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Motivation

Understanding supersymmetric theories is a challenging and fascinating prob-
lem

Of course, the motivation for studying supersymmetric theories is to see
whether supersymmetry is a symmetry of Nature and experimental evidence
for this will become available in the next years

Since supersymmetry predicts the existence of bosons and fermions of equal
mass it must be broken in some way

There is however another motivation to study supersymmetry: as a theoret-
ical laboratory to study strongly coupled gauge dynamics. In many respects
they resemble Quantum Chromodynamics (confinement and chiral symmetry
breaking)

While much is known analitically, the hope is that a discretized formula-
tion of supersymmetric gauge theories would provide information about non-
perturbative dynamics and additional information for supersymmetry

=⇒ lattice formulation
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Recent reviews

1. J. Giedt, hep-lat/0701006, (Plenary talk at Lattice 2006), “ Advances
and applications of lattice supersymmetry”.

2. S. Catterall, hep-lat/0509136, (Plenary talk at Lattice 2005), “Dirac-
Kahler fermions and exact lattice supersymmetry”.

3. A. F., hep-lat/0410012, (Review for MPLA), “ Predictions and recent
results in SUSY on the lattice’

4. D. B. Kaplan, hep-lat/0309099, (Plenary talk at Lattice 2003), “Recent
developments in lattice supersymmetry”.

5. A. F., hep-lat/0210015, (Plenary talk at Lattice 2002), “Supersymmetry
on the lattice”

6. I. Montvay, hep-lat/0112007, (Review), “Supersymmetric Yang-Mills the-
ory on the lattice”

7. I. Montvay, hep-lat/9709080, (Plenary talk at Lattice 1997), “SUSY on
the lattice”
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Plan of the Talk

Lattice Formulation of Super Yang-Mills theory

Two dimensional N = 2 Super Yang-Mills theory with one exact supercharge

Extension of Sugino’s formulation using the other three supercharges and
possible applications

A. F., Work in progress

comments/suggestions/criticism welcome!
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Lattice Gauge theory: General Remarks

Discretization of space-time is achieved introducing an euclidean space-time
lattice with spacing a and volume L3 · T . The inverse lattice spacing a−1 acts
as an UV cutoff.

The quark and antiquark fields ψ(x), ψ̄(x) leave in the lattice sites x.

Gauge fields are represented by the link variable Uµ(x) which are group ele-
ments ∈ SU(N) associated with straight-line path conecting nearest neighbour
pairs of lattices sites.

x y

a
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Gauge invariant expressions on the lattice are traces of products of link vari-
ables along closed paths. The most elementary one is the Plaquette variable

1 × 1

x x   a+ µ

+x   aν

Pµν(x) = Uµ(x)Uν(x+ aµ̂)U †
µ(x+ aν̂)U †

ν(x)

that can be used to construct the lattice Yang-Mills action

There is no a unique way to discretize an observable on the lattice and the
only request is that have to reduce to the classical value in the continuum
limit (a→ 0).
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Wilson propose the simplest one

SW =
∑

P

SP =
1

2
β

∑

x

∑

µν

(

1 −
1

2N
Tr(Pµν(x) + P †

µν(x))

)

Introducing the gauge field variables by

Uµ(x) ≡ exp ig0aA
b
µ(x)T

b

and using Baker-Campbell-Haussdorf

Pµν ≃ eigoa
2Fµν(x)

≃ 1 + igoaFµν(x) −
g2oa

2

2
Fµν(x)Fµν(x)

in the limit a→ 0

SW =
∑

x

∑

µν

(

a4βg
2
o

2N
TrFµνFµν +O(a6)

)

.
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So the continuum limit is

SW =

∫

d4x
1

2
TrFµνFµν,

if we define β to be

β =
2N

g20
.
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Fermions on the Lattice

Recently, following the rediscovery of the Ginsparg-Wilson relation (1982),
it has emerged that chiral theories can be put on the lattice in a consistent
way:

• The overlap (Narayanan-Neuberger 1993,1995,1998)

• Domain wall fermions (Kaplan-Shamir 1992, 1993, 1994)

• Perfect action (Hasenfratz-Niedermayer 1994, 1998).

This was believed to be impossible for a long time [Nielsen-Ninomiya, 1981] the
no-go theorem.

A naive formulation of fermions on the lattice fails

SF =
1

2

∑

x

∑

µ

ψ̄(x)(γµ∆µ +m)ψ(x) + h.c.

and the resulting propagator is

∆̃(k) =
−i

∑

µ γµsinkµ +m
∑

µ sin2kµ +m2
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There is a pole for small kµ representing the physical particle, but additional
poles near kµ = ±π appears. SF describes 16 instead of 1 particle. → Doubling
problem.

Two popular choices introduced in order to deal with this problem:

• Wilson fermions: Get rids of the doubling species but breaks chiral sym-
metry explicitily by the Wilson term.

• Staggered fermions (Kogut-Susskind): Reduce from 16 to 4 fermions
and for massless fermions a remnant chiral symmetry remains.
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Supersymmetry

Such a symmetry makes:

Q|boson〉 = |fermion〉 Q|fermion〉 = |boson〉

the symmetry generator Q (and its hermitian conjugate Q†) carry spin 1
2

There is essential one possibility for the SUSY algebra:

{Qα, Q
†
β} = 2σµαβPµ

{Qα, Qβ} = {Q†
α, Q

†
β} = 0

[Pµ, Qα] = [Pµ, Q
†
α] = 0

Also,

• Q, Q† transform as spinors under the Lorentz group

• Q, Q† commute with gauge symmetry generators

We may have more than one Q: Qi, i = 1, · · ·N (extended supersymmetry)

∆-Meeting 2007, ITP Heidelberg 10



Lattice formulation of Super Yang-Mills theory

• The major obstacle in formulating a supersymmetric theory on the lattice
arises from the fact that the supersymmetry algebra, which is actually
an extension of the Poincaré algebra, is explicitly broken on the lattice
[Dondi and Nicolai 1977] .

In particular the Super Poincaré algebra is given by the anti-commutator
of a supercharge Qα and its conjugate Qβ yields the generator of infinites-
imal translations Pµ. Schematically,

{

Qα, Q
†
β

}

= 2σµαβPµ

On the lattice there are no infinitesimal translations and therefore the
supersymmetry algebra must be broken.

∆-Meeting 2007, ITP Heidelberg 11



Ordinary Poincaré algebra is also broken by the lattice but the hyper-
cubic crystal symmetry forbids relevant operators which could spoil the
Poincaré symmetry in the continuum limit →

The Poincaré invariance is achieved automatically in the continuum limit
without fine tuning since operators that violate Poincaré invariance are
all irrelevant.

However, in the case of the super Poincaré algebra, the lattice crystal
group is not enough to guarantee the absence of supersymmetry violating
operators.
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Failure of the Leibniz rule

On the lattice the Leibniz rule does not hold anymore. [Fujikawa, hep-

th/0205095]

1

a
(f(x+ a)g(x+ a) − f(x)g(x)) =

=
1

a
(f(x+ a) − f(x))g(x) +

1

a
f(x)(g(x+ a) − g(x))

+a
1

a
(f(x+ a) − f(x))

1

a
(g(x+ a) − g(x))

= (∇f(x))g(x) + f(x)(∇g(x)) + a(∇f(x))(∇g(x))

the breaking of supersymmetry is of order O(a).
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• If the supersymmetric theory contains scalar mass terms they break su-
persymmetry. Since these operators are relevant fine tuning is needed in
order to cancel their contributions.

• A naive regularization of fermions results in the doubling problem [Nielsen

and Ninomiya, 1981] → wrong number of fermions and violation of the
balance between bosons and fermions
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Without exact lattice supersymmetry one might hope to construct
non-supersymmetric lattice theories with a supersymmetric continuum
limit.

This is the case of the Wilson fermion approach for the 4d N = 1 supersym-
metric Yang-Mills theory where the only operator that violates supersymmetry
is a fermion mass term.

By tunning the fermion mass to the supersymmetric limit one recovers su-
persymmetry in the continuum limit [Curci and Veneziano, 1987; I. Montvay, hep-

lat/0112007, hep-lat/9510042; Feo, hep-lat/0305020]

Alternatively, using domain wall fermions [Kaplan and Schmaltz hep-lat/0002030]

or overlap fermions [Huet, Narayanan, Neuberger, hep-th/9602176] this fine tunning
is not required.
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In the case of theories with extended supersymmetries the fine tuning of
coupling constant is neither feasible nor theoretically practical.

Due to difficulties in realizing exact supersymmetry on the lattice, all that
remain us it to realize part of the supercharges as an exact symmetry on the
lattice:

This exact lattice supersymmetry is expected to play a key role to
restore continuum supersymmetry without (or with less) fine tuning of
the parameters of the action.
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Two ways to study SUSY on the lattice

• Construct non-SUSY lattice theories with a SUSY continuum limit.

– N=1 Super-Yang Mills
(with Wilson fermions – Curci and Veneziano formulation)

• Keep some exact algebra of SUSY on the lattice in order to recover the
continuum limit with no (or less) fine tuning of parameters of the action.

– N=1 Super-Yang Mills
(with Domain Wall-fermions – Kaplan formulation) → the zero gluino mass term
is achieved without find tuning
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Exact Supersymmetry on the Lattice

It is possible to obtain exact supersymmetry respect to the supersymmetric
transformations. An incomplete list for Wess-Zumino type models is ...

Golterman and Petcher, 1989
Bietenholz, hep-lat/9807010

Catterall and Karamov, hep-lat/0110071, hep-lat/0305002
Fujikawa and Ishibashi, hep-lat/0112050

Fujikawa, hep-lat/0208015

while for the N = 1 Wess-Zumino model in 4 dimensions an exact lattice
formulation have been achieved (also checked the Ward-Takahashi identity to
one-loop in the continuum limit) [Bonini and Feo, hep-lat/0402034, hep-lat/0504010]
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The two dimensional N = 2 Super Yang-Mills theory
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The two dimensional continuum theory

The two dimensional N = 2 Super Yang-Mills theory can be written as a
topological field theory form or Q-exact form [Witten, 1988]

SN=2,d=2
SYM = Q

1

2g20

∫

d2xTr

[

1

4
η[φ, φ̄] − iχ12Φ + χ12B12 − iψµDµφ̄

]

,

where µ is the index for the two dimensional space-time

The bosonic fields are represented by two scalar fields φ and φ̄, a vector field
Aµ and another commuting field B12, which is an auxiliary field

The fermionic fields are represented by a vector ψµ, an anticommuting scalar
field η and a field χ12 conjugate to B12

Φ is a function of the field strength Fµν and for two dimensions is given by

Φ ≡ 2F12 .
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Q is one of the supercharges of N = 2 Super Yang-Mills theory and its
transformation rule over the fields is given by the following rule,

QAµ = ψµ
Qψµ = iDµφ

Qφ = 0

Qχ12 = B12

QB12 = [φ, χ12]

Qφ̄ = η

Qη = [φ, φ̄] .

Q is nilpotent up to infinitesimal gauge transformations with parameter φ,

i.e., the square of Q yields an infinitesimal gauge transformations, Q2 = δφG,
with parameter φ. Carrying out the Q-variation leads to the more explicit
form for the N = 2 Super Yang-Mills action,

SN=2,d=2
SYM =

1

2g20

∫

d2xTr

[

1

4
[φ, φ̄]2 +B2

12 − iB12Φ

+DµφDµφ̄−
1

4
η[φ, η] − χ12[φ, χ12] + ψµ[φ̄, ψµ]

+ iχ12QΦ + iψµDµη

]

.
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and integrate out the field B12 gives

SN=2,d=2
SYM =

1

2g20

∫

d2xTr

[

1

4
[φ, φ̄]2 + F 2

12

+DµφDµφ̄−
1

4
η[φ, η] − χ12[φ, χ12] + ψµ[φ̄, ψµ]

+ iχ12QΦ + iψµDµη

]

.
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Lattice Formulation with One Exact Supercharge

F.Sugino, hep-lat/0311021, hep-lat/0401017, hep-lat/0410035;

S. Catterall, hep-lat/0410052, hep-lat/0503036, hep-lat/0602004;

D’Adda, et al., hep-lat/0406029, hep-lat/0507029.

Start with a formulation of the theory on a two dimensional hypercubic lattice
where the gauge field Aµ(x) is represented by the unitary link variable Uµ(x) =

eiaAµ(x) [Sugino]

the Q-transformation can be generalized on the lattice preserving the property
that Q2 = (is an infinitesimal gauge transformation with the parameter φ)

A possible solution is

QUµ(x) = iψµ(x)Uµ(x)

Qψµ(x) = iψµ(x)ψµ(x) − i

(

φ(x) − Uµ(x)φ(x+ µ̂)U †
µ(x)

)

Qφ(x) = 0

Qχ12(x) = B12(x)

QB12(x) = [φ(x), χ12(x)]

Qφ̄(x) = η(x)

Qη(x) = [φ(x), φ̄(x)]
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where the dependence on the lattice spacing for each field variable is the
following,

Q = O(a1/2) ,

ψµ(x), χ12(x), η(x) = O(a3/2) ,

φ(x), φ̄(x) = O(a) ,

B12(x) = O(a2) ,

All transformations are the same in the continuum except for QUµ(x) and
Qψµ(x).

In fact,

Q2Uµ(x) = Q(iψµ(x)Uµ(x))

= (φ(x)Uµ(x) − Uµ(x)φ(x+ µ̂))

then we have

Q2ψµ(x) = Q[iψµ(x)ψµ(x) − i(φ(x) − Uµ(x)φ(x+ µ̂)Uµ(x)
†)]

= [φ(x), ψµ(x)]
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Once one have the Q-transformation rule closed among all the lattice vari-
ables, it is easy to write the lattice action with the exact supersymmetry Q,

SN=2
SYM = Q

1

2g20

∑

x

Tr

[

1

4
η(x)[φ(x), φ̄(x)] − iχ12(x)Φ(x) + χ12(x)B12(x)

+ i

4
∑

µ=1

ψµ(x)

(

φ(x) − Uµ(x)φ(x+ µ̂)U †
µ(x)

)]

where Φ(x) ≡ −i(P12(x)−P21(x)) and P12(x) = U1(x)U2(x+1)U †
1(x+2)U †

2(x)
and

lim
a→0

Φ(x) = 2F12(x) .
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that originates the lattice N = 2 SYM action

SN=2
SYM =

1

g20

∫

Tr

[

1

4
[φ(x), φ̄(x)]2 +B2

12 − iB12Φ(x)

+
∑

µ

(

φ(x) − Uµ(x)φ(x+ µ̂)Uµ(x)
†

)(

φ̄(x) − Uµ(x)φ̄(x+ µ̂)Uµ(x)
†

)

−
1

4
η(x)[φ(x), η(x)] − χ12(x)[φ(x), χ12(x)] + iχ12(x)QΦ(x)

− i
∑

µ

ψµ(x)

(

η(x) − Uµ(x)η(x+ µ̂)Uµ(x)
†

)

−
∑

µ

ψµ(x)ψµ(x)

(

φ̄(x) − Uµ(x)φ̄(x+ µ̂)Uµ(x)
†

)]

and reduces to the continuum N = 2 SYM action in the limit a → 0 without
any fine tuning of the parameters of the action.
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In fact, the fermionic kinetic term,

iχ12(x)QΦ(x) − i
∑

µ

ψµ(x)

(

η(x) − Uµ(x)η(x+ µ̂)Uµ(x)
†

)

has the correct continuum naive limit and contains no doublers. The contin-
uum naive limit is

lim
a→0

iTr(χ12QΦ(x)) = 2iTr[χ12(D1ψ2(x) −D2ψ1(x))]

is of order O(1) and is exactly the continuum value, while the second term
gives iψµ(x)Dµη(x). Moreover, the second term of the lattice action gives
Dµφ(x)Dµφ̄(x), while the last term gives ψµ(x)[φ̄(x), ψµ(x)].
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After integrating out the auxiliary field B12(x), one is left with a gauge kinetic
term of the form

1

2g20

∑

x

∑

µ<ν

Tr

[

− (Uµν(x) − Uνµ(x))
2

]

which is slightly different to the one corresponding to the Wilson action

1

2g20

∑

x

∑

µ<ν

Tr

[

2 − Uµν(x) − Uνµ(x)

]

.

As has been discussed in [Sugino], while the term here gives a unique minimun
Uµν(x) = 1, the piece above contains many classical vacua ±1. This problem
was resolved later on where and admissibility condition on the plaquette vari-
able was included, similar to the one used for the Ginsparg-Wilson operator
without spoiling the exact supersymmetry on the lattice.
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Lattice Action for the Other Three Supercharges

We extended Sugino’s formulation [A.F., work in preparation] and showed
that it is possible to construct other three supercharges that are nilpotent up
to infinitesimal gauge transformations and we write the lattice action as an
exact
Q̃,Q1, Q2-form.

The continuum Q̃,Q1, Q2 supercharges are given in
Kato, Kawamoto, Miyake, hep-th/0502119
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Supersymmetry Q̃

Using the same naive discretization for the derivative,

Q̃ψµ(x) = iǫµν

(

φ(x) − Uν(x)φ(x+ ν̂)U †
ν(x)

)

− iǫµνψµ(x)ψµ(x)

Q̃Uµ(x) = iǫµνψν(x)Uµ(x)

Q̃φ(x) = 0

Q̃φ̄(x) = 2χ12(x)

Q̃B12(x) =
1

2
[φ(x), η(x)]

Q̃η(x) = −2B12(x)

Q̃χ12(x) =
1

2
[φ(x), φ̄(x)]

Q̃ is nilpotent up to infinitesimal gauge transformations, in fact,

Q̃2Uµ(x) = Q̃(iǫµνψν(x)Uµ(x))

= iǫµν[iǫνρ(φ(x) − Uρ(x)φ(x+ ρ̂)U †
ρ(x)) − iǫνρψν(x)ψν(x)]Uµ(x)

− iǫµνψν(x)(iǫµρψρ(x)Uµ(x))

= (φ(x)Uµ(x) − Uµ(x)φ(x+ µ̂))
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and

Q̃2ψµ(x) = Q̃[iǫµν(φ(x) − Uν(x)φ(x+ ν̂)U †
ν(x)) − iǫµνψµ(x)ψµ(x)]

= [φ(x), ψµ(x)]

The action can be written as a Q̃-variation of

SN=2
SYM = Q̃

1

2g20

∑

x

Tr

[

1

2
χ12(x)[φ(x), φ̄(x)] −

1

2
η(x)B12(x) +

i

2
η(x)Φ(x)

+ i
∑

µ,ρ

ǫµρψρ(x)

(

φ̄(x) − Uµ(x)φ̄(x+ µ̂)U †
µ(x)

)]

and is Q̃-invariant since it is a Q̃-exact form.
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Applying the Q̃-variation over the different pieces we get

SN=2
SYM =

1

g20

∫

Tr

[

1

4
[φ(x), φ̄(x)]2 +B2

12 − iB12Φ(x)

−
1

4
η(x)[φ(x), η(x)] + χ12(x)[φ(x), χ12(x)] −

i

2
η(x)Q̃Φ(x)

+
∑

µ

(

φ(x) − Uν(x)φ(x+ ν̂)Uν(x)
†

)(

φ̄(x) − Uµ(x)φ̄(x+ µ̂)Uµ(x)
†

)

− 2i
∑

µ,ρ

ǫµρψρ(x)

(

χ12(x) − Uµ(x)χ12(x+ µ̂)Uµ(x)
†

)

−
∑

µ,ρ

ψρ(x)ψρ(x)

(

φ̄(x) + Uµ(x)φ̄(x+ µ̂)Uµ(x)
†

)

(1 − δµρ)

]

which is exactly the lattice N = 2 Super Yang-Mills with the change of
variables

ψ1(x) → −ψ2(x) , ψ2(x) → ψ1(x) , χ12(x) →
1

2
η(x) ,

1

2
η(x) → −χ12(x)

which corresponds to a transformation Ψ → σ1σ2Ψ
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where the fermionic fields components can be combined in a two-components
Dirac spinor as

Ψ = −i

(

ψ1 + iψ2

χ12 + iη
2

)

,

After applying these change of variables we get

lim
a→0

[

−
i

2
Tr(η(x)Q̃Φ(x))

]

= 2iTr[χ12(D1ψ2(x) −D2ψ1(x))] ,

and the action reduces to the continuum N = 2 SYM without fine tuning of
any parameters of the action.
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Supersymmetry Qµ

We now show the algebra associated with the supercharge Qµ, which can be
naively discretized as,

QµUν(x) = iεµνχ12(x)Uν(x) −
i

2
δµνη(x)Uν(x)

Qµη(x) = −2i

(

φ̄(x) − Uµ(x)φ̄(x+ µ̂)U †
µ(x)

)

−
1

2
iδµνη

2(x)

Qµχ12(x) = iεµν

(

φ̄(x) − Uν(x)φ̄(x+ ν̂)U †
ν(x)

)

+ iεµνχ
2
12(x)

Qµψν(x) = εµνB12 +
1

2
δµν[φ(x), φ̄(x)]

QµB12(x) = [εµνψν(x), φ̄(x)]

Qµφ̄(x) = 0

Qµφ(x) = 2ψµ(x) .

The terms 1
2
η2 and χ2

12 are O(a) improved respect to the other ones thus, in
the continuum limit they disappear and these lattice transformation goes to
the continuum one.
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One can close the algebra associated with Q1 and Q2, separately,

Q1U1(x) = −
i

2
η(x)U1(x) , Q1U2(x) = iχ12(x)U2(x)

Q1η(x) = −2i

(

φ̄(x) − U1(x)φ̄(x+ 1)U †
1(x)

)

−
1

2
iη2(x)

Q1χ12(x) = i

(

φ̄(x) − U2(x)φ̄(x+ 2)U †
2(x)

)

+ iχ2
12(x)

Q1ψ1(x) =
1

2
[φ(x), φ̄(x)] , Q1ψ2(x) = B12(x)

Q1B12(x) = [ψ2(x), φ̄(x)]

Q1φ̄(x) = 0

Q1φ(x) = 2ψ1(x) ,

where the following rules for Q2
1 are satisfied,
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Q2
1η(x) = Q1

[

− 2i(φ̄(x) − (U1(x)φ̄(x+ 1)U †
1(x)) −

1

2
iη2(x)

]

= [η(x), φ̄(x)]

and

Q2
1χ12(x) = Q1

[

i(φ̄(x) − (U2(x)φ̄(x+ 2)U †
2(x)) + iχ2

12(x)

]

= [χ12(x), φ̄(x)] .

Then we also have,

Q2
1U1(x) = Q1(−

1

2
iη(x)U1(x))

= −(φ̄(x)U1(x) − U1(x)φ̄(x+ 1))

and similarly,

Q2
1U2(x) = Q1(iχ12(x)U2(x))

= −(φ̄(x)U2(x) − U2(x)φ̄(x+ 2)) .
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Since Q1 is nilpotent up to infinitesimal gauge transformations, we can write
the action as a Q1-variation of,

SN=2
SYM = Q1

1

2g20

∑

x

Tr

[

1

2
ψ1(x)[φ(x), φ̄(x)] + ψ2(x)B12(x) − iψ2(x)Φ(x)

+
i

2
η(x)

(

φ(x) − U1(x)φ(x+ 1)U †
1(x)

)

− iχ12(x)

(

φ(x) − U2(x)φ(x+ 2)U †
2(x)

)]

.

Applying the Q1-variation over the different fields we obtain
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SN=2
SYM =

1

2g20

∑

x

Tr

[

1

4
[φ(x), φ̄(x)]2 +B2

12 − iB12Φ(x) + iψ2(x)Q1Φ(x)

− ψ1(x)[ψ1(x), φ̄(x)] − ψ2(x)[ψ2(x), φ̄(x)]

+
∑

µ

(

φ̄(x) − Uµ(x)φ̄(x+ µ̂)U †
µ(x)

)(

φ(x) − Uµ(x)φ(x+ µ̂)U †
µ(x)

)

+
1

4
η2(x)

(

φ(x) − U1(x)φ(x+ 1)U †
1(x)

)

+ χ2
12(x)

(

φ(x) − U2(x)φ(x+ 2)U †
2(x)

)

− iη(x)

(

ψ1(x) − U1(x)ψ(x+ 1)U †
1(x)

)

+ 2iχ12(x)

(

ψ1(x) − U2(x)ψ1(x+ 2)U †
2(x)

)

+
1

2
η2(x)U1(x)φ(x+ 1)U †

1(x)

+ 2χ12(x)U2(x)φ(x+ 2)U †
2(x)

]

.
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This expression is the lattice N = 2 SYM action after a change variables,

ψ1 →
1

2
η , ψ2 → −χ12 , χ12 → −ψ2 ,

1

2
η → ψ1 ,

that corresponds a transformation Ψ → σ2Ψ if simultaneously change

φ↔ −φ̄

It reduces to the continuum supersymmetric limit without any fine tuning of
the parameters of the action.
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Supersymmetry Q2

Q2U1(x) = −iχ12(x)U1(x) , Q2U2(x) = −
i

2
η(x)U2(x)

Q2η(x) = −2i

(

φ̄(x) − U2(x)φ̄(x+ 2)U †
2(x)

)

−
1

2
iη2(x)

Q2χ12(x) = −i

(

φ̄(x) − U1(x)φ̄(x+ 1)U †
1(x)

)

− iχ2
12(x)

Q2ψ1(x) = −B12(x) , Q2ψ2(x) =
1

2
[φ(x), φ̄(x)]

Q2B12(x) = −[ψ1(x), φ̄(x)]

Q2φ̄(x) = 0

Q2φ(x) = 2ψ2(x) ,

and close the algebra in the following way,
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Q2
2η(x) = Q2[−2i(φ̄(x) − (U2(x)φ̄(x+ 2)U †

2(x)) −
1

2
iη2(x)]

= [η(x), φ̄(x)]

and

Q2
2χ12(x) = Q2[−i(φ̄(x) − (U1(x)φ̄(x+ 1)U †

1(x)) − iχ2
12(x)]

= [χ12(x), φ̄(x)] .

Then we also have,

Q2
2U1(x) = Q2(−iχ12(x)U1(x))

= −(φ̄(x)U1(x) − U1(x)φ̄(x+ 1))

and

Q2
2U2(x) = Q2(−

1

2
iη(x)U2(x))

= −(φ̄(x)U2(x) − U2(x)φ̄(x+ 2)) .
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The action can be written as an exact Q2-variation of

SN=2
SYM = Q2

1

2g20

∑

x

Tr

[

1

2
ψ2(x)[φ(x), φ̄(x)] − ψ1(x)B12(x) + iψ1(x)Φ(x)

+
i

2
η(x)

(

φ(x) − U2(x)φ(x+ 2)U †
2(x)

)

+ iχ12(x)

(

φ(x) − U1(x)φ(x+ 1)U †
1(x)

)]

.

and applying the transformations rule we have,
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SN=2
SYM =

1

2g20

∑

x

Tr

[

1

4
[φ(x), φ̄(x)]2 +B2

12 − iB12Φ(x) − iψ1(x)Q2Φ(x)

− ψ2(x)[ψ2(x), φ̄(x)] − ψ1(x)[ψ1(x), φ̄(x)]

+
∑

µ

(

φ̄(x) − Uµ(x)φ̄(x+ µ̂)U †
µ(x)

)(

φ(x) − Uµ(x)φ(x+ µ̂)U †
µ(x)

)

+
1

4
η2(x)

(

φ(x) − U2(x)φ(x+ 2)U †
2(x)

)

+ χ2
12(x)

(

φ(x) − U1(x)φ(x+ 1)U †
1(x)

)

− iη(x)

(

ψ2(x) − U2(x)ψ2(x+ 2)U †
2(x)

)

− 2iχ12(x)

(

ψ2(x) − U1(x)ψ2(x+ 1)U †
1(x)

)

+
1

2
η2(x)U2(x)φ2(x+ 2)U †

2(x)

+ 2χ2
12(x)U1(x)φ1(x+ 1)U †

1(x)

]

.
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This expression is again the lattice N = 2 super Yang-Mills action with the
change of variables,

ψ1 → χ12 , ψ2 →
1

2
η , χ12 → ψ1 ,

1

2
η → ψ2

and simultaneously,

φ↔ −φ̄ ,

that corresponds to a transformation, Ψ → σ1Ψ,

and reduces to the continuum supersymmetric action without any fine tuning
of the parameters of the action.
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Lattice Action as a QQ̃-form

A natural question that can be analyzed is whether more than one supercharge
can be preserved exactly on the lattice using this formulation.

It is possible to write the N = 2 Super Yang-Mills action as a product of two
supercharges Q and Q̃, which are separately exact on the lattice,

SN=2
SYM = QQ̃

1

2g20

∑

x

Tr

[

−
1

2
η(x)χ12(x) −

i

2
φ̄(x)Φ(x)

]

.

Applying Q̃ we get,

= Q
1

2g20

∑

x

Tr

[

B12(x)χ12(x)+
1

4
η(x)[φ(x), φ̄(x)]− iχ12(x)Φ(x)−

i

2
φ̄(x)Q̃Φ(x)

]

.

The first three pieces are OK, while the last term should be investigated more
carefully and gives,
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∑

x

Tr

[

−
i

2
φ̄(x)Q̃Φ(x)

]

=

−
1

2

∑

x

Trφ̄(x)Q̃

[

U1(x)U2(x+ 1)U †
1(x+ 2)U †

2(x)

− U2(x)U1(x+ 2)U †
2(x+ 1)U †

1(x)

]

≡ −
i

2

∑

x

Trφ̄(x)F1(x) .

Now applying Q we have,

∑

x

Tr

[

−
i

2
φ̄(x)F1(x)

]

= −
i

2

∑

x

Tr

[

η(x)F1(x) + φ̄(x)QF1(x)

]

.

Let us investigate its continuum limit:
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In the limit a→ 0 the first piece gives,

−
i

2

∑

x

Tr

[

η(x)F1(x)

]

≈a→0 i
∑

x

Tr

[

η(x)Dµψµ(x)

]

which is order O(1). Integrating by part we obtain

iψµ(x)Dµη(x) .

While the second piece

−
i

2

∑

x

Trφ̄(x)QF1(x) ≈a→0 ,

gives two pieces:
∑

x

Trψµ(x)[φ̄(x), ψµ(x)]

and

a2
∑

x

Tr(∂µφ̄(x)+i[Aµ(x), φ(x)])(∂µφ̄(x)+i[Aµ(x), φ(x)]) = a2
∑

x

TrDµφ̄(x)Dµφ(x) .
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Collecting all terms we obtain the classical continuum action without fine
tuning even if on the lattice we do not satisfy the condition,

{

Q, Q̃

}

= 0 .

(two dimensions?)
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Outlook

We start with a lattice formulation of the two dimensional N = 2 Super
Yang-Mills theory proposed by Sugino where the gauge fields are represented
by unitary link variables and use a naive discretization of fermions.

This formulation preserve exactly a single supercharge at finite lattice spac-
ing and the action as a Q-exact form. In the continuum limit this lattice
supersymmetry is enough to guarantee continuum supersymmetry without
fine tuning of any parameters of the action.

We then show that it is possible to construct other three supercharges that
are nilpotent up to infinitesimal gauge transformations and we write a lattice
action as an exact (Q̃,Q1, Q2)-form.

At finite lattice spacing they define four different lattice models and in each
model only one supersymmetry is realized. In the continuum limit they all
flow to the same continuum supersymmetric theory without any fine tuning
of the parameters of the action.

As an application of this procedure we write the lattice action as a QQ̃-form
(where Q and Q̃ are separately nilpotent) and we show that the continuum
limit is realized without any fine tuning.
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Future work

Write the action as a QQ̃Q1Q2-form.

Use another lattice formulation for the fermion part of the action.

Extend this formulation for 4 dimensions

Our final goal is to write an exact lattice action for the 4 dimensional N = 1
Super Yang-Mills theory.
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