{N}+z^{*} D_{z}^{N}+z D_{z^{*}}^{N} \quad z=e^{i \frac{2 \pi}{3}}
$$

or by an integral over all bc.s

$$
\mathcal{P}(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \phi z^{*} D_{z}^{N}(x, x) \quad z=e^{i \phi}
$$

invoke spectral decomposition on the r.h.s.: $\mathcal{P}(x)=\operatorname{func}\left(\lambda_{z, n} ; \psi_{z, n}(x)\right)$ trace and space average $\rightarrow$ completeness of $\psi_{n}$ :

$$
\frac{1}{V} \sum_{x} \operatorname{tr}_{c} \mathcal{P}(x)=\frac{1}{V} \sum_{n}\left[\lambda_{1, n}^{N}+z^{*} \lambda_{z, n}^{N}+z \lambda_{z^{*}, n}^{N}\right]
$$

exact formula if all modes included ( $n=1 \ldots 3 N V$ ) IR dominated?!

## Results from Lattice calculations

aim: reconstruct $\sum_{\vec{x}} \operatorname{tr}_{c} \mathcal{P} / V \neq 0$ in the deconfined phase from a finite number of eigenvalues
what counts:

- shift of $\lambda_{z}$ with $z$ :
- density of $\lambda$ 's:
- $\lambda$ itself, even $\lambda^{N}$


[shown are $N=4$ ]

IR dominates
IR (and UV) suppressed
IR suppressed
altogether this results in ...

- individual contributions:

- accumulated $|\mathcal{P}|$ :

$\Rightarrow$ Polyakov loop dominated by UV modes
(same for higher $N$ and larger volumes)
unphysical! these modes do not reflect the continuum well!
- individual contributions:

- accumulated $|\mathcal{P}|$ :

$\Rightarrow$ Polyakov loop dominated by UV modes
(same for higher $N$ and larger volumes) unphysical! these modes do not reflect the continuum well! in addition, the smallest $\lambda$ 's generate the wrong sign:



## Explanation

- staggered eigenvalues $\lambda$ are purely imaginary $\lambda^{N=4}>0$
- the twist in the boundary condition lifts the lowest eigenvalue by roughly the same amount for $z=e^{i \frac{2 \pi}{3}}$ and $z^{*}=e^{-i \frac{2 \pi}{3}}$
lowest contribution:

$$
\begin{aligned}
\lambda_{1,0}^{N}+z^{*} \lambda_{z, 0}^{N}+z \lambda_{z^{*}, 0}^{N} & =p_{1}+\left(z^{*}+z\right) p_{2} \quad \text { with } p_{2}>p_{1} \\
& =p_{1}-p_{2}<0
\end{aligned}
$$

## Explanation

- staggered eigenvalues $\lambda$ are purely imaginary $\lambda^{N=4}>0$
- the twist in the boundary condition lifts the lowest eigenvalue by roughly the same amount for $z=e^{i \frac{2 \pi}{3}}$ and $z^{*}=e^{-i \frac{2 \pi}{3}}$
lowest contribution:

$$
\begin{aligned}
\lambda_{1,0}^{N}+z^{*} \lambda_{z, 0}^{N}+z \lambda_{z^{*}, 0}^{N} & =p_{1}+\left(z^{*}+z\right) p_{2} \quad \text { with } p_{2}>p_{1} \\
& =p_{1}-p_{2}<0
\end{aligned}
$$

- argument does not hold for $N=6$ since $\lambda^{N=6}<0$
- indeed the lowest contribution there comes with the correct sign, but later the sign changes to the wrong one


## Summary I

Polyakov loops can be obtained from powers of one-link operators ... (cf. links from Laplace operator field strength from Dirac operator

FB, Ilgenfritz, '05
Gattringer '02, Liu et al. '07)

## Summary I

Polyakov loops can be obtained from powers of one-link operators ...
(cf. links from Laplace operator field strength from Dirac operator

FB, Ilgenfritz, '05
Gattringer '02, Liu et al. '07)
... and then reconstructed from different parts of the spectrum: 'filter'

## Summary I

Polyakov loops can be obtained from powers of one-link operators ...
(cf. links from Laplace operator field strength from Dirac operator

FB, Ilgenfritz, '05
Gattringer '02, Liu et al. '07)
... and then reconstructed from different parts of the spectrum: 'filter' but we found UV dominance: need to resolve an object with support one point in 3D

## Summary I

Polyakov loops can be obtained from powers of one-link operators ...
(cf. links from Laplace operator
field strength from Dirac operator

FB, Ilgenfritz, '05
Gattringer '02, Liu et al. '07)
... and then reconstructed from different parts of the spectrum: 'filter' but we found UV dominance: need to resolve an object with support one point in 3D
continuum limit:
$\sum_{n} \lambda_{n}^{N}$ is crazy, since:

- $\lambda \in i[0, \infty)$ : continuous spectrum
- $N \rightarrow \infty$ : finer (in $x_{0}$ )
- well, could be cancelled by dependence of $\lambda_{z, n}$ on bc. $z$


## Other approaches

- consider instead of $D^{N}$ other functions of $D$ :

Synatschke, Wipf, Wozar, '07:

$$
\frac{1}{D}, \frac{1}{D^{2}}, e^{-D}, e^{-D^{\dagger} D}
$$

all summed over center boundary conditions
(Wilson-Dirac operator, small lattices)
$\oplus$ IR dominated
better continuum behaviour!?
$\ominus$ no direct relation to Polyakov loop, however:
empirically still order parameters: $\langle$ spectral sums $\rangle \sim\left\langle\operatorname{tr}_{c} \mathcal{P}\right\rangle$ hopping expansion: becomes $\left\langle\operatorname{tr}_{c} \mathcal{P}\right\rangle$ in leading order

## Dressed Polyakov loops

definition (color trace included):

$$
\tilde{\mathcal{P}}_{\kappa} \equiv \frac{1}{V} \sum_{l \in \mathcal{L}_{l}^{(1)}} \kappa^{|/|} \operatorname{tr}_{c} \prod_{(x, \mu) \in I} U_{\mu}(x)
$$

$\mathcal{L}_{l}^{(1)}$ : all (lattice) loops $/$ of length $|/|$ winding 1 time in $x_{0}$
the longer the loop (more detours), the more suppressed by weight $\kappa^{|/|}$

## Dressed Polyakov loops

definition (color trace included):

$$
\tilde{\mathcal{P}}_{\kappa} \equiv \frac{1}{V} \sum_{l \in \mathcal{L}_{l}^{(1)}} \kappa^{|/|} \operatorname{tr}_{c} \prod_{(x, \mu) \in I} U_{\mu}(x)
$$

$\mathcal{L}_{l}^{(1)}$ : all (lattice) loops $/$ of length $|/|$ winding 1 time in $x_{0}$
the longer the loop (more detours), the more suppressed by weight $\kappa^{|/|}$ obviously for $\kappa \rightarrow 0$ only the shortest paths $=$ thin Polyakov loops:

$$
\tilde{\mathcal{P}}_{\kappa} \rightarrow \kappa^{N} \cdot \frac{1}{V} \sum_{x} \operatorname{tr}_{c} \mathcal{P}(x)
$$

## Dressed Polyakov loops

definition (color trace included):

$$
\tilde{\mathcal{P}}_{\kappa} \equiv \frac{1}{V} \sum_{l \in \mathcal{L}_{l}^{(1)}} \kappa^{|/|} \operatorname{tr}_{c} \prod_{(x, \mu) \in I} U_{\mu}(x)
$$

$\mathcal{L}_{l}^{(1)}$ : all (lattice) loops $/$ of length $|/|$ winding 1 time in $x_{0}$
the longer the loop (more detours), the more suppressed by weight $\kappa^{|/|}$
obviously for $\kappa \rightarrow 0$ only the shortest paths $=$ thin Polyakov loops:

$$
\tilde{\mathcal{P}}_{\kappa} \rightarrow \kappa^{N} \cdot \frac{1}{V} \sum_{x} \operatorname{tr}_{c} \mathcal{P}(x)
$$

not really feasible, since in principle arbitrarily long loops; convergent?!

## A mass dependent observable

consider as observable the integrated propagator with mass $m$ :

$$
\mathcal{O}(m) \equiv \frac{1}{V} \int d x \operatorname{tr}_{c(, \gamma)} \frac{1}{D(x, x)+m}
$$

relation to Polyakov loop: lattice and introduce $z$ again

$$
\mathcal{O}_{z}(m)=\frac{1}{m V} \sum_{x} \sum_{k}\left(-\frac{D_{z}(x, x)}{m}\right)^{k}
$$

## A mass dependent observable

consider as observable the integrated propagator with mass $m$ :

$$
\mathcal{O}(m) \equiv \frac{1}{V} \int d x \operatorname{tr}_{c(, \gamma)} \frac{1}{D(x, x)+m}
$$

relation to Polyakov loop: lattice and introduce $z$ again

$$
\begin{aligned}
& \mathcal{O}_{z}(m)=\frac{1}{m V} \sum_{x} \sum_{k}\left(-\frac{D_{z}(x, x)}{m}\right)^{k} \quad D \sim \frac{1}{a} U_{\mu}(x), N \text { even } \\
& =\frac{1}{m V} \sum_{x}\left\{\ldots+z\left[\frac{\operatorname{tr}_{c} \mathcal{P}(x)}{(2 a m)^{N}}+\frac{\operatorname{tr}_{c} p^{(2)}}{(2 a m)^{N+2}}+\ldots\right]+z^{0}[\ldots]+\ldots\right\}
\end{aligned}
$$

'smeared' Polyakov loops $p^{(2)}$ : closed in $x_{0}$ with two more links

## A mass dependent observable

consider as observable the integrated propagator with mass $m$ :

$$
\mathcal{O}(m) \equiv \frac{1}{V} \int d x \operatorname{tr}_{c(, \gamma)} \frac{1}{D(x, x)+m}
$$

relation to Polyakov loop: lattice and introduce $z$ again

$$
\begin{aligned}
& \mathcal{O}_{z}(m)=\frac{1}{m V} \sum_{x} \sum_{k}\left(-\frac{D_{z}(x, x)}{m}\right)^{k} \quad D \sim \frac{1}{a} U_{\mu}(x), N \text { even } \\
& =\frac{1}{m V} \sum_{x}\left\{\ldots+z\left[\frac{\operatorname{tr}_{c} \mathcal{P}(x)}{(2 a m)^{N}}+\frac{\operatorname{tr}_{c} p^{(2)}}{(2 a m)^{N+2}}+\ldots\right]+z^{0}[\ldots]+\ldots\right\}
\end{aligned}
$$

'smeared' Polyakov loops $p^{(2)}$ : closed in $x_{0}$ with two more links projection on $z$-term gives the dressed Polyakov loop!
namely:

$$
\int_{0}^{2 \pi} \frac{d \phi}{2 \pi} z^{*} \mathcal{O}_{z}(m)=\frac{1}{m} \tilde{\mathcal{P}}_{\kappa=1 / a m}
$$

hence for large mass:

$$
\int_{0}^{2 \pi} \frac{d \phi}{2 \pi} z^{*} \mathcal{O}_{z}(m) \xrightarrow{m \rightarrow \infty} \text { const } \frac{1}{V} \sum_{x} \operatorname{tr}_{c} \mathcal{P}(x)
$$

$\Rightarrow$ approaches conventional deconfinement order parameter
namely:

$$
\int_{0}^{2 \pi} \frac{d \phi}{2 \pi} z^{*} \mathcal{O}_{z}(m)=\frac{1}{m} \tilde{\mathcal{P}}_{\kappa=1 / a m}
$$

hence for large mass:

$$
\int_{0}^{2 \pi} \frac{d \phi}{2 \pi} z^{*} \mathcal{O}_{z}(m) \xrightarrow{m \rightarrow \infty} \text { const } \frac{1}{V} \sum_{x} \operatorname{tr}_{c} \mathcal{P}(x)
$$

$\Rightarrow$ approaches conventional deconfinement order parameter
on the other hand for small mass:

$$
\lim _{V \rightarrow \infty} \mathcal{O}_{z}(m) \xrightarrow{m \rightarrow 0} \pi \rho(0)
$$

$\Rightarrow$ approaches chiral condensate

## Numerical findings (preliminary)

- dressed Polyakov loops as a function of dressing coefficient:

$$
\int_{0}^{2 \pi} \frac{d \phi}{2 \pi} z^{*} \mathcal{O}_{z}(m) \sim \tilde{\mathcal{P}}_{\kappa=1 / a m}
$$

$12^{3} \cdot 6$, integral by 16 values, for $T>T_{c}$ only real Polyakov loops



even for enhancement of smeared loops ( $\kappa>1$, am $<1$ ) correlated to thin Polyakov loop configuration-wise (averaged)
$\Rightarrow$ still an order parameter to be made more quantitative

- individual and accumulated contributions:

$$
\int_{0}^{2 \pi} \frac{d \phi}{2 \pi} z^{*} \mathcal{O}_{z}(m) \sim \int_{0}^{2 \pi} \frac{d \phi}{2 \pi} \sum_{n} \frac{z^{*}}{\lambda_{z, n}+m}
$$

## as a function of $|\lambda|$ :



Accumulated contributions, am=10



Accumulated contributions, $a m=1$


Individual contributions, am=0.1


Accumulated contributions, am=0.1

$\Rightarrow$ IR dominated, probes chiral condensate

## Loose ends

- seems to suggest that $\rho(0) \sim\left\langle\operatorname{tr}_{c} \mathcal{P}\right\rangle$ ?!


## Loose ends

- seems to suggest that $\rho(0) \sim\left\langle\operatorname{tr}_{c} \mathcal{P}\right\rangle$ ?!
but integrated over twist $z$, dependence of $\rho_{z}(0)$ on $z$ :
confined phase:
$\rho_{z}(0)$ indep. of $z \quad \Rightarrow \quad \int_{0}^{2 \pi} \frac{d \phi}{2 \pi} z^{*} \mathcal{O}_{z}(m)=0, \quad$ as is $\left\langle\operatorname{tr}_{\mathcal{C}} \mathcal{P}\right\rangle$
deconfined phase (real Polyakov loop):
$\rho_{z}(0) \sim \delta(\phi) \Rightarrow \int_{0}^{2 \pi} \frac{d \phi}{2 \pi} z^{*} \mathcal{O}_{z}(m)=$ finite,$\quad$ as is $\left\langle\operatorname{tr}_{c} \mathcal{P}\right\rangle$ (gap closes for periodic bc.s)


## Loose ends

- seems to suggest that $\rho(0) \sim\left\langle\operatorname{tr}_{c} \mathcal{P}\right\rangle$ ?!
but integrated over twist $z$, dependence of $\rho_{z}(0)$ on $z$ :
confined phase:
$\rho_{z}(0)$ indep. of $z \quad \Rightarrow \quad \int_{0}^{2 \pi} \frac{d \phi}{2 \pi} z^{*} \mathcal{O}_{z}(m)=0, \quad$ as is $\left\langle\operatorname{tr}_{\mathcal{C}} \mathcal{P}\right\rangle$
deconfined phase (real Polyakov loop):

$$
\rho_{z}(0) \sim \delta(\phi) \Rightarrow \int_{0}^{2 \pi} \frac{d \phi}{2 \pi} z^{*} \mathcal{O}_{z}(m)=\text { finite, } \quad \text { as is }\left\langle\operatorname{tr}_{c} \mathcal{P}\right\rangle
$$

(gap closes for periodic bc.s)
Gattringer, Schaefer '03

- reconsider all limits $a \rightarrow 0, V \rightarrow \infty, m \rightarrow 0$ or $\infty$ carefully


## Loose ends

- seems to suggest that $\rho(0) \sim\left\langle\operatorname{tr}_{c} \mathcal{P}\right\rangle$ ?!
but integrated over twist $z$, dependence of $\rho_{z}(0)$ on $z$ :
confined phase:
$\rho_{z}(0)$ indep. of $z \quad \Rightarrow \quad \int_{0}^{2 \pi} \frac{d \phi}{2 \pi} z^{*} \mathcal{O}_{z}(m)=0, \quad$ as is $\left\langle\operatorname{tr}_{c} \mathcal{P}\right\rangle$
deconfined phase (real Polyakov loop):

$$
\rho_{z}(0) \sim \delta(\phi) \quad \Rightarrow \quad \int_{0}^{2 \pi} \frac{d \phi}{2 \pi} z^{*} \mathcal{O}_{z}(m)=\text { finite }, \quad \text { as } \text { is }\left\langle\operatorname{tr}_{c} \mathcal{P}\right\rangle
$$ (gap closes for periodic bc.s)

Gattringer, Schaefer '03

- reconsider all limits $a \rightarrow 0, V \rightarrow \infty, m \rightarrow 0$ or $\infty$ carefully
- full QCD:
lattice simulations may suggest a crossover with $T_{c}^{\text {deconf }} \neq T_{c}^{\chi \text { sb }}$ Aoki\& Wuppertal vs. RBC-Bielefeld (staggered fermions)
what could go 'wrong' in our connection between the Polyakov loop and the chiral condensate?

