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Motivation
QCD (quenched ∼ Yang-Mills) at finite temperature

Polyakov loop: P(~x) = P exp
(
i
∫ β

0 dx0A0(x0, ~x)
)
, β = 1/kBT
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order parameter for confinement: 〈trc P〉 ∼ e−βFquark

spectral density ρ(λ) of the Dirac operator (in background Aµ):
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order parameter of chiral symmetry: ρ(0) ∼ 〈ψ̄ψ〉 Banks-Casher
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The idea
relate Polyakov loops to Dirac spectra, on the lattice

Polyakov loop: P(x) ≡
∏N

τ=1 U0(x0 + τ, ~x) N ≡ N0

Dirac operator, here staggered Kogut,Susskind

D(x , y) ≡ 1
a

∑
µ

ηµ(x)
[
Uµ(x)δx+µ̂,y − h.c.

]
hopping by one link

DN(x , x) 3 products of links along closed loops at x

how to distinguish Polyakov loops from ‘trivially closed’ loops?

phase ‘twisted’ boundary conditions:

ψz(x0 + β,~x) = zψz(x0, ~x), z = eiφ

realized by U0 → zU0, U†
0 → z∗U†

0 at, say, the last time slice

⇒ Polyakov loops: P → zP, P† → z∗P† Gattringer ’06

while trivial loops do no change
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DN
z (x , x) = z P(~x) + z∗P†(~x) + . . . (a = 1)

linear system, extract P by three different bc.s, say center

P(x) = DN
1 + z∗DN

z + zDN
z∗ z = ei 2π

3

or by an integral over all bc.s

P(x) =
1

2π

∫ 2π

0
dφ z∗DN

z (x , x) z = eiφ

invoke spectral decomposition on the r.h.s.: P(x) = func(λz,n;ψz,n(x))

trace and space average → completeness of ψn:

1
V

∑
x

trcP(x) =
1
V

∑
n

[
λN

1,n + z∗λN
z,n + zλN

z∗,n

]
exact formula if all modes included (n = 1 . . .3NV ) IR dominated?!
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Results from Lattice calculations

aim: reconstruct
∑

~x trcP/V 6= 0 in the deconfined phase
from a finite number of eigenvalues

what counts:

• shift of λz with z:

0 1000 2000 3000

|λ|  [MeV]

0

20

40

60

<
 s

(λ
) 

>
  [

M
eV

]

  T < Tc

  T > Tc

IR dominates

• density of λ’s:
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• λ itself, even λN

[shown are N = 4]

IR suppressed

altogether this results in . . .
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• individual contributions:
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⇒ Polyakov loop dominated by UV modes
(same for higher N and larger volumes)

unphysical! these modes do not reflect the continuum well!

in addition, the smallest λ’s generate the wrong sign:
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Explanation

staggered eigenvalues λ are purely imaginary
λN=4 > 0
the twist in the boundary condition lifts the lowest eigenvalue
by roughly the same amount for z = ei 2π

3 and z∗ = e−i 2π
3

lowest contribution:

λN
1,0 + z∗λN

z,0 + zλN
z∗,0 = p1 + (z∗ + z)p2 with p2 > p1

= p1 − p2 < 0

argument does not hold for N = 6 since λN=6 < 0
indeed the lowest contribution there comes with the correct sign,
but later the sign changes to the wrong one
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Summary I

Polyakov loops can be obtained from powers of one-link operators . . .
(cf. links from Laplace operator FB, Ilgenfritz, ’05

field strength from Dirac operator Gattringer ’02, Liu et al. ’07)

. . . and then reconstructed from different parts of the spectrum: ‘filter’

but we found UV dominance: need to resolve an object with support
one point in 3D

continuum limit:∑
n λ

N
n is crazy, since:

◦ λ ∈ i [0,∞): continuous spectrum

◦ N →∞: finer (in x0)

◦ well, could be cancelled by dependence of λz,n on bc. z
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Other approaches

• consider instead of DN other functions of D:

Synatschke, Wipf, Wozar, ’07:

1
D
,

1
D2 , e−D, e−D†D

all summed over center boundary conditions
(Wilson-Dirac operator, small lattices)

⊕ IR dominated
better continuum behaviour!?

	 no direct relation to Polyakov loop, however:
empirically still order parameters: 〈spectral sums〉 ∼ 〈trc P〉
hopping expansion: becomes 〈trc P〉 in leading order
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Dressed Polyakov loops

definition (color trace included):

P̃κ ≡
1
V

∑
l∈L(1)

l

κ|l| trc
∏

(x ,µ)∈l

Uµ(x)

L(1)
l : all (lattice) loops l of length |l | winding 1 time in x0

the longer the loop (more detours), the more suppressed by weight κ|l|

obviously for κ→ 0 only the shortest paths = thin Polyakov loops:

P̃κ → κN · 1
V

∑
x

trcP(x)

not really feasible, since in principle arbitrarily long loops; convergent?!
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A mass dependent observable

consider as observable the integrated propagator with mass m:

O(m) ≡ 1
V

∫
dx trc(,γ)

1
D(x , x) + m

relation to Polyakov loop: lattice and introduce z again

Oz(m) =
1

mV

∑
x

∑
k

(
− Dz(x , x)

m

)k

D ∼ 1
a

Uµ(x), N even

=
1

mV

∑
x

{
. . .+ z

[ trcP(x)

(2am)N +
trcp(2)

(2am)N+2 + . . .
]
+ z0[ . . . ] + . . .

}
‘smeared’ Polyakov loops p(2): closed in x0 with two more links

projection on z-term gives the dressed Polyakov loop!
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namely: ∫ 2π

0

dφ
2π

z∗Oz(m) =
1
m
P̃κ=1/am

hence for large mass:∫ 2π

0

dφ
2π

z∗Oz(m)
m→∞−→ const

1
V

∑
x

trcP(x)

⇒ approaches conventional deconfinement order parameter

on the other hand for small mass:

lim
V→∞

Oz(m)
m→0−→ πρ(0)

⇒ approaches chiral condensate
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Numerical findings (preliminary)

• dressed Polyakov loops as a function of dressing coefficient:∫ 2π

0

dφ
2π

z∗Oz(m) ∼ P̃κ=1/am

123 · 6, integral by 16 values, for T > Tc only real Polyakov loops
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even for enhancement of smeared loops (κ > 1, am < 1)
correlated to thin Polyakov loop configuration-wise (averaged)

⇒ still an order parameter to be made more quantitative
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• individual and accumulated contributions:∫ 2π

0

dφ
2π

z∗Oz(m) ∼
∫ 2π

0

dφ
2π

∑
n

z∗

λz,n + m

as a function of |λ|:
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⇒ IR dominated, probes chiral condensate
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Loose ends
• seems to suggest that ρ(0) ∼ 〈trcP〉 ?!

but integrated over twist z, dependence of ρz(0) on z:
confined phase:

ρz(0) indep. of z ⇒
∫ 2π

0
dφ
2π z∗Oz(m) = 0, as is 〈trcP〉

deconfined phase (real Polyakov loop):

ρz(0) ∼ δ(φ) ⇒
∫ 2π

0
dφ
2π z∗Oz(m) = finite, as is 〈trcP〉

(gap closes for periodic bc.s) Gattringer, Schaefer ’03

• reconsider all limits a → 0,V →∞,m → 0 or ∞ carefully

• full QCD:

lattice simulations may suggest a crossover with T deconf
c 6= T χsb

c
(staggered fermions) Aoki& Wuppertal vs. RBC-Bielefeld (staggered fermions)

what could go ‘wrong’ in our connection between the Polyakov loop
and the chiral condensate?
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