Onset of first order behaviour for the 3-state Potts Model in a finite thickness slab

Michael Fromm ETH, Zürich

Delta'07, December 15th, 2007

Outline

Motivation

- Phase transitions and dimensional reduction
- The phase diagram of U(1) LGT in (3+1) dimensions

The Potts Model 2

- Definition
- Phase diagram
- 3 Numerical experiment
 - Task
 - Results

The Potts Model Numerical experiment Summary and outlook

The phase diagram of U(1) LGT in (3 + 1) dimensions

Outline

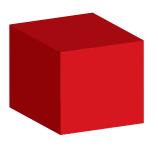
1 Motivation

- Phase transitions and dimensional reduction
- The phase diagram of U(1) LGT in (3+1) dimensions

- Definition
- Phase diagram
- - Task
 - Results

The Potts Model Numerical experiment Summary and outlook Phase transitions and dimensional reduction The phase diagram of U(1) LGT in (3 + 1) dimensions

Dimensional reduction



Setup

• Lattice theory in d + 1 dimension, finite box $L \times ... \times L_t$ with lattice

spacing a, external parameter β_L

- Phase transition (PT) in β_L can occur
 - Different order in d + 1 ($L_t = L$) and d dim. ($L_t = 1$)
 - c.f. U(1), Z(2) LGT or classical spin systems

The Potts Model Numerical experiment Summary and outlook Phase transitions and dimensional reduction The phase diagram of U(1) LGT in (3 + 1) dimensions

Dimensional reduction

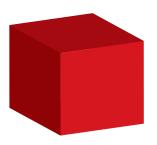
Setup

• Lattice theory in d + 1 dimension, finite box $\underline{L \times \ldots} \times L_t$ with lattice

spacing a, external parameter β_L

- Phase transition (PT) in β_L can occur
 - Different order in d + 1 ($L_t = L$) and d dim. ($L_t = 1$)
 - c.f. U(1), Z(2) LGT or classical spin systems

The Potts Model Numerical experiment Summary and outlook Phase transitions and dimensional reduction The phase diagram of U(1) LGT in (3 + 1) dimensions



- Take system with $L_t << L$ and investigate criticality in the limit $L \rightarrow \infty$
- For lattice *field* theory, leads to definition of temperature *T*
 - System compactified in L_t direction
 - Temperature $T \sim \frac{1}{L_t \cdot a}$
- Investigate order of PT with varying *L_t* and *L* → ∞, crossover between d and d+1 dim. behaviour observed?

The Potts Model Numerical experiment Summary and outlook Phase transitions and dimensional reduction The phase diagram of U(1) LGT in (3 + 1) dimensions

- Take system with $L_t << L$ and investigate criticality in the limit $L \rightarrow \infty$
- For lattice *field* theory, leads to definition of temperature *T*
 - System compactified in L_t direction
 - Temperature $T \sim \frac{1}{L_t \cdot a}$
- Investigate order of PT with varying L_t and L → ∞, crossover between d and d+1 dim. behaviour observed?

The Potts Model Numerical experiment Summary and outlook Phase transitions and dimensional reduction The phase diagram of U(1) LGT in (3 + 1) dimensions

- Take system with $L_t << L$ and investigate criticality in the limit $L \rightarrow \infty$
- For lattice *field* theory, leads to definition of temperature *T*
 - System compactified in L_t direction
 - Temperature $T \sim \frac{1}{L_t \cdot a}$
- Investigate order of PT with varying *L_t* and *L* → ∞, crossover between d and d+1 dim. behaviour observed?

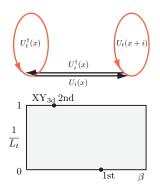
The Potts Model Numerical experiment Summary and outlook Phase transitions and dimensional reduction The phase diagram of U(1) LGT in (3 + 1) dimensions

- Take system with $L_t << L$ and investigate criticality in the limit $L \rightarrow \infty$
- For lattice *field* theory, leads to definition of temperature *T*
 - System compactified in L_t direction
 - Temperature $T \sim \frac{1}{L_t \cdot a}$
- Investigate order of PT with varying *L_t* and *L* → ∞, crossover between d and d+1 dim. behaviour observed?

Phase transitions and dimensional reduction The phase diagram of U(1) LGT in (3 + 1) dimensions

Specific Example: U(1) LGT in (3 + 1) dimensions

$$S_{\text{Wilson}} = -\beta \sum_{\substack{x,\mu,\nu\\\mu>
u}} \cos \theta_{\mu
u}(x), \ \beta = \frac{1}{g^2}$$



Phase diagram in limiting cases

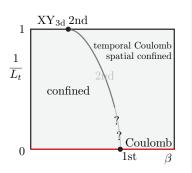
•
$$L_t = 1 : Z_{U(1)_{L_t=1}} = Z_{XY_{3d}} \cdot Z_{U(1)_{3d}}$$

XY_{3d} 2nd order, β_c = .4542...[1]
 U(1)_{3d} confined ∀β

•
$$L = L_t$$
: PT at $T = 0$,
 $\beta_c = 1.011...$ is 1st order [2, 3]
(no continuum limit)

The Potts Model Numerical experiment Summary and outlook Phase transitions and dimensional reduction The phase diagram of U(1) LGT in (3 + 1) dimensions

Phase diagram (2004) [2]



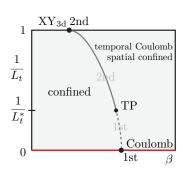
 Phase boundary extends, separating high-T confined temporal Coulomb phase. Order ?

1) 2nd order down to some $1/L_t^*$

• Separation of 1st and 2nd order line by tricritical point (TP)

The Potts Model Numerical experiment Summary and outlook Phase transitions and dimensional reduction The phase diagram of U(1) LGT in (3 + 1) dimensions

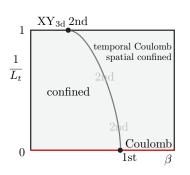
Phase diagram (2004) [2]



- Phase boundary extends, separating high-T confined temporal Coulomb phase. Order ?
 2nd order down to some 1/L^{*}_t
 - Separation of 1st and 2nd order line by tricritical point (TP)
- 2) PT of 2nd order all the way down
 - to but excluding $1/L_t = 0$
 - Counterintuitive ? (Allows for continuum limit of a *confined* Abelian Gauge Theory.)
 - Implies (new) non-trivial fixed point (FP) as Gaussian FP is not stable in d = 3.[4, 5]

The Potts Model Numerical experiment Summary and outlook Phase transitions and dimensional reduction The phase diagram of U(1) LGT in (3 + 1) dimensions

Phase diagram (2004) [2]



- Phase boundary extends, separating high-T confined temporal Coulomb phase. Order ?
- 1) 2nd order down to some $1/L_t^*$
 - Separation of 1st and 2nd order line by tricritical point (TP)
- 2) PT of 2nd order all the way down
 - to but excluding $1/L_t = 0$
 - Counterintuitive ? (Allows for continuum limit of a *confined* Abelian Gauge Theory.)
 - Implies (new) non-trivial fixed point (FP) as Gaussian FP is not stable in d = 3.[4, 5]

Definition Phase diagram

Outline

Motivation

• Phase transitions and dimensional reduction

• The phase diagram of U(1) LGT in (3 + 1) dimensions

2 The Potts Model

- Definition
- Phase diagram

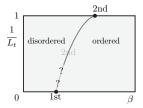
3 Numerical experiment

- Task
- Results

Simpler example: q = 3 Potts Model [6] in (2+1) dimensions (this study)

$$-\beta H = \beta J \sum_{\langle ij \rangle} \delta_{s_i s_j}, \quad s_k = 1, \dots, q, \ J > 0$$

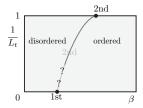
- d = 2: 2nd order PT $\beta_c J = \ln (1 + \sqrt{q})$, $q \le 4$ (known exactly [7]) critical exponents known
- d = 3: PT (weak) 1st order, $\beta_c = 0.550565(10)$ [9]



Simpler example: q = 3 Potts Model [6] in (2 + 1) dimensions (this study)

$$-\beta H = \beta J \sum_{\langle ij \rangle} \delta_{s_i s_j}, \quad s_k = 1, \dots, q, \ J > 0$$

- d = 2: 2nd order PT β_cJ = ln (1 + √q), q ≤ 4 (known exactly [7]) critical exponents known
- d = 3: PT (weak) 1st order, $\beta_c = 0.550565(10)$ [9]



Definition Phase diagram

q-state Potts Model (d = 2) - extended phase diagram

Extension to Potts Lattice Gas (PLG)

Allow for vacancies on lattice, $t_k = 0(1)$ corresponds to vacant (spin occupied) site, vacancies are controlled via chem.potential Δ .

Renormalization group analysis [10, 11] for d = 2 yielded extended phase diagram: PT can be driven from 2nd to 1st order by increasing $q > q_c(d)$ (1st order for $q > q_c(d)$, $q_c(2) = 4$) or by increasing the vacancy concentration.

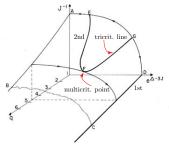


FIG. 1. Phase diagram of the Potts lattice gas in the space of temperature, J^{-1} , fugacity, $e^{\Delta-3J}$, and number of states, q.

Definition Phase diagram

q-state Potts Model (d = 2) - extended phase diagram

Extension to Potts Lattice Gas (PLG)

Allow for vacancies on lattice, $t_k = 0(1)$ corresponds to vacant (spin occupied) site, vacancies are controlled via chem.potential Δ .

Besides RG relevant scaling field ϕ (thermal), Δ amounts to new scaling field ψ . RG eigenvalue y_{ψ} changes sign at multicritical point (logarithmic corrections to scaling).

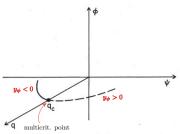


FIG. 1. Fixed point structure in the $q - \psi - \varphi$ space. A continuous line of critical points (solid curve) meets a continuous line of tricritical points at a multicritical point ($q = q_c, \psi = \varphi = 0$).

Definition Phase diagram

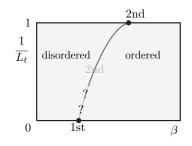
Potts Model phase diagram - lessons to learn

- PM with *q* = 4 in *d* = 2 (2nd order) difficult to numerically determine scaling (logarithmic corrections).
- *q* = 3, *d* = 2 universal entities (exponents) known, *no* logarithmic corrections.

M. Fromm

Expectations

- q = 3 PM (d = 2) with L_t > 1 falls - if 2nd order - in universality class of d = 2.
- Iff scenario 1): Separating TP has exponents which are known.
- Correlation length $\xi_0 \approx 10$ [9] for weak 1st order PT, naive expectation: $L_t^* \sim \mathcal{O}(10)$



Definition Phase diagram

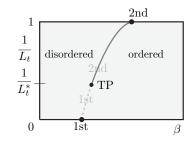
Potts Model phase diagram - lessons to learn

- PM with *q* = 4 in *d* = 2 (2nd order) difficult to numerically determine scaling (logarithmic corrections).
- *q* = 3, *d* = 2 universal entities (exponents) known, *no* logarithmic corrections.

M. Fromm

Expectations

- q = 3 PM (d = 2) with L_t > 1 falls - if 2nd order - in universality class of d = 2.
- Iff scenario 1): Separating TP has exponents which are known.
- Correlation length $\xi_0 \approx 10$ [9] for weak 1st order PT, naive expectation: $L_t^* \sim O(10)$



Task Results

Outline

Motivation

• Phase transitions and dimensional reduction

• The phase diagram of U(1) LGT in (3 + 1) dimensions

2 The Potts Model

- Definition
- Phase diagram

3 Numerical experiment

- Task
- Results

Task Results

Criteria at hand

Task

- Perform MC runs for PM-systems of size $L^2 \times L_t$.
- Tune systems to criticality, FSS for $L \to \infty$, keeping L_t fixed.
- Distinguish weak 1st from 2nd order PT by :
 - 1) Surface tension and energy histogram inspection,
 - 2) Asymptotic behaviour of correlation function

$$G(i-j) = < s_i s_j >,$$

3) Estimation of critical exponents.

Surface tension and energy histogram

• Coexistence of ordered and disordered phase (mixing) is characteristic for 1st PT: For observables *M*, *E*

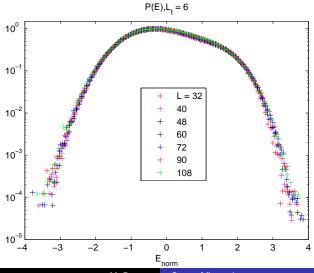
$$P(M) = c_o e^{-(M-M_o)^2/d_o} + c_d e^{-(M-M_d)^2/d_d} + c_m e^{-\sigma 2A\beta}, \text{ (at }\beta_c\text{)}$$

A - area of interface, σA - surface energy ($A = L_t L$)

- From distribution obtain $2\sigma LL_t = \log (P_{\max}/P_{\min})$ (via FSS).
- Note also that $\log(P_{\max}) \log(P_{\min})$ has to grow with L (for 1st order PT).

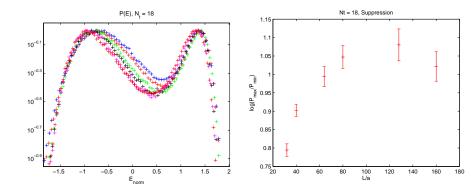
Task Results

Energy histogram, $L_t = 6$



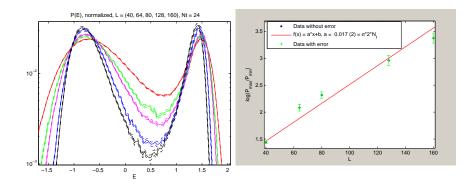
Task Results

Surface tension and energy histogram, $L_t = 18$



Task Results

Surface tension and energy histogram, $L_t = 24$



Asymptotic behaviour of $\overline{G}(x, y)$

- $\overline{G}(\mathbf{r_1} \mathbf{r_2}) = \langle \overline{s}(\mathbf{r_1})\overline{s}(\mathbf{r_2}) \rangle$, where $\overline{s}(x, y) = \frac{1}{L_t} \sum_z s(x, y, z)$
- By dimensional reduction $(\xi \to \infty) \ \bar{G}(\mathbf{r}) \to G_{2d}(x, y)$ at 2nd order criticality, where

$$G_{2d}(r) \sim r^{-(\eta_{\mathrm{crit/tricrit}}+d-2)},$$

at the critical/tricritical point.

• If $\xi \to \infty$ and d = 2, $G(r) \sim f(r/L)$, r < L (by dim. reasons), s.t. $G(r) \approx 1/L^{\eta}f(r/L)$ which is used for a data collapse rescaling: $G_L(r) \cdot L^{\eta} \approx f(r/L)$

Task Results

Critical Exponents

Recall

Thermodynamic quantities $(\chi, c_v, ...)$ exhibit divergent behaviour at PT $(V \to \infty)$, $t = \frac{T - T_c}{T_c}$:

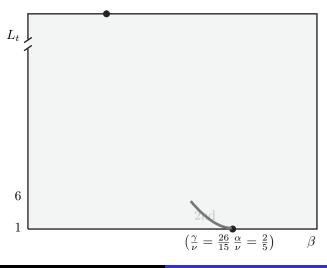
- Continuous PT: $\xi \sim |t|^{-\nu_{\rm crit}}$, $\chi \sim |t|^{-\gamma_{\rm crit}}$, $c_{\nu} \sim |t|^{-\alpha_{\rm crit}}$, $\alpha_{\rm crit}, \gamma_{\rm crit}$ etc. universal
- PT of 1st order: $1/\nu = d$ and $\alpha, \gamma = 1$
- At TP obtain critical exponents (universal) where

$$\varsigma_{\rm crit} < \varsigma_{\rm tricrit} < \varsigma_{\rm 1st}$$

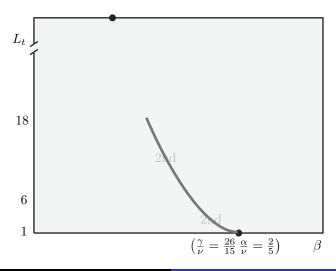
• FSS in L allows determination:

$$c(L)_{\nu,\max} = a_1 L^{\frac{\alpha}{\nu}} + a_2 + \operatorname{corr.}$$

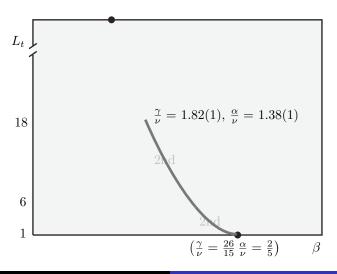
Task Results



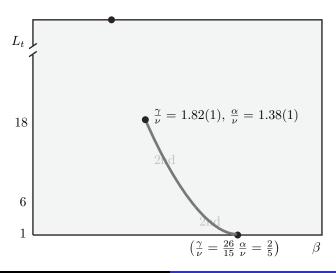
Task Results



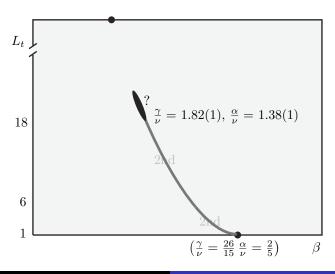
Task Results



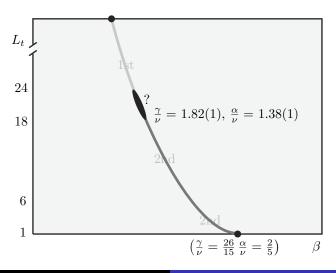
Task Results



Task Results



Task Results



Outline

Motivation

• Phase transitions and dimensional reduction

• The phase diagram of U(1) LGT in (3 + 1) dimensions

2 The Potts Model

- Definition
- Phase diagram
- 3 Numerical experiment
 - Task
 - Results

- There is a TP at finite L_t (and for U(1) LGT it is of relevance).
- $L^*_t pprox$ 18 agrees with initial argument $L^*_t \sim \mathcal{O}(10)$
- Question: PT changes from 2nd to 1st order by going from *d* to *d* + 1 but nerver v.v.?

For further reading

- A.P.Gottlob and M.Hasenbusch Physica A, 201, 593 (1993).
- M.Vettorazzo and P.de Forcrand Nucl.Phys.,B 686, 85 (2004).
- G.Arnold, B.Bunk, T.Lippert and K.Schilling Nucl.Phys.Proc.Suppl., 119, 864 (2003).
- Berg, Bernd A. and Bazavov, Alexei Phys. Rev., D74, 094502 (2006).
- Berg, Bernd A. and Bazavov, Alexei PoS LAT2006, 061 (2006).

Potts, R.B.

Proc.Camp.Phil.Soc., 48, 106 (1952)